
ABSTRACT
Among three traditionally fundamental characteristics of 
contemporary windowing systems—opacity, rectangular-
ity, and hierarchy—the first two have been broken to give 
way to more expressive UI designs while hierarchy remains 
unchallenged. We propose a new kind of UI element called 
links that breaks the hierarchy of graphical user interfaces for 
the purpose of showing relationships between disparate UI 
elements. We present a small user study indicating that links 
are desirable visual elements that are currently under-used in 
graphical user interfaces. We propose a taxonomy of how links 
can be used, present a toolkit for representing and displaying 
links in Java/Swing, and show how links can enhance existing 
applications’ UIs.

INTRODUCTION
Windowed user interfaces currently dominate if not monopo-
lize all existing software applications. Users, UI program-
mers, and even UI researchers have come to accept that an 
application’s graphical user interface is a tree of large and 
small, nested, mostly rectangular and opaque windows, 
overlapping and hierarchically clipped. These characteristics 
of contemporary windowing systems—rectangularity, opac-
ity, and hierarchy—made sense back in the early days of 
graphical user interfaces when they bought us performance 
optimizations that allowed for smooth user interactions. Now, 
after many years of hardware advances, these optimizations 
become less and less justified against the demand for expres-
siveness in UI design.
Although the traditional windowing paradigm, consisting of 
opaque, rectangular windows with impenetrable borders, is  
conceptually simple for both programmers and users, there 
is mounting evidence that it is too confining. UIST has seen 
continuing research interest in translucency (e.g., [1], [6], 
and [8]) as researchers recognize the human ability to parse 
layered visual content. Non-rectangular UIs also have arrived 
in the form of pie menus and arbitrarily shaped media player 
skins. A recent piece of work [11] explores a circular radar-
like interface for showing notifications.
Support for translucency and non-rectangularity has made its 
way into some windowing systems and is gaining traction.   

We have witnessed the introduction of translucent windows 
in popular media players and instant messaging clients. 
However, hierarchy remains mostly untouched. It is this third 
characteristic of the traditional windowing paradigm that we 
wish to address. This paper explores the concept and usage 
of links—a new kind of UI element that crosses from one part 
of the hierarchical window tree to another part, expressing 
connections between disparate elements on screen.

We start by redesigning an existing UI to show new pos-
sibilities in UI designs when rigid windows are not used. In 
particular, the redesign illustrates the replacement of selec-
tion synchronization by the use of links crossing from one 
window to another.
Next, we show the results of a user study pilot in which test 
subjects drew links abundantly when told to design posters 
but hardly any when designing GUIs for the same purpose. 
This is evidence for the desirability of links and the difficulty 
in which they can be programmed in existing UI systems.
We propose a taxonomy of links to understand the nature of 
links. We then build a prototypical library of link UI elements 
that can be integrated into Java/Swing applications. We use 
this library to implement a version of the aforementioned 
redesign as well as an enhancement to an existing application 
through the use of links.
Finally, we discuss related work and future work.

SNAP: A REDESIGN EXAMPLE
In order to illustrate how the aforementioned three fundamen-
tal characteristics of the traditional windowing paradigm can 
be usefully broken, we consider SNAP, a recently developed 
research user interface [5]. This research system called SNAP 
provides users with a UI mechanism for coordinating several 
visualizations that have been rendered from queries to a re-
lational database.
Figure 1 shows a sample UI composed using SNAP. A user 
loads each of the five windows with data and specifies the 
formats for rendering them (e.g., plot, map, table, outline). 
Then, the selections of the windows are tied together using the 
Snap buttons so that selecting a state in the top left window 
highlights the corresponding data point in the plot, underlines 
the state’s code in the map, and displays that state’s county 
data in the table and the treemap on the right.
We chose SNAP as an example because of its attempt to 
let users smash together several visualizations and explore 
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This paper focuses on links, but we note in passing that another 
UI characteristic—rectangularity—has been usefully broken 
in our redesign:
• Most borders are removed. This change allows the plot to be 
pushed into the map (crossing over its invisible rectangular 
boundary) without obscuring parts of the map or creating 
a busy look due to intersecting borders. The two pieces of 
information are fitted together more snugly. This fitting ef-
fectively communicates the relationship between the map 
and the plot in Figure 2. In contrast, two labels “States” and 
“Counties” had to be added to the screenshot in Figure 1 to 
avoid confusion: the plot could have been of county data 
rather than of state data.
• The column header labels in the table are inclined so that the 
columns can be pushed closer together. The ability to incline 
text, difficult in most UI toolkits, adds flexibility to the design 
of visualizations. Furthermore, note that the rectilinear bound-
ing boxes of the column header labels intersect one another. 
As a result, providing a custom header label widget to a stan-
dard table widget is not enough—the table widget needs to 
be able to nudge the header labels closer than a conventional 
rectilinear layout would allow.

USER STUDY
These interesting axes of the design space—rectangularity, 
opacity, and hierarchy—remain largely under-explored be-
cause of limitations imposed by UI toolkits. In order to get 
a sense for how the creativity of UI programmers is affected 
by their perception of what’s easy or hard to implement, we 

Figure 1. Original SNAP user interface from [North], reprinted with permission from authors

relationships among them. However, the “smashing” is not 
as effective as it could have been if windowing toolkits were 
less confining. Figure 2 shows a rough redesign of the UI. 
We focus primarily on the information being explored rather 
than on the UI mechanisms provided to the user to specify the 
visualizations. Note the following differences in Figure 2:
• We use lines to connect the selected state name (e.g., Mary-
land) to the corresponding state on the map as well as the data 
point on the plot. We believe that this use of connecting lines, 
or “links,” shows correspondence more effectively than just 
highlighting corresponding items in the different visualiza-
tions in synchrony.
• Furthermore, since links are used to indicate selection, visual 
variables formerly used for highlighting are now freed up 
for other purposes. For example, highlighting can be used to 
indicate data points on the plot corresponding to other states 
in the same region as the selected state. This is useful for an 
overview of how the states in a region are distributed.
• We also use a link to connect the selected state to the county 
data table. This connection between the state Maryland and its 
counties eliminates a need to suffix every county name with 
“MD” as in the original design.
[TODO: improve this point] Using most existing UI toolkits, 
it is difficult to draw lines stretching from within one window 
to another window. Even if it is possible, the resulting links 
are not first-class widgets and cannot be easily manipulated 
programmatically.

States

Counties



Figure 2. A redesign of the SNAP user interface

conducted a small study with 10 computer science graduate 
students in our lab. Each student was asked to design an 
information visualization, either in poster form or computer 
form, for the following scenario:

“You have recently gone on a trip to China. During 
your trip, you visited five cities and stayed a differ-
ent number of days in each city, and you also made 
new friends at each city. [Here appeared the list of 
cities, durations of stay, and pictures of one or two 
friends made in each city.] As an assignment in your 
Chinese language class, you are to make a [poster 
or computer program] to recount your trip to your 
classmates, which shows (1) your route through 
China, (2) the friends you met, and (3) the fact that 
you spent a lot more time in Hangzhou than in any 
other city. Using paper and pencil, roughly sketch 
out what your [poster or computer program] would 
look like. Assume that you have access to a map of 
China and photos of your friends in any form you’d 
find convenient, and that the hypothetical class as-
signment is due in one week.”

We chose this scenario because its solution requires displaying 
several different visualizations—geographical, chronological, 
and pictorial—that are closely related. The Hangzhou require-
ment was particularly intended to motivate creative ways 
of showing the relationships between visualizations (like 
Minard’s famous visualization of Napoleon’s Russia campaign 
[9]). We wanted to see whether there were any systematic 
differences in how these relationships would be shown in a 

paper display (a poster) compared to an interactive display 
(a computer program).
For 4 of the 10 designers (randomly chosen), the requested vi-
sualization was a poster; the remaining 6 designers were asked 
to design a computer program. All 10 designers had designed 
and implemented at least one substantial user interface, and 
had experience with a wide range of UI tools (chiefly Java 
Swing, HTML, SWT, and Visual Basic). Designers in the 
computer-program condition were told that they could imagine 
designing for any UI programming environment that they felt 
comfortable with. Designers were given as much time as they 
wanted to produce a design; in the end, all designers took less 
than 30 minutes. Three designers (2 in the poster group and 1 
in the computer group) iterated their designs, throwing away 
a partial design and presenting a second sketch instead. The 
other designers created only one design.
The final designs were varied, but some general conclusions 
can be drawn. First, lines connecting different visualizations 
were commonly found in poster designs (3 out of 4) but rarely 
in computer designs (only 1 out of 6). The person who used 
lines in her computer program design admitted not thinking 
ahead about what tools to use and then claimed that she could 
implement her design in Java/Swing. Lines were used to con-
nect cities on the map to friends’ photos (in 2 designs), and 
cities to points on a time line (2 designs).  Several solutions 
used two kinds of lines, one kind to show the route around the 
map (a chronology within the geographic visualization), and 
another kind to make links between visualizations.
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###Unreferenced### Figure 4. One of the computer 
program designs from the user study

###Unreferenced### Figure 3. One of the poster de-

Again, although this paper focuses primarily on links, we 
would like to point out that rectangularity is observed to be 
usefully broken in the user study. Most of the poster designs 
(the same 3 out of 4) were unified in the sense demonstrated 
by Figure 2: different visualizations freely overlapped without 
respecting rectangular boundaries. In most of the computer 
designs (5 out of 6), by contrast, the visualizations were 
walled off from each other by strongly drawn rectangular 
boundaries. In fact, half the computer designs (3 out of 6) 
put different visualizations on different pages, giving up any 
hope of unifying them visually.
Certainly, there are many differences between the poster 
medium and the computer medium that might influence how 
designers perceive the solution space.  For example, a typical 
poster has more display area than a typical computer screen, 
while a typical computer program is more interactive and 
more dynamic (i.e., displaying changing information). But 

it’s worth noting that effective design 
idioms that were perfectly natural in 
poster designs—such as connecting 
lines and nonrectangular information 
elements—largely failed to appear in 
the computer designs.

TAXONOMY OF LINKS
Our user study’s results indicate fre-
quent use of links on paper but not 
in computer programs. We attribute 
this difference to the difficulty with 
which links can be programmed in 
current UI systems. In order to un-
derstand how links can be adapted 
to visualizations on the computer, 
we first explore the general diversity 
of links in information visualizations 
by proposing a taxonomy for line 
and link usage (Table 1). At the top 

level, we distinguish between the use of lines for showing 
associations and for showing information applicable globally 
to a visualization, such as the scale of a map. Lines used as-
sociatively are what we have termed “links” previously. Links 
are the topic of our discussion here.
We propose two main categories of links:

Elaborative Links
These are links that elaborate on the information being visu-
alized by adding more information which is not previously 
evident from the visualization; they connect multiple UI ele-
ments so that the user is informed of the relationships between 
those elements. There are several types of elaborative links: 
correspondence links, equivalence links, succession links, 
grouping links, and links for showing general relationships. 
Note that grouping links are an exception in that they may not 
have ends terminating at the objects being grouped.

Emphasis Links
When the connections between objects are already presented 
but can be enhanced visually, we use emphasis links.  Align-
ments of several objects are usually indicated by dashed 
lines. Distances between objects can be indicated with a ruler 
stretching from one object to the other. An arrow shows the 
direction from one object to another without touching the 
destination.
This is not a dichotomy. Rather, these two categories are 
more like two axes of characteristics onto which a link can 
be classified.
Note that a link can connect more than two objects to show 
an n-ary relationship. A link can also connect to another link: 
Figure 5 shows such a link being used to show the mutual 
friends of two persons A and B. In addition to this taxonomy, 
we also consider degenerated links attached to only one object: 
these act like tooltips in annotating the objects being pointed 
to (see accompanying videos).



RENDERING ISSUES
Our initial taxonomy for lines, and links, helps us determine 
the types of links we will explore through actual implemen-
tation. In this section, we dive only into elaborative links as 
emphasis links are generally more useful in graphics editing 
programs rather than in generic information visualizations. We 
believe that emphasis links have been explored extensively in 
the graphics design software domain. We will discuss various 
challenges to be addressed in order to render links amid the 
traditional windowing paradigm.

Stems, Ends, and Anchors
Every link (perhaps with the exception of some grouping 
links) consists of one or more stems (e.g. straight or curved 
lines) and two or more ends (e.g., arrowheads). The ends are 
visually bound to potentially moving or movable anchors—UI 
elements, or parts of, that are identifiable and visually self-

cohesive to the user. In other words, the user must be able to 
understand that, say, the link is attached to the border of a 
label and that the link will move if the label is moved when 
its containing window is dragged.

Extending The 2½D Space
Anchors are situated in a 2½D space (i.e., x and y coordinates 
plus a z-order index). In order to communicate visually the 
bindings between link ends and anchors, we must also visu-
ally situate link ends and link stems in this 2½D space. That 
is, we have to indicate through the renderings of links where 
their stems and ends are with respect to other UI elements in 
this space. Because the many anchors to which a link attaches 
lie at different z-orders, visually situating the various parts of 
the link in the 2½D space to present a visually cohesive UI 
element is non-trivial. This is the main challenge.
Consider the link from x to y in Figure 6. The two ends of the 
link are attached to anchors at different z-orders. If we keep 
the 2½D space, we have to break the stem into two segments, 
one belonging to the same z-order as the UI element C, and 
one as the UI element D. It is not clear where to break the 
stem. In fact, it is not even clear that the two segments can 
share the same z-orders as the elements C and D since no two 
elements can have the same z-order in this 2½D space. Where, 
then, should the two segments be in the z-order stack, relative 
to the intervening UI element B?

Associative  showing association between different information items

Elaborative  the association is not already present in the visualization and is elaborated by the lines

Correspondence links between two or more views of a single logical object (e.g., three views of a state are linked together 
in our redesign example)

Equivalence links connecting elements having common or similar attributes, e.g., a contour line indicating points of 
equal elevation

Succession e.g., arrows that show transitions through a flowchart or connect points in a time series

Grouping e.g., contour enclosing grouped items

General
Relationship

links between an object or a relationship to several related objects (e.g., a state is linked to its county 
data in our redesign example)

Emphasis  the association is already in the visualization and is emphasized by the lines

Alignment e.g., a dashed line on a form designer shows that a UI component being dragged is “snapped” to align 
with another UI component

Length e.g., a line indicating some distance between two visual elements

Direction e.g., an arrow pointing from one visual element in the direction of another visual element

Non-associative  showing information applicable globally to the entire visualization

Length e.g., the scale ruler on a map

Direction e.g., the compass on a map

###Unreferenced### Table 1. Taxonomy of Lines

A

B

Figure 5. Link showing mutual friends of A and B



It would be easier to conceptualize where the link’s parts are 
situated with respect to other UI elements if we usher links 
into a 3D space in which other UI elements can only take on 
different, integral z coordinates. In this 3D space, link stems 
are continuous lines as already shown in the profile view in 
Figure 6.

Obscurity Problems
The next challenge is to communicate visually the location and 
distribution of the various parts of the link in the 3D space. 
A straightforward opaque 2D projection of the link (Figure 
7) is not satisfactory: only the originating link end and two 
unconnected segments of the link stem remain unobscured by 
other opaque UI elements. In fact, because the two anchors are 
always at different z-orders, if the link stem is straight, one end 

of the link is guaranteed to be hidden behind the upper anchor. 
This method of rendering links is obviously not useful.
Before we dive into techniques for countering obscurity, we 
first distinguish two sources of obscurity.
Overlapping  A UI element is obscured partially or entirely 
because another UI element of small z-order overlaps with 
its region.
Viewport Cropping  A UI element can also be obscured because 
it is being viewed through a view port and it falls outside the 
viewport’s opening partially or entirely.
In order to better present links—countering the obscurity effect 
resulted from the newly adopted 3D space while maintaining 
some consistent physical model comprehensible to the user—
we consider two techniques: bending and translucency.

Countering Obscurity by Bending
We bend the link in Figure 6 up along a vertical plane as shown 
in Figure 8 so that it is no longer obscured by B, D, and E.
Note that the user might not want the link to go over E. For 
example, E might contain information not related at all to the 
contents of C and D, and the user wants to focus on interacting 
solely with E. This is usually the case when C, D, and E are 
separate windows and the user is given the ability to explicitly 
bring E to the front of the z-order stack. When C, D, and E are 
child widgets of a common dialog, closely interrelated in their 
functions, and the user is not allowed to change their z-orders, 
it makes more sense to bend the link over E.

If the link is already curved, it is still beneficial to use the 
bending technique for, say, providing a smooth transition as 
the link’s anchors are scrolled out of view. Consider the link 
in Figure 9: as the viewport’s opening is scrolled downward, 
the link stem is pushed against the top border of the viewport. 
The link stem is bent and its curvature as visible to the user 
changes, maintaining as much visibility as it can manage.

a
b

a
b

a
b

Figure 9. Physical model for link stems protruding from view ports: the link stem is constrained by the view port’s upper 
edge as the view port is scrolled downward
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translucent as it is not desirable to make the entire element 
translucent.
Structural Projection  We can also select the important 
structural features of the obscured part of the link and its 
context—borders of large UI elements around it, visually 
dominant background patches, identifying text segments, 
etc.—and show them in a ghosted mode on top of the obscur-
ing UI element.

When Obscurity is Desirable
When part of a link is obscured by a viewport, the viewport’s 
space might be large and the obscured part of the link might 
extend far away from the viewport’s opening. Since the 
viewport’s primary purpose is to crop its contents, any use 
of translucency, which spills the viewport’s content outside 
its opening, might not be desirable. In such a case, although 
we might have to be content with obscurity, we can still use 
bending to indicate where the obscured part of the link is 
with respect to the viewport’s opening. Figure 12a shows the 
physical model of a link bent because one of its end is scrolled 
out-of-view in a viewport and  Figure 12b shows the rendering 
of the link as it appears to the user. 

Note that obscurity is not always desirable in the context of a 
viewport. Figure 13a illustrates a case in which cropping two 
links originating and ending at UI elements inside a viewport 
can result in visual confusion. This is fixed in Figure 13b 
when the links are allowed to spill outside the viewport’s 
opening.

Discussion
In our discussion of the bending technique, we have focused 
solely on bending in the z dimension in order to pull links 
over obscuring UI elements. However, links themselves can 
obscure other pieces of valuable information being visualized. 

Countering Obscurity using Translucency
There are cases where bending alone cannot effectively coun-
ter obscurity. Consider the link from A to B in Figure 10a: 
no matter how the link stem is bent, some part of the link is 
obscured. Even in the adverse bending in Figure 10b, the link 
end on A is still obscured. In such a case, we resort to making 
some part of B translucent so that the link end, part of the link 
stem, and the anchor on A can show through.

Consider also the case in Figure 11a: B intervenes between A 
and C, cutting a link between them. The anchor y is entirely 
obscured by B. However, since C is topmost, it might be desir-
able to show all the links attached to it regardless of whether 
they are obscured partially. As in the previous case, no bending 
can reveal the link end on A. Still, truncating the link stem 
where it punctures through B might not be satisfactory: the 
link might seem to the user to terminate on B, or if not, the 
user might not be able to visualize where the link terminates 
on A if there were more links between C and A.

Note that a UI element obscuring a link (e.g., B in Figure 
11a) is not aware of the link that it cuts. Hence, it cannot 
“volunteer” to be translucent for the purpose of revealing 
the link. It has to be forced to become partially translucent. 
Involuntary translucency is one example of how links have 
demanded more intervention from the UI framework in the 
rendering of unrelated UI elements. Clipping alone is no 
longer the only coordination between the renderings of vari-
ous UI elements.
There are many ways to make a UI element obscuring a link 
“translucent.” 
Alpha Composition  We can make it translucent in the conven-
tional way using alpha composition. The challenge here is to 
isolate a small region of the obscuring UI element to make 
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MAGPIE: A TOOLKIT OF LINK UI ELEMENTS
Based on our exploration of various issues on rendering links, 
we have designed and implemented a toolkit called Magpie for 
drawing links between different Java/Swing components.

Implementation Technologies
We chose to implement Magpie in Java/Swing as its light-
weight components all paint on a common canvas and it is 
easier to overlay links on them than it is on operating system-
native UI widgets. Swing is built on top of the Java 2D Graph-
ics toolkit which offers sophisticated rendering capabilities 
including alpha composition.
However, at the top level of all Java/Swing UIs are javax.
swing.JFrames—operating system-native windows that are 
independent of one another and do not paint on a common 
canvas. Consequently, we limit the toolkit to render links 
spanning only within individual JFrames, not across them. 
This is a limitation that we will attempt to remove in future 
versions of the library. Nevertheless, it is still valuable to be 
able to use such links on, say, JInternalFrames that can be 
moved about by the user.
Magpie was developed in parallel with our SNAP redesign 
demo. As such, it was designed to be integrated with an 
application that uses a JDesktopPane. One must be able to 
incorporate Magpie with minimal alteration to the original 
program. For this reason, links cannot be Swing components 
belonging in the same component hierarchy of the original 
program, as the program’s code might make assumptions about 
its component hierarchy and may be broken due to the intru-
sion of links. Furthermore, links can assume arbitrary z-order 
depending on the z-order of their ends and a link can even have 
several z-orders. Our solution renders links on the JGlassPane 
of the containing JFrame and performs all the necessary clip-
ping to give the illusion of appropriate z-orders.
We needed to augment the painting of the JGlassPane of the 
containing JFrame, but in Swing, components are rendered 
by calls to their paint() methods and this mechanism disal-
lows augmenting. Consequently, we had to wrap any existing 
JGlassPane with our own. This is a somewhat disruptive 
intrusion to client applications, but since JGlassPanes are not 
used often, it might be an acceptable solution.
Rendering links ourselves has a few drawbacks. Links are not 
first class components and much work will be needed to make 
them behave like first class components, responding to user 
inputs. A lot of clipping must also be done that can otherwise 
be handled by the underlying windowing system.

Magpie API
Following are the interfaces of the Magpie library:
• edu.mit.csail.magpie.IAnchor: An anchor is something 

that can be attached to. There are two kinds of anchors: point 
anchors and shape anchors. For example, a plot can provide 
point anchors corresponding to the centers of its data points 
and a map can provide shape anchors corresponding to the 
boundaries of its regions. When an anchor is moved or 
reshaped, it fires event to its listeners and its listeners (e.g., 
links) move appropriately.

In such cases, it is desirable to bend links in the XY plane, 
rerouting them to avoid important screen regions.
In order for the software component responsible for rendering 
links to know which screen regions are considered important, 
the renditions of UI elements need to be annotated with, or 
lends itself to the computation of, some metric of “information 
value”—a measure of how much the user values seeing the 
information in a particular UI element. This metric is useful 
not only for routing links, but also for implementing involun-
tary translucency on other UI elements: when the information 
shown in a particular UI element is so important, we might 
make it “shine through” other less important UI elements that 
are obscuring it.
In addition to deriving information value metric, the rendering 
of links also needs to inspect the visual compositions of UI 
elements (e.g., lines and shapes that make up their renditions) 
in order to determine their structural essence for the purpose 
of structural projection as discussed previously. This inspec-
tion is more effectively done on the stroke model than on the 
pixel model. 2D scenegraph-based UI frameworks [cite???] 
expose the stroke model readily and this feature of theirs would 
facilitate the implementation of links.

PROGRAMMING ISSUES
Since links are a whole new type of UI element, they need new 
programming abstractions. First, while all other UI elements 
expose writable XY coordinates relative to their parents, links 
do not—their XY coordinates are managed and cannot be 
changed by the programmer. Similarly, the z coordinate of a 
link is also managed: it does not make sense to “bring a link 
to front” as one can with a window.
Since every link is attached to some anchors and when the 
anchors move, the link moves, it makes sense to allow the 
programmer to declare the bindings between the link and the 
anchors and have a constraint system maintain those bindings. 
In order to specify the bindings, the programmer must first 
be able to identify the anchors. This can be done by having 
UI elements expose a programmatic interface for retrieving 
anchors by name. Next, the programmer needs some declara-
tive syntax for specifying how the link should be attached 
to the anchors—from center to center, or between nearest 
borders, etc. The programmer also needs to place restrictions 
on the automatic bending of the link as well as on how trans-
lucency should be use to counter obscurity.  With regard to 
translucency, the  provision of information value metric and 
structural essence metric is beyond the scope of this paper. 
[any citation?]
That links are managed UI elements makes them prone to 
interfere with the rest of the code of the programs in which 
they are used. For instance, if a link, implemented as a non-
rectangular window, is blindly injected into an MDI window 
to show a connection between two children of the MDI 
window, it might break a piece of code that iterates over the 
MDI window’s children to, say, locate the topmost child and 
consider it the child window in focus. A possible solution to 
this problem introduces a semantic window hierarchy in addi-
tion to the existing syntactic window hierarchy: although the 
link is a syntactic child of the MDI window (for the purpose 
of ordering the renderings), it is not a semantic child of the 
MDI window.



Figure 14. SNAP Redesign demo using the Magpie link toolkit

• edu.mit.csail.magpie.IConnectable: A connectable is 
a UI element that offers zero or more anchors and, hence, 
can be connected to.  Magpie includes connectable wrappers 
for the several Swing widgets: JLabel, JList, and JTable.  
The label wrapper exposes a shape anchor for the label’s 
bounding box, while the list and table wrappers expose shape 
anchors for the items and selections in the list or table.  The 
custom plot and map widgets in the SNAP example (Figure 
14) also implement IConnectable to provide their own 
custom anchors.

• edu.mit.csail.magpie.IAnchorGroup: Anchors are of-
fered in groups. A connectable JList offers a group of shape 
anchors corresponding to the boundaries of its selected 
items. Each anchor group has a name, e.g., “edu.mit.csail.
magpie.selection”. Anchor groups can be retrieved from a 
connectable. An anchor group fires events whenever anchors 
are added to or  removed from it.

• edu.mit.csail.magpie.ILink is the interface for all links. 
We have implemented several link classes, each taking a dif-
ferent number of anchors and rendering the link differently.  
StraightLineBinaryLink connects exactly two anchors 
with a straight line.  StraightLineTertiaryLink connects 

three anchors (as shown in Figure 14).  GroupingLink draws 
a contour around one or more anchors.  Finally, TooltipLink 
takes exactly one anchor and renders a tooltip connected to 
that anchor.

• edu.mit.csail.magpie.ILinkEnd: Link classes are re-
sponsible for rendering link stems only and they make use 
of ILinkEnd classes to render link ends. This design choice 
allows customization of link ends for each type of link. 
Magpie currently offers circular link ends (seen attached to 
the state list in Figure 14), arrow heads (which point at the 
map and plot in Figure 14), and bare ends (seen in Figure 
15).

APPLICATIONS
Figure 14 shows the SNAP redesign demo using the Magpie 
toolkit. This demo preserves the default windowing look and 
feel in order to illustrate the improvement that links bring 
about even in the absence of other alterations proposed in 
the mockup in Figure 2. Multiple selections are now useful 
because the user can tell exactly which selection in the plot 
corresponds to which selection in the list—this is not possible 
if simple highlighting were used.



Figure 15. LAPIS with links

We also explored adding Magpie links 
to an existing Java application, LAPIS 
[3]. LAPIS is a text editor that uses mul-
tiple selections for pattern matching, 
repetitive editing, and find-and-replace. 
Magpie links were used to address two 
known usability problems in the LAPIS 
user interface. First, LAPIS augments 
the scrollbar with marks showing where 
selections are located in the document, 
so that the user can find them more 
easily when scrolling around. In user 
studies, however, new users rarely no-
tice the scrollbar marks or guess their 
purpose. Magpie links drawn from each 
scrollbar mark to the corresponding se-
lection in the text makes this connection 
abundantly clear. (In Figure 15, these 
links point from the scrollbar to the left, 
into the text pane.)
Second, we used Magpie links to im-
prove a new feature, cluster-based find 
& replace [4], which rearranges pattern 
matches into clusters based on similar-
ity in order to reduce the chance of 
replacement errors. Clustered matches 
are shown in a separate pane (on the right in Figure 15), using 
small snapshots of context around each match.  User studies 
showed that for some tasks, this snapshot provided too little 
information about a match for the user to decide whether it 
needed to be replaced. Unfortunately, it was hard for the user 
to find the corresponding match in the document. Magpie 
links make this simple: each selected match in the cluster 
pane is linked to a scrollbar mark, which in turn is linked to 
a selection in the text pane.
Adding these links to LAPIS required less than 100 lines 
of new code, which mainly exposes anchors representing 
scrollbar marks and text selections, and then creates links 
between them. Linking to cluster matches was easier, because 
the cluster pane used a JTree widget already, so anchors for 
the selections were immediately available after substituting 
Magpie’s JTree wrapper.

RELATED WORK
One of the seven tasks of information visualization is to relate 
[7]. There are two ways to show associations: synchronizing 
visual attributes (e.g., color, shape, blinking) and drawing 
links. The former has been leveraged abundantly. The latter 
has also been used in numerous work on information visual-
ization. But in most cases where links are used, links are part 
of the information being visualized, e.g., they are the relation-
ships in a graph. On occasions, links are used to augment the 
presented information. For example, the Influence Explorer 
[10] shows histograms of several parameters collected from 
several experimental subjects and uses links to correspond 
data points in different histograms collected from a common 
subject. Augmentation has always taken place inside the 
same canvas (e.g., a graph view) as the information being 
visualized. There is one exception, LinkWinds [2], in which 
links are drawn between different visualizations. However, 
LinkWinds limits its links to point only between the linked 

windows containing the visualizations, not between individual 
information objects like in our work.

DISCUSSION AND FUTURE WORK
When used within individual visualizations, links are parts 
of the information being visualized—they show relationships 
between data objects within the information. In contrast, links 
between separate visualizations show relationships between 
the visualizations. For example, in our SNAP redesign ex-
ample, the list item “Maryland”, the map label “MD”, and the 
plot data point circle are essentially the same logical object but 
are presented differently in different visualizations. Hence, the 
links do not show relations between different data objects but 
rather reveal the fact that the three visualizations are cooperat-
ing to show three different views of the same object.
More generally, links can be used to expose to the user the 
internal wirings of the UI itself. In this manner, a UI can in-
dicate how information flows through it, e.g., how checking a 
particular checkbox would change the content of a textbox not 
so nearby; what object a menu command would act upon.
As presented so far, links are rendered but not directly ma-
nipulable by the user. One can imagine allowing the user to 
reconnect links to request modifications to the information 
being visualized or to the UI’s internal wirings. The semantics 
and mechanism for reconnecting links need to be explored.
Like any UI mechanism, links have their niche and their 
limitations. In particular, it is obvious that links do not scale 
well:  Figure 14 would be incomprehensible if all states were 
selected at once. However, links are still valuable even with 
their lack of scalability. When and how links should be used 
are topics for future work that demand in-depth usability 
evaluations.
With regards to implementation, we will attempt to incorporate 
links in a generic constraint-based UI management system 
because it seems logical to use constraints for tracking link 
ends. In addition, we will also explore the idea of z-order 
layout management.


