
ABSTRACT
Among three traditionally fundamental characteristics of
contemporary windowing systems—opacity, rectangular-
ity, and hierarchy—the first two have been broken to give
way to more expressive UI designs while hierarchy remains
unchallenged. We propose a new kind of UI element called
links that breaks the hierarchy of graphical user interfaces for
the purpose of showing relationships between disparate UI
elements. We present a small user study indicating that links
are desirable visual elements that are currently under-used in
graphical user interfaces. We propose a taxonomy of how links
can be used, present a toolkit for representing and displaying
links in Java/Swing, and show how links can enhance existing
applications’ UIs.

INTRODUCTION
Windowed user interfaces currently dominate if not monopo-
lize all existing software applications. Users, UI program-
mers, and even UI researchers have come to accept that an
application’s graphical user interface is a tree of large and
small, nested, mostly rectangular and opaque windows,
overlapping and hierarchically clipped. These characteristics
of contemporary windowing systems—rectangularity, opac-
ity, and hierarchy—made sense back in the early days of
graphical user interfaces when they bought us performance
optimizations that allowed for smooth user interactions. Now,
after many years of hardware advances, these optimizations
become less and less justified against the demand for expres-
siveness in UI design.
Although the traditional windowing paradigm, consisting of
opaque, rectangular windows with impenetrable borders, is
conceptually simple for both programmers and users, there
is mounting evidence that it is too confining. UIST has seen
continuing research interest in translucency (e.g., [1], [6],
and [8]) as researchers recognize the human ability to parse
layered visual content. Non-rectangular UIs also have arrived
in the form of pie menus and arbitrarily shaped media player
skins. A recent piece of work [11] explores a circular radar-
like interface for showing notifications.
Support for translucency and non-rectangularity has made its
way into some windowing systems and is gaining traction.

We have witnessed the introduction of translucent windows
in popular media players and instant messaging clients.
However, hierarchy remains mostly untouched. It is this third
characteristic of the traditional windowing paradigm that we
wish to address. This paper explores the concept and usage
of links—a new kind of UI element that crosses from one part
of the hierarchical window tree to another part, expressing
connections between disparate elements on screen.

We start by redesigning an existing UI to show new pos-
sibilities in UI designs when rigid windows are not used. In
particular, the redesign illustrates the replacement of selec-
tion synchronization by the use of links crossing from one
window to another.
Next, we show the results of a user study pilot in which test
subjects drew links abundantly when told to design posters
but hardly any when designing GUIs for the same purpose.
This is evidence for the desirability of links and the difficulty
in which they can be programmed in existing UI systems.
We propose a taxonomy of links to understand the nature of
links. We then build a prototypical library of link UI elements
that can be integrated into Java/Swing applications. We use
this library to implement a version of the aforementioned
redesign as well as an enhancement to an existing application
through the use of links.
Finally, we discuss related work and future work.

SNAP: A REDESIGN EXAMPLE
In order to illustrate how the aforementioned three fundamen-
tal characteristics of the traditional windowing paradigm can
be usefully broken, we consider SNAP, a recently developed
research user interface [5]. This research system called SNAP
provides users with a UI mechanism for coordinating several
visualizations that have been rendered from queries to a re-
lational database.
Figure 1 shows a sample UI composed using SNAP. A user
loads each of the five windows with data and specifies the
formats for rendering them (e.g., plot, map, table, outline).
Then, the selections of the windows are tied together using the
Snap buttons so that selecting a state in the top left window
highlights the corresponding data point in the plot, underlines
the state’s code in the map, and displays that state’s county
data in the table and the treemap on the right.
We chose SNAP as an example because of its attempt to
let users smash together several visualizations and explore

Breaking the Window Hierarchy to Visualize
UI Interconnections

David F. Huynh, Robert C. Miller, David R. Karger
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA, USA
{dfhuynh, rcm, karger}@csail.mit.edu

This paper focuses on links, but we note in passing that another
UI characteristic—rectangularity—has been usefully broken
in our redesign:
• Most borders are removed. This change allows the plot to be
pushed into the map (crossing over its invisible rectangular
boundary) without obscuring parts of the map or creating
a busy look due to intersecting borders. The two pieces of
information are fitted together more snugly. This fitting ef-
fectively communicates the relationship between the map
and the plot in Figure 2. In contrast, two labels “States” and
“Counties” had to be added to the screenshot in Figure 1 to
avoid confusion: the plot could have been of county data
rather than of state data.
• The column header labels in the table are inclined so that the
columns can be pushed closer together. The ability to incline
text, difficult in most UI toolkits, adds flexibility to the design
of visualizations. Furthermore, note that the rectilinear bound-
ing boxes of the column header labels intersect one another.
As a result, providing a custom header label widget to a stan-
dard table widget is not enough—the table widget needs to
be able to nudge the header labels closer than a conventional
rectilinear layout would allow.

USER STUDY
These interesting axes of the design space—rectangularity,
opacity, and hierarchy—remain largely under-explored be-
cause of limitations imposed by UI toolkits. In order to get
a sense for how the creativity of UI programmers is affected
by their perception of what’s easy or hard to implement, we

Figure 1. Original SNAP user interface from [North], reprinted with permission from authors

relationships among them. However, the “smashing” is not
as effective as it could have been if windowing toolkits were
less confining. Figure 2 shows a rough redesign of the UI.
We focus primarily on the information being explored rather
than on the UI mechanisms provided to the user to specify the
visualizations. Note the following differences in Figure 2:
• We use lines to connect the selected state name (e.g., Mary-
land) to the corresponding state on the map as well as the data
point on the plot. We believe that this use of connecting lines,
or “links,” shows correspondence more effectively than just
highlighting corresponding items in the different visualiza-
tions in synchrony.
• Furthermore, since links are used to indicate selection, visual
variables formerly used for highlighting are now freed up
for other purposes. For example, highlighting can be used to
indicate data points on the plot corresponding to other states
in the same region as the selected state. This is useful for an
overview of how the states in a region are distributed.
• We also use a link to connect the selected state to the county
data table. This connection between the state Maryland and its
counties eliminates a need to suffix every county name with
“MD” as in the original design.
[TODO: improve this point] Using most existing UI toolkits,
it is difficult to draw lines stretching from within one window
to another window. Even if it is possible, the resulting links
are not first-class widgets and cannot be easily manipulated
programmatically.

States

Counties

Figure 2. A redesign of the SNAP user interface

conducted a small study with 10 computer science graduate
students in our lab. Each student was asked to design an
information visualization, either in poster form or computer
form, for the following scenario:

“You have recently gone on a trip to China. During
your trip, you visited five cities and stayed a differ-
ent number of days in each city, and you also made
new friends at each city. [Here appeared the list of
cities, durations of stay, and pictures of one or two
friends made in each city.] As an assignment in your
Chinese language class, you are to make a [poster
or computer program] to recount your trip to your
classmates, which shows (1) your route through
China, (2) the friends you met, and (3) the fact that
you spent a lot more time in Hangzhou than in any
other city. Using paper and pencil, roughly sketch
out what your [poster or computer program] would
look like. Assume that you have access to a map of
China and photos of your friends in any form you’d
find convenient, and that the hypothetical class as-
signment is due in one week.”

We chose this scenario because its solution requires displaying
several different visualizations—geographical, chronological,
and pictorial—that are closely related. The Hangzhou require-
ment was particularly intended to motivate creative ways
of showing the relationships between visualizations (like
Minard’s famous visualization of Napoleon’s Russia campaign
[9]). We wanted to see whether there were any systematic
differences in how these relationships would be shown in a

paper display (a poster) compared to an interactive display
(a computer program).
For 4 of the 10 designers (randomly chosen), the requested vi-
sualization was a poster; the remaining 6 designers were asked
to design a computer program. All 10 designers had designed
and implemented at least one substantial user interface, and
had experience with a wide range of UI tools (chiefly Java
Swing, HTML, SWT, and Visual Basic). Designers in the
computer-program condition were told that they could imagine
designing for any UI programming environment that they felt
comfortable with. Designers were given as much time as they
wanted to produce a design; in the end, all designers took less
than 30 minutes. Three designers (2 in the poster group and 1
in the computer group) iterated their designs, throwing away
a partial design and presenting a second sketch instead. The
other designers created only one design.
The final designs were varied, but some general conclusions
can be drawn. First, lines connecting different visualizations
were commonly found in poster designs (3 out of 4) but rarely
in computer designs (only 1 out of 6). The person who used
lines in her computer program design admitted not thinking
ahead about what tools to use and then claimed that she could
implement her design in Java/Swing. Lines were used to con-
nect cities on the map to friends’ photos (in 2 designs), and
cities to points on a time line (2 designs). Several solutions
used two kinds of lines, one kind to show the route around the
map (a chronology within the geographic visualization), and
another kind to make links between visualizations.

MI

$15,000

$20,000

$30,000

$25,000

10m 20m 30m

Population in 1995

In
co

m
e

pe
r c

ap
ita

Map of the United States of America

Plot of States Data

States

Baltimore
Calvert
Caroline
Carroll
Cecil
Charles
Dorchester
Frederick
Garrett
Harford
Howard
Kent
Mongomery
Prince George's
Queen Anne's

715,360
64,598
29,072

140,203
78,174

111,633
30,170

175,399
29,461

205,367
219,125

18,736
809,569
767,413

36,992

692,134
51,372
27,035

123,372
71,347

101,154
30,236

150,208
28,138

182,132
187,328

17,842
757,027
728,553

33,953

655,615
34,638
23,143
96,356
60,430
72,751
30,623

114,792
26,490

145,930
118,572
16,695

579,053
665,071

25,508

268,280
16,986

9,983
42,248
24,725
32,950
12,117
52,570
10,110
63,193
68,337

6,702
282,228
258,011
12,489

Population 1995

Population 1990

Population 1980

Housing Units 1990

Counties

MD

RI

WA

OR

ID

MT

WY

ND

SD

MN
WI

MI

IL IN OH
PA

NJ

DE

NY

CT

MA

NH
VT

WV
VA

KY
NC

SC
TN

GAAL

FL

MS

LA

AR

MOKS

OK

TX

NE IA

NM

CO

AZ

UT

NV

CA

AK

HI

NEW ENGLAND

MIDDLE
ATLANTIC

SOUTH

MIDWEST

SOUTHWEST

WEST

ME

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
DC
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

###Unreferenced### Figure 4. One of the computer
program designs from the user study

###Unreferenced### Figure 3. One of the poster de-

Again, although this paper focuses primarily on links, we
would like to point out that rectangularity is observed to be
usefully broken in the user study. Most of the poster designs
(the same 3 out of 4) were unified in the sense demonstrated
by Figure 2: different visualizations freely overlapped without
respecting rectangular boundaries. In most of the computer
designs (5 out of 6), by contrast, the visualizations were
walled off from each other by strongly drawn rectangular
boundaries. In fact, half the computer designs (3 out of 6)
put different visualizations on different pages, giving up any
hope of unifying them visually.
Certainly, there are many differences between the poster
medium and the computer medium that might influence how
designers perceive the solution space. For example, a typical
poster has more display area than a typical computer screen,
while a typical computer program is more interactive and
more dynamic (i.e., displaying changing information). But

it’s worth noting that effective design
idioms that were perfectly natural in
poster designs—such as connecting
lines and nonrectangular information
elements—largely failed to appear in
the computer designs.

TAXONOMY OF LINKS
Our user study’s results indicate fre-
quent use of links on paper but not
in computer programs. We attribute
this difference to the difficulty with
which links can be programmed in
current UI systems. In order to un-
derstand how links can be adapted
to visualizations on the computer,
we first explore the general diversity
of links in information visualizations
by proposing a taxonomy for line
and link usage (Table 1). At the top

level, we distinguish between the use of lines for showing
associations and for showing information applicable globally
to a visualization, such as the scale of a map. Lines used as-
sociatively are what we have termed “links” previously. Links
are the topic of our discussion here.
We propose two main categories of links:

Elaborative Links
These are links that elaborate on the information being visu-
alized by adding more information which is not previously
evident from the visualization; they connect multiple UI ele-
ments so that the user is informed of the relationships between
those elements. There are several types of elaborative links:
correspondence links, equivalence links, succession links,
grouping links, and links for showing general relationships.
Note that grouping links are an exception in that they may not
have ends terminating at the objects being grouped.

Emphasis Links
When the connections between objects are already presented
but can be enhanced visually, we use emphasis links. Align-
ments of several objects are usually indicated by dashed
lines. Distances between objects can be indicated with a ruler
stretching from one object to the other. An arrow shows the
direction from one object to another without touching the
destination.
This is not a dichotomy. Rather, these two categories are
more like two axes of characteristics onto which a link can
be classified.
Note that a link can connect more than two objects to show
an n-ary relationship. A link can also connect to another link:
Figure 5 shows such a link being used to show the mutual
friends of two persons A and B. In addition to this taxonomy,
we also consider degenerated links attached to only one object:
these act like tooltips in annotating the objects being pointed
to (see accompanying videos).

RENDERING ISSUES
Our initial taxonomy for lines, and links, helps us determine
the types of links we will explore through actual implemen-
tation. In this section, we dive only into elaborative links as
emphasis links are generally more useful in graphics editing
programs rather than in generic information visualizations. We
believe that emphasis links have been explored extensively in
the graphics design software domain. We will discuss various
challenges to be addressed in order to render links amid the
traditional windowing paradigm.

Stems, Ends, and Anchors
Every link (perhaps with the exception of some grouping
links) consists of one or more stems (e.g. straight or curved
lines) and two or more ends (e.g., arrowheads). The ends are
visually bound to potentially moving or movable anchors—UI
elements, or parts of, that are identifiable and visually self-

cohesive to the user. In other words, the user must be able to
understand that, say, the link is attached to the border of a
label and that the link will move if the label is moved when
its containing window is dragged.

Extending The 2½D Space
Anchors are situated in a 2½D space (i.e., x and y coordinates
plus a z-order index). In order to communicate visually the
bindings between link ends and anchors, we must also visu-
ally situate link ends and link stems in this 2½D space. That
is, we have to indicate through the renderings of links where
their stems and ends are with respect to other UI elements in
this space. Because the many anchors to which a link attaches
lie at different z-orders, visually situating the various parts of
the link in the 2½D space to present a visually cohesive UI
element is non-trivial. This is the main challenge.
Consider the link from x to y in Figure 6. The two ends of the
link are attached to anchors at different z-orders. If we keep
the 2½D space, we have to break the stem into two segments,
one belonging to the same z-order as the UI element C, and
one as the UI element D. It is not clear where to break the
stem. In fact, it is not even clear that the two segments can
share the same z-orders as the elements C and D since no two
elements can have the same z-order in this 2½D space. Where,
then, should the two segments be in the z-order stack, relative
to the intervening UI element B?

Associative showing association between different information items

Elaborative the association is not already present in the visualization and is elaborated by the lines

Correspondence links between two or more views of a single logical object (e.g., three views of a state are linked together
in our redesign example)

Equivalence links connecting elements having common or similar attributes, e.g., a contour line indicating points of
equal elevation

Succession e.g., arrows that show transitions through a flowchart or connect points in a time series

Grouping e.g., contour enclosing grouped items

General
Relationship

links between an object or a relationship to several related objects (e.g., a state is linked to its county
data in our redesign example)

Emphasis the association is already in the visualization and is emphasized by the lines

Alignment e.g., a dashed line on a form designer shows that a UI component being dragged is “snapped” to align
with another UI component

Length e.g., a line indicating some distance between two visual elements

Direction e.g., an arrow pointing from one visual element in the direction of another visual element

Non-associative showing information applicable globally to the entire visualization

Length e.g., the scale ruler on a map

Direction e.g., the compass on a map

###Unreferenced### Table 1. Taxonomy of Lines

A

B

Figure 5. Link showing mutual friends of A and B

It would be easier to conceptualize where the link’s parts are
situated with respect to other UI elements if we usher links
into a 3D space in which other UI elements can only take on
different, integral z coordinates. In this 3D space, link stems
are continuous lines as already shown in the profile view in
Figure 6.

Obscurity Problems
The next challenge is to communicate visually the location and
distribution of the various parts of the link in the 3D space.
A straightforward opaque 2D projection of the link (Figure
7) is not satisfactory: only the originating link end and two
unconnected segments of the link stem remain unobscured by
other opaque UI elements. In fact, because the two anchors are
always at different z-orders, if the link stem is straight, one end

of the link is guaranteed to be hidden behind the upper anchor.
This method of rendering links is obviously not useful.
Before we dive into techniques for countering obscurity, we
first distinguish two sources of obscurity.
Overlapping A UI element is obscured partially or entirely
because another UI element of small z-order overlaps with
its region.
Viewport Cropping A UI element can also be obscured because
it is being viewed through a view port and it falls outside the
viewport’s opening partially or entirely.
In order to better present links—countering the obscurity effect
resulted from the newly adopted 3D space while maintaining
some consistent physical model comprehensible to the user—
we consider two techniques: bending and translucency.

Countering Obscurity by Bending
We bend the link in Figure 6 up along a vertical plane as shown
in Figure 8 so that it is no longer obscured by B, D, and E.
Note that the user might not want the link to go over E. For
example, E might contain information not related at all to the
contents of C and D, and the user wants to focus on interacting
solely with E. This is usually the case when C, D, and E are
separate windows and the user is given the ability to explicitly
bring E to the front of the z-order stack. When C, D, and E are
child widgets of a common dialog, closely interrelated in their
functions, and the user is not allowed to change their z-orders,
it makes more sense to bend the link over E.

If the link is already curved, it is still beneficial to use the
bending technique for, say, providing a smooth transition as
the link’s anchors are scrolled out of view. Consider the link
in Figure 9: as the viewport’s opening is scrolled downward,
the link stem is pushed against the top border of the viewport.
The link stem is bent and its curvature as visible to the user
changes, maintaining as much visibility as it can manage.

a
b

a
b

a
b

Figure 9. Physical model for link stems protruding from view ports: the link stem is constrained by the view port’s upper
edge as the view port is scrolled downward

y

x

A

B

B C

C

D

D

E

E
Fr

on
t v

ie
w

Pr
ofi

le
 v

ie
w

Figure 6. Showing link end obscurity through clipping
and ghosting

A
B CD

E

Figure 7. Opaque 2D projection

y

x
A

B

C

D
E

Figure 8. Bending link to counter obscurity

translucent as it is not desirable to make the entire element
translucent.
Structural Projection We can also select the important
structural features of the obscured part of the link and its
context—borders of large UI elements around it, visually
dominant background patches, identifying text segments,
etc.—and show them in a ghosted mode on top of the obscur-
ing UI element.

When Obscurity is Desirable
When part of a link is obscured by a viewport, the viewport’s
space might be large and the obscured part of the link might
extend far away from the viewport’s opening. Since the
viewport’s primary purpose is to crop its contents, any use
of translucency, which spills the viewport’s content outside
its opening, might not be desirable. In such a case, although
we might have to be content with obscurity, we can still use
bending to indicate where the obscured part of the link is
with respect to the viewport’s opening. Figure 12a shows the
physical model of a link bent because one of its end is scrolled
out-of-view in a viewport and Figure 12b shows the rendering
of the link as it appears to the user.

Note that obscurity is not always desirable in the context of a
viewport. Figure 13a illustrates a case in which cropping two
links originating and ending at UI elements inside a viewport
can result in visual confusion. This is fixed in Figure 13b
when the links are allowed to spill outside the viewport’s
opening.

Discussion
In our discussion of the bending technique, we have focused
solely on bending in the z dimension in order to pull links
over obscuring UI elements. However, links themselves can
obscure other pieces of valuable information being visualized.

Countering Obscurity using Translucency
There are cases where bending alone cannot effectively coun-
ter obscurity. Consider the link from A to B in Figure 10a:
no matter how the link stem is bent, some part of the link is
obscured. Even in the adverse bending in Figure 10b, the link
end on A is still obscured. In such a case, we resort to making
some part of B translucent so that the link end, part of the link
stem, and the anchor on A can show through.

Consider also the case in Figure 11a: B intervenes between A
and C, cutting a link between them. The anchor y is entirely
obscured by B. However, since C is topmost, it might be desir-
able to show all the links attached to it regardless of whether
they are obscured partially. As in the previous case, no bending
can reveal the link end on A. Still, truncating the link stem
where it punctures through B might not be satisfactory: the
link might seem to the user to terminate on B, or if not, the
user might not be able to visualize where the link terminates
on A if there were more links between C and A.

Note that a UI element obscuring a link (e.g., B in Figure
11a) is not aware of the link that it cuts. Hence, it cannot
“volunteer” to be translucent for the purpose of revealing
the link. It has to be forced to become partially translucent.
Involuntary translucency is one example of how links have
demanded more intervention from the UI framework in the
rendering of unrelated UI elements. Clipping alone is no
longer the only coordination between the renderings of vari-
ous UI elements.
There are many ways to make a UI element obscuring a link
“translucent.”
Alpha Composition We can make it translucent in the conven-
tional way using alpha composition. The challenge here is to
isolate a small region of the obscuring UI element to make

xA

B

C

y(b)

x

A

B
C

y

(a)

Figure 11. Bending ineffective to counter obscurity by
intervening sibling

(a)

(b)

Figure 12. Bending a link by a viewport’s borders

a b c d a b c d

(a) (b)
Figure 13. Stem invisibility creates confusion

(a)

A

B

(b)

A

B

Figure 10. Bending ineffective to counter obscurity

MAGPIE: A TOOLKIT OF LINK UI ELEMENTS
Based on our exploration of various issues on rendering links,
we have designed and implemented a toolkit called Magpie for
drawing links between different Java/Swing components.

Implementation Technologies
We chose to implement Magpie in Java/Swing as its light-
weight components all paint on a common canvas and it is
easier to overlay links on them than it is on operating system-
native UI widgets. Swing is built on top of the Java 2D Graph-
ics toolkit which offers sophisticated rendering capabilities
including alpha composition.
However, at the top level of all Java/Swing UIs are javax.
swing.JFrames—operating system-native windows that are
independent of one another and do not paint on a common
canvas. Consequently, we limit the toolkit to render links
spanning only within individual JFrames, not across them.
This is a limitation that we will attempt to remove in future
versions of the library. Nevertheless, it is still valuable to be
able to use such links on, say, JInternalFrames that can be
moved about by the user.
Magpie was developed in parallel with our SNAP redesign
demo. As such, it was designed to be integrated with an
application that uses a JDesktopPane. One must be able to
incorporate Magpie with minimal alteration to the original
program. For this reason, links cannot be Swing components
belonging in the same component hierarchy of the original
program, as the program’s code might make assumptions about
its component hierarchy and may be broken due to the intru-
sion of links. Furthermore, links can assume arbitrary z-order
depending on the z-order of their ends and a link can even have
several z-orders. Our solution renders links on the JGlassPane
of the containing JFrame and performs all the necessary clip-
ping to give the illusion of appropriate z-orders.
We needed to augment the painting of the JGlassPane of the
containing JFrame, but in Swing, components are rendered
by calls to their paint() methods and this mechanism disal-
lows augmenting. Consequently, we had to wrap any existing
JGlassPane with our own. This is a somewhat disruptive
intrusion to client applications, but since JGlassPanes are not
used often, it might be an acceptable solution.
Rendering links ourselves has a few drawbacks. Links are not
first class components and much work will be needed to make
them behave like first class components, responding to user
inputs. A lot of clipping must also be done that can otherwise
be handled by the underlying windowing system.

Magpie API
Following are the interfaces of the Magpie library:
• edu.mit.csail.magpie.IAnchor: An anchor is something

that can be attached to. There are two kinds of anchors: point
anchors and shape anchors. For example, a plot can provide
point anchors corresponding to the centers of its data points
and a map can provide shape anchors corresponding to the
boundaries of its regions. When an anchor is moved or
reshaped, it fires event to its listeners and its listeners (e.g.,
links) move appropriately.

In such cases, it is desirable to bend links in the XY plane,
rerouting them to avoid important screen regions.
In order for the software component responsible for rendering
links to know which screen regions are considered important,
the renditions of UI elements need to be annotated with, or
lends itself to the computation of, some metric of “information
value”—a measure of how much the user values seeing the
information in a particular UI element. This metric is useful
not only for routing links, but also for implementing involun-
tary translucency on other UI elements: when the information
shown in a particular UI element is so important, we might
make it “shine through” other less important UI elements that
are obscuring it.
In addition to deriving information value metric, the rendering
of links also needs to inspect the visual compositions of UI
elements (e.g., lines and shapes that make up their renditions)
in order to determine their structural essence for the purpose
of structural projection as discussed previously. This inspec-
tion is more effectively done on the stroke model than on the
pixel model. 2D scenegraph-based UI frameworks [cite???]
expose the stroke model readily and this feature of theirs would
facilitate the implementation of links.

PROGRAMMING ISSUES
Since links are a whole new type of UI element, they need new
programming abstractions. First, while all other UI elements
expose writable XY coordinates relative to their parents, links
do not—their XY coordinates are managed and cannot be
changed by the programmer. Similarly, the z coordinate of a
link is also managed: it does not make sense to “bring a link
to front” as one can with a window.
Since every link is attached to some anchors and when the
anchors move, the link moves, it makes sense to allow the
programmer to declare the bindings between the link and the
anchors and have a constraint system maintain those bindings.
In order to specify the bindings, the programmer must first
be able to identify the anchors. This can be done by having
UI elements expose a programmatic interface for retrieving
anchors by name. Next, the programmer needs some declara-
tive syntax for specifying how the link should be attached
to the anchors—from center to center, or between nearest
borders, etc. The programmer also needs to place restrictions
on the automatic bending of the link as well as on how trans-
lucency should be use to counter obscurity. With regard to
translucency, the provision of information value metric and
structural essence metric is beyond the scope of this paper.
[any citation?]
That links are managed UI elements makes them prone to
interfere with the rest of the code of the programs in which
they are used. For instance, if a link, implemented as a non-
rectangular window, is blindly injected into an MDI window
to show a connection between two children of the MDI
window, it might break a piece of code that iterates over the
MDI window’s children to, say, locate the topmost child and
consider it the child window in focus. A possible solution to
this problem introduces a semantic window hierarchy in addi-
tion to the existing syntactic window hierarchy: although the
link is a syntactic child of the MDI window (for the purpose
of ordering the renderings), it is not a semantic child of the
MDI window.

Figure 14. SNAP Redesign demo using the Magpie link toolkit

• edu.mit.csail.magpie.IConnectable: A connectable is
a UI element that offers zero or more anchors and, hence,
can be connected to. Magpie includes connectable wrappers
for the several Swing widgets: JLabel, JList, and JTable.
The label wrapper exposes a shape anchor for the label’s
bounding box, while the list and table wrappers expose shape
anchors for the items and selections in the list or table. The
custom plot and map widgets in the SNAP example (Figure
14) also implement IConnectable to provide their own
custom anchors.

• edu.mit.csail.magpie.IAnchorGroup: Anchors are of-
fered in groups. A connectable JList offers a group of shape
anchors corresponding to the boundaries of its selected
items. Each anchor group has a name, e.g., “edu.mit.csail.
magpie.selection”. Anchor groups can be retrieved from a
connectable. An anchor group fires events whenever anchors
are added to or removed from it.

• edu.mit.csail.magpie.ILink is the interface for all links.
We have implemented several link classes, each taking a dif-
ferent number of anchors and rendering the link differently.
StraightLineBinaryLink connects exactly two anchors
with a straight line. StraightLineTertiaryLink connects

three anchors (as shown in Figure 14). GroupingLink draws
a contour around one or more anchors. Finally, TooltipLink
takes exactly one anchor and renders a tooltip connected to
that anchor.

• edu.mit.csail.magpie.ILinkEnd: Link classes are re-
sponsible for rendering link stems only and they make use
of ILinkEnd classes to render link ends. This design choice
allows customization of link ends for each type of link.
Magpie currently offers circular link ends (seen attached to
the state list in Figure 14), arrow heads (which point at the
map and plot in Figure 14), and bare ends (seen in Figure
15).

APPLICATIONS
Figure 14 shows the SNAP redesign demo using the Magpie
toolkit. This demo preserves the default windowing look and
feel in order to illustrate the improvement that links bring
about even in the absence of other alterations proposed in
the mockup in Figure 2. Multiple selections are now useful
because the user can tell exactly which selection in the plot
corresponds to which selection in the list—this is not possible
if simple highlighting were used.

Figure 15. LAPIS with links

We also explored adding Magpie links
to an existing Java application, LAPIS
[3]. LAPIS is a text editor that uses mul-
tiple selections for pattern matching,
repetitive editing, and find-and-replace.
Magpie links were used to address two
known usability problems in the LAPIS
user interface. First, LAPIS augments
the scrollbar with marks showing where
selections are located in the document,
so that the user can find them more
easily when scrolling around. In user
studies, however, new users rarely no-
tice the scrollbar marks or guess their
purpose. Magpie links drawn from each
scrollbar mark to the corresponding se-
lection in the text makes this connection
abundantly clear. (In Figure 15, these
links point from the scrollbar to the left,
into the text pane.)
Second, we used Magpie links to im-
prove a new feature, cluster-based find
& replace [4], which rearranges pattern
matches into clusters based on similar-
ity in order to reduce the chance of
replacement errors. Clustered matches
are shown in a separate pane (on the right in Figure 15), using
small snapshots of context around each match. User studies
showed that for some tasks, this snapshot provided too little
information about a match for the user to decide whether it
needed to be replaced. Unfortunately, it was hard for the user
to find the corresponding match in the document. Magpie
links make this simple: each selected match in the cluster
pane is linked to a scrollbar mark, which in turn is linked to
a selection in the text pane.
Adding these links to LAPIS required less than 100 lines
of new code, which mainly exposes anchors representing
scrollbar marks and text selections, and then creates links
between them. Linking to cluster matches was easier, because
the cluster pane used a JTree widget already, so anchors for
the selections were immediately available after substituting
Magpie’s JTree wrapper.

RELATED WORK
One of the seven tasks of information visualization is to relate
[7]. There are two ways to show associations: synchronizing
visual attributes (e.g., color, shape, blinking) and drawing
links. The former has been leveraged abundantly. The latter
has also been used in numerous work on information visual-
ization. But in most cases where links are used, links are part
of the information being visualized, e.g., they are the relation-
ships in a graph. On occasions, links are used to augment the
presented information. For example, the Influence Explorer
[10] shows histograms of several parameters collected from
several experimental subjects and uses links to correspond
data points in different histograms collected from a common
subject. Augmentation has always taken place inside the
same canvas (e.g., a graph view) as the information being
visualized. There is one exception, LinkWinds [2], in which
links are drawn between different visualizations. However,
LinkWinds limits its links to point only between the linked

windows containing the visualizations, not between individual
information objects like in our work.

DISCUSSION AND FUTURE WORK
When used within individual visualizations, links are parts
of the information being visualized—they show relationships
between data objects within the information. In contrast, links
between separate visualizations show relationships between
the visualizations. For example, in our SNAP redesign ex-
ample, the list item “Maryland”, the map label “MD”, and the
plot data point circle are essentially the same logical object but
are presented differently in different visualizations. Hence, the
links do not show relations between different data objects but
rather reveal the fact that the three visualizations are cooperat-
ing to show three different views of the same object.
More generally, links can be used to expose to the user the
internal wirings of the UI itself. In this manner, a UI can in-
dicate how information flows through it, e.g., how checking a
particular checkbox would change the content of a textbox not
so nearby; what object a menu command would act upon.
As presented so far, links are rendered but not directly ma-
nipulable by the user. One can imagine allowing the user to
reconnect links to request modifications to the information
being visualized or to the UI’s internal wirings. The semantics
and mechanism for reconnecting links need to be explored.
Like any UI mechanism, links have their niche and their
limitations. In particular, it is obvious that links do not scale
well: Figure 14 would be incomprehensible if all states were
selected at once. However, links are still valuable even with
their lack of scalability. When and how links should be used
are topics for future work that demand in-depth usability
evaluations.
With regards to implementation, we will attempt to incorporate
links in a generic constraint-based UI management system
because it seems logical to use constraints for tracking link
ends. In addition, we will also explore the idea of z-order
layout management.

