
DynaFlow: An Efficient Website Fingerprinting Defense Based
on Dynamically-Adjusting Flows

David Lu
MIT PRIMES

davidboxboro@gmail.com

Sanjit Bhat
MIT PRIMES

sanjit.bhat@gmail.com

Albert Kwon
MIT

kwonal@mit.edu

Srinivas Devadas
MIT

devadas@mit.edu

ABSTRACT
Website fingerprinting attacks enable a local adversary to determine
which website a Tor user visits. In recent years, several researchers
have proposed defenses to counter these attacks. However, these
defenses have shortcomings: many do not provide formal guaran-
tees of security, incur high latency and bandwidth overheads, and
require a frequently-updated database of website traffic patterns. In
this work, we introduce a new countermeasure, DynaFlow, based
on dynamically-adjusting flows to protect against website finger-
printing. DynaFlow provides a similar level of security as current
state-of-the-art while being over 40% more efficient. At the same
time, DynaFlow does not require a pre-established database and
extends protection to dynamically-generated websites.
ACM Reference Format:
David Lu, Sanjit Bhat, Albert Kwon, and Srinivas Devadas. 2018. DynaFlow:
An EfficientWebsite FingerprintingDefense Based onDynamically-Adjusting
Flows. In 2018 Workshop on Privacy in the Electronic Society (WPES’18), Oc-
tober 15, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3267323.3268960

1 INTRODUCTION
Due to increases in mass surveillance and other attacks on pri-
vacy, many Internet users have turned to Tor [8] to protect their
anonymity. Over the years, Tor has grown to over 6,000 volunteer
servers and 4 million daily users [16]. At a high level, Tor protects
its users’ identities by routing each packet through a number of
Tor servers. Each server knows only the immediate hop before and
after itself, and as a result, no single server learns both the identity
of the user and the destination of the packet.

Tor, however, has been known to suffer from different traffic anal-
ysis attacks [2, 5, 9, 10, 12, 17]. In particular, there have been several
recent works on an attack called website fingerprinting (WF) that
allows an adversary who observes only the connection between the
user and the Tor network to identify which website the user visits.
The WF adversary is a passive observer (he will not drop, modify

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES’18, October 15, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5989-4/18/10. . . $15.00
https://doi.org/10.1145/3267323.3268960

User

Adversary

Tor Network Websites

Figure 1: The Website Fingerprinting threat model.

or insert packets) who monitors the connection between a user and
the Tor network, as shown in Figure 1. The adversary is interested
in identifying visitors of monitored websites, which the adversary
deems “sensitive.” To carry out the attack, the adversary visits the
monitored websites on his own, and possibly many unmonitored
websites as well, to collect traces, the sequence of packets and their
time stamps generated while visiting a website. He then creates a
database of the traces, and proceeds to monitor and collect users’
traces. Finally, he attempts to infer which website corresponds to
which user trace by comparing the user traces to the database (i.e.,
classify the user traces into one of many classifications).

We consider two different attacker settings.
Closed-world. In this setting, we assume that users only visit

monitored websites. Here, accuracy measures the effectiveness of
the attacker, which is simply the proportion of user traces that were
classified correctly.

Open-world. In the real world, users can visit websites that the
adversary does not monitor. The open-world setting aims to em-
ulate this scenario by allowing the users to visit both monitored
and unmonitored websites. The adversary must first classify each
trace as either an unmonitored or monitored website, and if it is
a monitored website, then also identify the specific website. The
effectiveness in this setting is typically measured by true positive
rate (TPR), the proportion of monitored traces that are classified cor-
rectly, and false positive rate (FPR), the proportion of unmonitored
traces that are incorrectly classified as a monitored website.

2 BACKGROUND AND RELATEDWORK
Some of the earlier WF defenses were designed to counter specific
attacks. Although such defenses defeated older attacks, they often
failed against newer ones [5, 10, 17]. Other works instead have
focused on creating defenses with stronger security guarantees
that protect users against much larger classes of attackers while
providing bounds on the attacker’s effectiveness. There are two

https://doi.org/10.1145/3267323.3268960
https://doi.org/10.1145/3267323.3268960

Table 1: Comparison of DynaFlow with prior defenses.

Low
Overheads

Strong Privacy
Guarantees

No
Database

High
Tunability

DynaFlow ✓ ✓ ✓ ✓
BuFLO [9] × × ✓ ×
CS-BuFLO [3] × ✓ ✓ ×
Tamaraw [4] × ✓ ✓ ×
Supersequence [17] × ✓ × ×
Glove [13] × ✓ × ×
Walkie-Talkie [18] ✓ ✓ × ✓
Decoy Pages [15] × × ✓ ×
WTF-PAD [11] ✓ × ✓ ✓
LLaMA [7] ✓ × ✓ ×
ALPaCA [7] ✓ × × ✓

high-level classes of such defenses: supersequence defenses and
constant-flow defenses.

2.1 Supersequence defenses
Defenses in this class [13, 17, 18] first collect a database of traffic
traces of many different websites. Next, they group the traces into
one or more sets, each having a single “supersequence”; the su-
persequence of a set contains all traces in the set as subsequences.
Then, each trace is morphed into the supersequence of the set via
padding and delays between packets. Walkie-Talkie [18], for exam-
ple, uses half-duplex communication and breaks each trace down
into sequences of bursts, making supersequences easier to create.

Unfortunately, supersequence defenses in general are difficult to
deploy in practice because they require a database of web traces that
must constantly be updated as the websites change. Consequently,
these defenses only apply easily to static websites that do not change
over time and have difficulty protecting websites that use AJAX or
JavaScript [13, 18]. Furthermore, they usually incur large overheads,
often doubling the latency and bandwidth usage [13].

2.2 Constant-flow defenses
Defenses in this second class flood the network with a continuous
stream of packets to prevent the adversary from identifying any
meaningful patterns in the traffic [3, 4, 9]. The current best constant-
flow defenses are Tamaraw [4], which sends packets at a fixed rate,
and CS-BuFLO [3], which varies the rate of packet transmission.

Constant-flow defenses do not require any pre-built databases,
potentially making them easier to deploy. However, these defenses
incur high latency and bandwidth overheads (usually 100% or more),
even for their lightest configurations. Thus, our goal in this work is
to construct a defense with similar guarantees as Tamaraw and CS-
BuFLO but with significantly lower overheads. Table 1 compares
our defense with the top WF defenses.

3 DYNAFLOW
At a high level, DynaFlow is aWF countermeasure based on constant-
flow with efficiency improvements that come from its dynamic
nature and parameterizability. Unlike supersequence defenses, Dy-
naFlow does not use a database and does not limit protections to
static content. Instead, DynaFlow uses fixed burst patterns with
dynamically-changing intervals between packets to hide what web-
site a user visits. In contrast to other constant-flow defenses, Dy-
naFlow is highly tunable; it can be configured to reduce attacker

Table 2: Parameters of DynaFlow.
Parameter Description
o Number of outgoing packets in a burst
i Number of incoming packets in a burst
ti Initial inter-packet timing
b Number of bursts between inter-packet timing adjustments
a Number of allowed inter-packet timing adjustments
m Burst padding base
T Set of possible inter-packet timings

accuracies to below 10% with moderate efficiency or reduce over-
heads to 30-50% with moderate security. Prior constant-flow de-
fenses do not have this feature because they incur high overheads
at all security levels [3, 4, 9].

To measure the overheads of our defense, we will use the time
overhead (TOH) and the bandwidth overhead (BWOH), suggested
by prior work [4]. TOH (i.e., latency overhead) is defined to be the
extra amount of time needed to load the defended trace over the
load time without any defense. Similarly, BWOH is defined to be
the number of additional bytes in the defended trace over the byte
size of the original trace.

3.1 DynaFlow design
Our defense consists of three parts: (1) burst-pattern morphing,
(2) constant traffic flow with dynamically-changing intervals, and
(3) padding the number of bursts. Table 2 summarizes all system
parameters of our defense.

3.1.1 Burst-pattern morphing. Although existing constant-flow
defenses such as CS-BuFLO handle incoming and outgoing packets
independently [3, 4, 9], DynaFlow considers incoming and outgoing
packets together, and morphs packets into fixed bursts. We first
note that every traffic pattern can be broken into small bursts of
packets consisting of o consecutive outgoing packets followed by i
consecutive incoming packets [18] (from the client’s point of view).
In DynaFlow, we fix a particular o and i , and morph the traffic
such that every burst is identical by adding dummy packets in both
directions. After sweeping the parameters, we found that o = 1
and i = 4 resulted in the least overhead. That is, the traffic pattern
with DynaFlow is always of this form: one outgoing packet, four
incoming packets, one outgoing packet, and so on.

3.1.2 Inter-packet timing. In addition to morphing the burst pat-
terns, we also have a constant flow of traffic. Specifically, packets are
queued and sent out every t seconds according to the pre-selected
burst pattern (§3.1.1). If there are no packets in the queue and we
are supposed to send a packet, then DynaFlow inserts a dummy
packet. Moreover, similar to CS-BuFLO [3], DynaFlow dynamically
changes the value of t . However, DynaFlow allows for more ad-
justable tuning of t by introducing several parameters. We initially
set the inter-packet interval t to be a predetermined value ti . Then,
after a fixed number of bursts b, we allow dynamic changes to the
interval t . Our defense estimates the new value of t by comput-
ing a weighted sum of the average inter-packet time interval of
the last 20 bursts (before morphing) and the number of packets in
the queue. Intuitively, this tracks whether we are using too many
dummy packets, or conversely, setting the interval too high.

For every website, we allow up to a adjustments, and during
each adjustment, the client chooses t from a limited set of available

Table 3: Closed-world results against k-NN [17] and k-FP [10]. Base-
line indicates the case with no defense. All values are in %.

Config. Parameters k-NN [17] k-FP [10] TOH BWOH
Baseline N/A 88.0 94.3 0 0

1
o = 1, i = 4, ti = 0.012
b = 160, a = 7,m = 1.2
T = {0.0012, 0.005}

17.5 45.0 31 53

2
o = 1, i = 4, ti = 0.012
b = 80, a = 1,m = 1.2
T = {0.0015}

6.0 18.4 38 84

intervals T = {t1, . . . , tk } that best matches its traffic pattern. For
the highest levels of security, we can set |T | = 1, b = ∞, or a = 0,
which would guarantee that all traces are identical except for the
total number of bursts. Conversely, by increasing |T |, decreasing b,
or increasing a, we can trade off security for lower overheads.

3.1.3 The number of bursts. The total number of bursts (i.e., the
sizes of the traces) may still leak a significant amount of infor-
mation. For example, it would be easy to distinguish between a
video-hosting website and a small text-based search engine. To
hide this, we pad the number of bursts to {⌊m⌋, ⌊m2⌋, ⌊m3⌋, · · · }
for some fixedm > 1 by inserting dummy bursts. By padding to
a power ofm, we mitigate the privacy loss by significantly limit-
ing the number of possible traces.1 At the same time, this padding
scheme generates enough trace lengths to ensure that overheads
remain relatively low.

3.1.4 Combining packets. We also introduce a small optimization
to offset some of the overhead. Our defense often results in multiple
outgoing requests waiting in the queue. In the case where there
are two consecutive outgoing packets (before burst morphing) that
total less than a single Tor packet (512 bytes), we combine them
into a single packet. Small responses are also combined by the exit
node. This decreases the number of packets, which mitigates the
effect of delays.

4 DYNAFLOW EVALUATION
We now evaluate our defense.

4.1 Implementation and data set
To evaluate our defense, we use a data set that we collected,2 which
consists of 100 monitored pages (90 traces each) and 9000 unmoni-
tored pages (1 trace each). The 100 monitored pages were retrieved
from Alexa’s list of the 100 most popular websites [1] while the
next 9000 most popular pages make up the unmonitored class. We
collected our traces by configuring Firefox 57.0.1 to access websites
through Tor 0.2.9.9.3 Each time we collected a trace, we changed the
Tor circuit to emulate the fact that different users and the adversary
will access a single website using different circuits.

Similar to prior defenses [4, 9, 13, 17, 18], we simulate our defense
by replaying the collected traces through our defense to generate
new traces. Our code and data set can be found on GitHub.4

1Information theoretically speaking, this would leak a logarithmic number of bits.
2Prior data sets do not contain enough information to simulate our defense because
they excluded the size of unpadded packets used for packet combination.
3In an actual deployment, the users would use the Tor browser, which could yield a
different result from our experiments.
4https://github.com/davidboxboro/DynaFlow

Table 4: Open-world results against k-NN [17] and k-FP [10]. The
configurations are the same as those of Table 3. All values are in %.

Config.
k-NN [17] k-FP [10]

TOH BWOH
TPR FPR TPR FPR

Baseline 84.5 2.5 86.3 1.6 0 0
1 15.4 20.6 5.0 1.6 23 59
2 5.9 69.0 4.4 40.1 28 112

4.2 Evaluation against existing attacks
We first run DynaFlow on the data set, and then run different
website fingerprinting attacks on the defended data set in closed-
world and open-world scenarios.

4.2.1 Closed-world defense evaluation. We evaluated the effective-
ness of our defense against k-NN [17] and k-FP [10] using two
different configurations.5 The results and the configurations used
are summarized in Table 3.

DynaFlow causes substantial decreases in the accuracy of both
classifiers. Configuration 1 of DynaFlow decreases the accuracy of
k-NN [17] from 88.0% to 17.5% and k-FP [10] from 94.3% to 45.0%.
At the same time, configuration 1 has fairly low time and bandwidth
overheads at 31% and 53%, respectively. Configuration 2 can lower
the accuracy even further to 6.0% and 18.4%, at the cost of higher
latency and bandwidth overheads of 38% and 84%.

4.2.2 Open-world defense evaluation. DynaFlow is just as effective
in the open-world using the same configurations as the closed-
world, as summarized in Table 4. With configuration 1, we reduce
the TPR of both attacks to below 16%, with time and bandwidth
overheads of 23% and 59%, respectively. Configuration 2 further
lowers the TPR to below 6% for both attacks, while increasing the
FPR to above 40%.

4.3 Comparison with prior work
We now compare with two prior works, CS-BuFLO [3] and Tama-
raw [4], and demonstrate that DynaFlow can achieve the same level
of security with lower overheads.

4.3.1 Optimal attacker strategy. We first describe the strategy of
the optimal attacker. The optimal attacker wishes to learn Pr[w|t]
for a trace t and website w (i.e., the probability that w is visited when
t is observed) for all w and t so that he can maximize his chances of
classifying a website correctly. We assume that the attacker knows
Pr[w] (i.e., how likely a website is visited) for all websites w.

The attacker starts by collecting multiple traces per website.
For a given w and t, the attacker’s best estimate for Pr[t|w] is the
proportion of traces of w that are identical to t. The attacker can
then compute Pr[t] as follows:

Pr[t] =
∑
w′

Pr[w′, t] =
∑
w′

Pr[w′] · Pr[t|w′] ,

where Pr[t|w′] is estimated using the traces he collected. Finally,
the attacker can use Bayes’ theorem to estimate Pr[w|t] for any
given w and t:

Pr[w|t] = Pr[w] · Pr[t|w]
Pr[t] =

Pr[w] · Pr[t|w]∑
w′ Pr[w′] · Pr[t|w′]

.

5We did not compare against CUMUL [14] because prior work [10, 18] has shown that
k -FP and k -NN consistently outperform CUMUL when defenses are applied.

0.0 0.2 0.4 0.6 0.8
Attacker accuracy

0

100

200

300

400

500

Co
m

bi
ne

d
ov

er
he

ad

CS-BuFLO (CPSP)CS-BuFLO (CPST)

CS-BuFLO (CTSP)

CS-BuFLO (CTST)

Tamaraw
DynaFlow

Figure 2: Sum of TOH and BWOH versus the optimal attacker’s ac-
curacy for different defenses.

0.0 0.2 0.4 0.6 0.8 1.0
Attacker F1 score

0

100

200

300

400

500

Co
m

bi
ne

d
ov

er
he

ad

CS-BuFLO (CPSP)CS-BuFLO (CPST)

CS-BuFLO (CTSP)

CS-BuFLO (CTST)

Tamaraw
DynaFlow

Figure 3: Sum of TOH and BWOH versus the optimal attacker’s F1
score for different defenses.

Now suppose that the optimal attacker observes a trace t. To maxi-
mize his chances of guessing the correct website that corresponds
to t, he should choose a website w such that Pr[w|t] is maximized.

4.3.2 Defense against optimal attacker. Wenow compareDynaFlow
to prior works [3, 4]. For CS-BuFLO [3], we used Cherubin’s sim-
ulation implementation [6]. To ensure fair comparison, we run
Tamaraw [4] and CS-BuFLO [3] on our data set, sweep their param-
eters, and use the parameters that performed best. For Tamaraw, we
outgoing and incoming packet intervals of 0.012 and 0.003, respec-
tively, while varying the padding parameter L. For CS-BuFLO, we
set the initial, minimum, and maximum values of ρ∗ to 0.016, 0.004,
and 0.128, respectively, and tested all four padding schemes (CTST,
CTSP, CPST, and CPSP) described in the paper [3].

We assume that the probability that an unmonitored website is
visited is 0.5, and the probability a monitored website is visited is
the same across all websites (i.e., Pr[w1] = Pr[w2] for all monitored
websites w1 and w2), though this could easily be changed. For our
experiments we found that o = 1, i = 4, and ti = 0.012 works the
best, with other parameters varying. We found the parameters by
sweeping one parameter at a time while fixing the others.

Once we apply the defenses to our data set, we create an opti-
mal attacker that performs the attack described in §4.3.1 for both
closed-world and open-world settings. In the closed-world, we plot
the sum of the time and bandwidth overhead for a given attacker
accuracy in Figure 2. As shown, DynaFlow achieves lower over-
head than Tamaraw and CS-BuFLO for all attacker accuracies. For
example, DynaFlow can reduce the optimal attacker accuracy to
below 50% while keeping the sum of the overheads to 93% (34%
TOH and 59% BWOH). To achieve the same level of security, Tama-
raw’s requires 128% total overhead (46% TOH and 82% BWOH), and
CS-BuFLO requires 279% overhead (127% TOH and 152% BWOH).
At higher levels of security (which only our defense and Tama-
raw can achieve), our defense remains more efficient. When the

attacker’s accuracy is 20%, our defense incurs 121% total overhead
(38% TOH and 84% BWOH), while Tamaraw incurs 162% total over-
head (58% TOH and 104% BWOH). At 7% optimal attacker accuracy,
our defense expends 213% overhead, compared to Tamaraw’s 419%.
Altogether, the flexibility of DynaFlow allows for greater efficiency
than Tamaraw at all security levels.

For open-world, we plot the sum of the two overheads for a
given F1 score in Figure 3. F1 is the harmonic mean of precision
(the number of monitored traces the adversary correctly classifies
divided by the number of traces that were classifed as monitored)
and recall (TPR); intuitively, F1 is a singlemetric that aims to capture
both true positives and false positives [11]. Similar to the closed-
world setting, DynaFlow achieves better overhead than Tamaraw
and CS-BuFLO. To achieve an F1 of 41% (29.0% TPR and 11.4% FPR),
DynaFlow incurs an overhead of 92% (26% TOH and 66% BWOH).
For the same F1, Tamaraw needs 136% overhead (39% TOH and 97%
BWOH) and CS-BuFLO needs 285% overhead (112% TOH and 173%
BWOH). At higher F1 scores, the gaps are even larger.

5 DISCUSSION AND FUTUREWORK
In this section, we discuss possible limitations of our work and
possible avenues for future work.

DynaFlow parameters. DynaFlow has several parameters, which
must be tuned to network conditions and user preferences. For
instance, if the user’s primary concern is the latency of the connec-
tion, then we would set the inter-packet timing to be something
lower. In this paper, we set the parameters by fixing all but one and
doing a sweep of the one left. This may not result in optimal param-
eters, and it takes a while to find the parameters. In the future, we
would like to find a more efficient way to determine the parameters
to allow easy configuration based on the user’s priorities.

DynaFlow overheads. To protect users, all WF defenses must incur
overheads in the Tor network. Compared to prior defenses like
Tamaraw, DynaFlow’s time and bandwidth overheads are relatively
low, at 30-50% for moderate levels of security. However, for high
security configurations, the total overhead sum can exceed 120%,
which might be too high for general purpose usage. We hope to
further reduce the overheads in future work.

DynaFlow requirements. To run DynaFlow, the Tor source code
must be modified to change the behavior of both the Tor client and
exit node. This doesmake it more difficult to deploy the defense, as it
requires changes in the volunteer servers. This also could negatively
affect performance of exit nodes, which are already overloaded.
Nevertheless, we believe that the strong security guarantees, low
overheads, and lack of a database still provide significant benefits
over prior defenses. Moreover, many existing defenses [3, 4, 9, 13,
17, 18] require participation from exit servers as well.

6 CONCLUSION
In this work, we propose DynaFlow, a provably-secure defense
based on burst pattern morphing and dynamically-changing flows.
DynaFlow lowers the overhead of prior art by over 40% while
achieving similar security guarantees due to its dynamic nature
and tunability. At the same time, DynaFlow is also easier to deploy
than prior work: it does not need a large, up-to-date database, which
allows it to extend protections to non-static content.

REFERENCES
[1] Alexa. 2017. The Top 500 Sites on the Web. https://www.alexa.com/topsites.
[2] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker. 2007. Low-Resource

Routing Attacks Against Tor. In WPES. 11–20.
[3] X. Cai, R. Nithyanand, and R. Johnson. 2014. CS-BuFLO: A Congestion Sensitive

Website Fingerprinting Defense. InWPES. 121–130.
[4] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. 2014. A Systematic

Approach to Developing and Evaluating Website Fingerprinting Defenses. In
ACM CCS. 227–238.

[5] X. Cai, X. Zhang, B. Joshi, and R. Johnson. 2012. Touching from a Distance:
Website Fingerprinting Attacks and Defenses. In ACM CCS. 605–616.

[6] G. Cherubin. 2017. Bayes, not Naïve: Security Bounds on Website Fingerprinting
Defenses. In PETS. 215–231.

[7] G. Cherubin, J. Hayes, and M. Juarez. 2017. Website Fingerprinting Defenses at
the Application Layer. In PETS. 186–203.

[8] R. Dingledine, N. Mathewson, and P. Syverson. 2004. Tor: The Second-Generation
Onion Router. In USENIX Security. 303–320.

[9] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. 2012. Peek-a-Boo, I
Still See You: Why Efficient Traffic Analysis Countermeasures Fail. In IEEE S&P.
332–346.

[10] J. Hayes and G. Danezis. 2016. k -fingerprinting: A Robust Scalable Website
Fingerprinting Technique. In USENIX Security. 1187–1203.

[11] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. 2016. Toward an Efficient
Website Fingerprinting Defense. In ESORICS. 27–46.

[12] S. J. Murdoch and P. Zieliński. 2007. Sampled Traffic Analysis by Internet-
Exchange-Level Adversaries. In PETS. 167–183.

[13] R. Nithyanand, X. Cai, and R. Johnson. 2014. Glove: A Bespoke Website Finger-
printing Defense. In WPES. 131–134.

[14] A. Panchenko, F. Lanze, A. Zinnen, and M. Henze. 2016. Website Fingerprinting
at Internet Scale. In NDSS.

[15] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. 2011. Website Fingerprinting
in Onion Routing Based Anonymization Networks. In WPES. 103–114.

[16] The Tor Project. 2018. Tor Metrics Portal. https://metrics.torproject.org.
[17] T. Wang, X. Cai, R. Johnson, and I. Goldberg. 2014. Effective Attacks and Provable

Defenses for Website Fingerprinting. In USENIX Security. 143–157.
[18] T. Wang and I. Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against

Passive Website Fingerprinting Attacks. In USENIX Security. 1375–1390.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Supersequence defenses
	2.2 Constant-flow defenses

	3 DynaFlow
	3.1 DynaFlow design

	4 DynaFlow evaluation
	4.1 Implementation and data set
	4.2 Evaluation against existing attacks
	4.3 Comparison with prior work

	5 Discussion and future work
	6 Conclusion
	References

