
ABSTRACT
Existing augmentations of web pages are mostly small cos-
metic changes (e.g., removing ads) and minor addition of
third-party content (e.g., product prices from competing
sites). None leverages the structured data presented in web
pages. This paper describes Sifter, a web browser extension
that can augment a well-structured web site with advanced
filtering and sorting functionality. These added features
work inside the site’s own pages, preserving the site’s pre-
sentational style and the user’s context. Sifter contains an
algorithm that scrapes structured data out of well-structured
web pages while usually requiring no user intervention. We
tested Sifter on real web sites and real users and found that
people could use Sifter to perform sophisticated queries and
high-level analyses on sizable data collections on the Web.
We propose that web sites can be similarly augmented with
other sophisticated data-centric functionality, giving users
new benefits over the existing Web.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces – Graphical user interfaces (GUI).

General Terms: Algorithms, Design, Human Factors.

Keywords: Web, augment, filter, sort, faceted browsing, dy-
namic query, tree alignment, HTML, DOM.

INTRODUCTION
Much of the data on the Web resides in structured data-
bases behind web sites. However, as the contemporary web
browser understands only rendering instructions (HTML), the
typical web site must transform its structured data into HTML
before serving up that data. When the data reaches the user’s
browser, it has lost most if not all of its original informa-
tional structure, carrying only some presentational structure.
Made readable for humans through web browsers, it is no
longer conducive to semantic machine processing.

Enabling Web Browsers to Augment Web Sites’
Filtering and Sorting Functionalities

Retaining structure in the data transfer from web site to web
browser gives the web browser an opportunity to repurpose
that data in ways that might better meet the user’s needs. For
example, it can add faceted browsing [23] functionality if
none is offered by the original web sites. It can provide more
sophisticated, novel visualizations such as starfield displays
[6], FOCUS tables [18], and parallel bargrams [21].

Researchers have been attempting to recover lost structure
within the existing Web. But their efforts so far fall into two
disconnected camps: at one end, web data extraction algo-
rithms that are neither designed for nor evaluated on real
web users performing real tasks; and at the other end, web
data re-purposing tools, such as Piggy Bank [3, 10], that rely
on custom scripts to extract web data although scripting re-
mains beyond the skills of most users.

In this paper, we present the first end-to-end solution that
integrates a web data extraction algorithm with a user inter-
face designed for one particular web data-repurposing task:
Sifter is a web browser extension that can augment a well-
structured site with filtering and sorting functionality. The
added features work inside the site’s own pages, preserving
the site’s presentational style, keeping the user’s context. For
example, suppose the user visits a library web site and sub-
mits a search for books that returns several hundred results
divided into 15 pages. Sifter allows the entire set of results to
be filtered or sorted (e.g. by author, date), without having to
switch away from the browser or even away from the library
site. This augmentation is useful when the site itself does not
support such sorting and filtering features.

Sifter’s web data extraction algorithm usually requires no
training examples from the user. In the book search example
above, this algorithm would start from the first search result
page, iterate through the 14 subsequent pages, and produce
a database record for each result on every page. Having ex-
tracted all items in that 15 page collection, Sifter can then
compute filtering and sorting choices. As the user invokes
filtering and sorting commands, Sifter reconstructs the web
page in-place, showing only those items that satisfy the cur-
rent filters in the current sorting order using data served from
the local database, no longer relying on the original site.

Our contributions include (1) a user interface that lets end-
users perform advanced data manipulations on web pages in
their original context; and (2) a lightweight data extraction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland.
Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

David F. Huynh, Robert C. Miller, David R. Karger
MIT Computer Science and Artificial Intelligence Laboratory,

The Stata Center, Building 32, 32 Vassar Street, Cambridge, MA 02139, USA
{dfhuynh, rcm, karger}@csail.mit.edu

algorithm that works on multiple web pages and produces
field values intended for filtering and sorting.

We tested Sifter on real web sites and real users and found
that the test subjects could use Sifter to perform sophisti-
cated queries on realistic data collections on the Web.

RELATED WORK
There are two main areas of related work: automatic web
data extraction and web page augmentation.

Although there has recently been a spate of efforts on au-
tomatically extracting data from the Web—[12, 16, 20, 24]
to name just a few—these approaches mostly work outside
the web browser (e.g., as independent crawlers) and do not
make the extracted data usable to end-users. An exception
is Thresher [9] (built into Haystack [15]), which embeds a
web browser and lets the user extract structured data from
a web page by selecting some HTML fragment, invoking a

context menu command on that selection, and then labelling
fields in that sample item. Having identified the “semantic
items” on the web page and extracted their data, Thresher
then adds a context menu to each semantic item (e.g., “Call
this person”). The user can also use Haystack’s rich brows-
ing functionality on the items but to do so, she must switch
into Haystack’s own browsing view where the original web
page’s presentational style is not preserved.

The earliest work on augmenting web pages injected navi-
gation guides into web pages [7, 11]. More recent efforts
enable users to script modifications on web pages [2, 8], but
so far they lack a rich data model to support augmentations
more sophisticated than just cosmetic changes (e.g., remov-
ing ads) and simple addition of third-party content to web
pages (e.g., injecting prices from competing sites). None can

Items are detected
automatically and then
highlighted by translucent
overlays. Their indices and
count are shown.

A single button click triggers the
detection of items and pages.

Subsequent pages are
automatically detected. The
number of pages is used to
estimate the total number
of items.

A second
button click
starts the
extraction
process.

1

2 3

4

Figure 1. Sifter’s two-click interface to detect items and subsequent pages and to extract the data within.

work on multiple pages or extensively re-shuffle the content
of a page in response to user interaction.

There has also been related work that augments arbitrary
unstructured text, not just web content, with semantic op-
erations, e.g., Data Detectors [13], the Selection Recogni-
tion Agent [14], CyberDesk [22], and Microsoft Smart Tags.
These approaches used hand-coded parsers to discover and
extract structured data while Sifter discovers structured data
automatically. Moreover, Sifter provides operations over en-
tire sets of items rather than over invididual items.

USER INTERFACE DESIGN
Interaction with Sifter consists of two stages:
• Extraction: the system ascertains which parts of the web

site to extract, and gives the user feedback about this pro-
cess; and

• Augmentation: the system adds new controls to the web
page and the browser that allow the user to filter and sort
the extracted items in-place.

Extraction User Interface
Sifter’s user interface resides within a pane docked to the
right side of the web browser (Figure 1). When the user first
visits a web site, the Sifter pane shows a single button that,
when clicked, triggers the detection of items on the current
web page as well as links to subsequent pages, if any. (An
item is, for example, a product as in Figure 1.) Items are
highlighted in-place, and the total number of items spanning
the detected series of pages is displayed prominently in the
pane. If the system has incorrectly detected the items or the
subsequent-page links, the user can correct it by clicking on
an example item or a subsequent-page link in the web page.
Once the Continue button (Figure 1) is clicked, the extraction
process starts and Sifter pops up a dialog box showing the
subsequent web pages being downloaded. Over all, getting
the data extracted usually takes 2 button clicks.

During the extraction process, Sifter locates all items on all
the web pages, extracts field values from each item as well
as its HTML code, and stores each item as a record in a lo-
cal database. For example, the database accumulated from
extracting the 7 pages of items in Figure 1 would contain 59
records, each having one text field (title), two numeric fields
(price and percent saving), and an HTML fragment represent-
ing the whole item. This HTML fragment is used as a render-
ing of the item when the result set is filtered or sorted.

If the items are detected incorrectly, the user can click on
the Locate Items button (Figure 1) and the Sifter pane will
change to highlighting mode (Figure 2). In this mode, as the
user moves the mouse cursor over the web page, the system
inspects the smallest HTML element under the mouse cursor,
generalizes it to other similar elements on the page, expands
those elements to form whole items, and highlights these
candidate items with translucent overlays. When the user is
satisfied with the highlighting, she can click the mouse but-
ton and the Sifter pane switches out of highlighting mode.

Through early prototypes, we realized that the extraction UI
must be streamlined as much as possible because data extrac-
tion is not by itself a user goal, but merely a system precon-
dition for achieving the user’s real goal (filtering or sorting).
Scraping—transforming data to a more machine processible
form—is an unfamiliar concept and perhaps seemingly un-
necessary to the user, which the user may initially consider
not worth the effort.

We considered eliminating the extraction UI altogether and
providing a correction UI after the extraction process has fin-
ished. However, as the extraction process may be lengthy
and not completely reliable, providing a preview of what the
system is going to do makes the wait more acceptable and
gives the user a sense of greater control over the system.

Position of mouse
pointer helps identify
items to be extracted.

Candidate items are
highlighted and their
indices and count are
shown as watermarks.

The whole Web page
is shown in miniature
for an overview of the
highlighted items, bring-
ing attention to misses
evident as whitespace
gaps, if any.

Figure 2. Sifter’s highlighting mode provides an interactive mechanism for the user to correct the automatic detection of
items by hovering the mouse pointer of the web page and clicking once the items have been highlighted correctly.

Augmentation User Interface
Figure 3 shows Sifter in action as the user makes use of new
filtering and sorting functionality. An asterisk is inserted after
each field value in the web page. When an asterisk is clicked,
a browsing control box is displayed in the Sifter pane, con-
taining the filtering and sorting controls for that field. Hov-
ering the mouse pointer over either a field’s asterisks or its
browsing control box highlights both synchronously, so that
the user can distinguish among them. This design addresses
a critical problem in automatic data extraction: Sifter cannot
automatically derive meaningful field names with which to
label the browsing controls, because many field names are
completely missing from the web page (e.g., nowhere in the
Amazon page in Figure 3 are the book titles explicitly la-
beled “Title”). So instead of a field name, Sifter relies on the
field values themselves, and their context within the items,
as a way to attach meanings to the browsing controls.

Figure 3. After extraction is complete, the Sifter pane hosts sorting and filtering controls, which when invoked, re-render
the resulting items inside the same web page (without invoking the original web site).

The filtering controls for different field types (text, numbers,
date/time) manage the field values differently. For numbers
and date/time fields the values are classified into ranges and
sub-ranges hierarchically, while for text fields the values are
listed individually. Selecting a value or a range filters the
current collection of items down to only those having that
value or having values in that range. Multi-selection in a
single field adds disjunctive query terms. Filtering on more
than one field forms conjunctive queries. Selecting and de-
selecting field values or ranges in a browsing control box
updates the available values and ranges in other boxes as in
any dynamic query interface [17].

As the user invokes filtering and sorting commands, Sifter
dynamically rewires the web page to show the set of items
satisfying the current filters in the current sorting order, as if
the web site itself had performed the filtering and sorting op-
erations. Sifter does so by removing the HTML fragment of
each item on the page and then injecting into the same slots
(where those removed fragments previously fit) the HTML

Extraneous content (e.g., spon-
sor links) is faded away to avoid
confusion and distraction.

An asterisk is inserted after each field value. Clicking on an asterisk adds a browsing
control box to the Sifter pane. Corresponding asterisks and boxes are co-highlighted when hovered.

Items satisfying the current
dynamic query are inserted
into the original Web page.

Paging controls for the
whole collection.

Sorting controls
for a field

general enough to cover more than just the original <A> ele-
ment, but restrictive enough to address only those elements
similar to it. This is called the generalization phrase, as il-
lustrated by the straight arrows in Figure 4.

Each of these <A> xpaths addresses a collection of <A> ele-
ments that could correspond one-to-one with the collection
of items to be detected. We wish to find which of these <A>
xpaths corresponds to a collection of items that take the larg-
est amount of screen space.

Next, each <A> xpath is expanded to fully encompass the hy-
pothetical items that the <A> elements reside within. To ex-
pand an xpath, we repeatedly append /.. to it (see the curved
arrows in Figure 4). As /.. is appended, the set of HTML ele-
ments that the xpath addresses gets closer and closer to the
document root. As long as the cardinality of that set remains
unchanged, each HTML element in that set still resides spa-
tially inside a hypothetical item. When the cardinality of the
set drops, the xpath has been expanded too much such that it
now describes the parent node(s) of the hypothetical items.
For example, in Figure 4, if we append another /.., the re-
sulting xpath would address a single TBODY element rather
than two TR elements. We stop appending /.. just before that
happens. The result is a candidate item xpath.

Note that we append /.. rather than truncate ending segments
because truncation loses information. If the xpath in Figure
4 were instead truncated 4 times, the resulting xpath, /HTML/
BODY/TABLE/TBODY/TR, would have included the middle TR,

fragments of the items satisfying the current dynamic query.
These HTML fragments are retrieved from the local database,
so there is no need to make a request to the original site when
the dynamic query changes.

While the user is using Sifter’s filtering and sorting func-
tionality, the rest of the original web page is faded out to
indicate that interaction is now focused on the items alone.
The original status indicators (e.g., number of items, number
of pages) are faded to imply that they no longer apply to the
items inside the web page. The original pagination, sorting,
and browsing controls are faded to imply that invoking them
would switch out of Sifter’s augmentation mode and let the
user interact with the web site. We used fading rather than
completely removing the rest of the web page so that the
user still has a way to invoke the original web site. Further-
more, some parts of the original page may still be vital for
the user to understand the items (e.g., column headers).

Since exploring the collection of items may involving click-
ing a link to view details about an item, Sifter stores the
query state and automatically restores it when the user re-
turns to the augmented page.

DATA EXTRACTION
Extraction of structured data from web pages takes 3 steps:
locating items to extract; identifying subsequent web pages;
and parsing useful field values from each item.

Item Detection
We posit that for many sequences of web pages containing
lists of items (e.g., search results, product listings), there ex-
ists an xpath [5] that can precisely address the set of items on
each page. Thus, our item detection algorithm involves de-
riving such an xpath. (We will address the cases where each
item consists of sibling or cousin nodes [24] in future work.)
We also posit that this xpath can be computed just from the
sample items on the first page in a sequence of pages. We
have found that these assumptions hold on many database-
backed web sites that generate HTML from templates.

Our algorithm is based on two observations. First, in most
item collections, each item contains a link, often to a detail
page about the item. So, links are likely to be useful as start-
ing points for generating hypotheses for the xpath. Second,
the item collection is typically the main purpose of the web
page, so the items themselves consume a large fraction of the
page’s visual real-estate. This gives us a way to choose the
most likely hypothesis, namely, the one that uses the largest
area of the page.

The item detection algorithm starts by collecting all unique
xpaths to <A> elements on the current web page. For each
element, its xpath is calculated by stringing together the tag
names of all elements from the document root down to that
element. CSS class names are also included. The resulting
xpath looks something like this: /HTML/BODY/TABLE/TBODY/
TD/DIV[@class=‘product’]/SPAN/A. Each such xpath is

Figure 4. From a starting HTML element, an item
xpath is formed by generalization (to similar elements,
straight arrows) and expansion (curved arrows).

/HTML/BODY/TABLE/TBODY/TR/TD/DIV[@class= ‘product’]/SPAN/A/../../../..

BODY

ASPAN

DIV[@class= ‘product’]
TDTD

TR

ASPAN

DIV[@class= ‘product’]
TDTD

TR

TBODY
TABLE

TDTD
TR starting

element

1. generalization2. expansion

which does not have a link inside and could be extraneous,
intervening content.

For each candidate item xpath, we calculate the total screen
space covered by the HTML elements it addresses. The can-
didate item xpath with the largest screen space wins and is
then used to add highlight overlays to the web page.

Subsequent-Page Detection
We use two heuristics to automatically detect subsequent
pages. The heuristics are run in the order presented below,
and when one succeeds, its results are taken as final.

Link Label Heuristic – Often, a web page that belongs in
a sequence of pages contains links to the other pages pre-
sented as a sequence of page numbers, e.g.,

 Pages: 1 [2] [3] [4] [5] [Next] [Last]

Occasionally, such a sequence shows not the page numbers
but the indices of the items starting on those pages, e.g.,

 Items: 1–10 [11–20] [21–30]

This heuristic attempts to pick out URLs from such a se-
quence of linearly increasing numbers. First, the text labels
of all <A> links on the current web page are parsed. Only la-
bels that contain numbers are kept. They are then grouped by
the xpaths generated from the <A> elements. For each xpath,
the numbers parsed from the labels are sorted in ascending
order. Only those xpaths with linearly increasing sequences
of numbers are kept. These final candidates are then sorted
by the lengths of their sequences. The xpath with the longest
sequence is then used to pick out URLs to subsequent pages.
If there is a tie, the xpath whose sequence increases at the
highest rate wins. This heuristic fails if no xpath has a lin-
early increasing sequence of numbers.

URL Parameter Heuristic – URLs of pages in a sequence
often encode the page numbers or the starting item indices
as numeric URL parameters. For instance, Amazon.com
encodes page numbers in the page parameter and Yahoo.
com encodes starting item indices in the b parameter (Ta-
ble 1). This heuristic attempts to detect such parameters so
that URLs to subsequent pages can be generated. The URLs
pointed to by all the links on the current web page are parsed
to extract out URL parameters. For each parameter that has
numeric values, its numeric values are collected in an array
and sorted in ascending order. Then, only parameters whose
values form linearly increasing sequences are kept. These
final candidates are sorted by the lengths of their value se-
quences. The parameter with the longest sequence is then
used to generate URLs to subsequent pages. If there is a tie,
the parameter whose sequence increases at the highest rate
wins. This heuristic fails if no parameter has a linearly in-
creasing sequence of values.

If these heuristics fail then the user can intervene and point
at the link to one of the subsequent pages (not necessarily the

immediately following page). We compute the xpath of that
link, which describes a collection of <A> elements. Given
such a collection of <A> elements, we use the following heu-
ristic to pick out the one that points to the next page.

Next Page Heuristic – Table 1 gives some sample URL spaces
of contemporary web sites. Pages in a sequence might not
differ by only one URL parameter which encodes either the
page number or the index of the starting item. In some cases,
more parameters are inserted (e.g., %5Fencoding=UTF8 at
Amazon) and some existing ones are removed (e.g., search-
alias=aps at Amazon). In other cases, URL parameters are
not used at all (e.g., at Dogpile); instead, some segments of
the URL specify the current page. Worse yet, the whole URL
of the current page is encoded as a single URL parameter to
another domain for some tracking purpose (e.g., at Yahoo).

The next page heuristic sorts candidate URLs together with
the current page’s URL and picks out the URL immediately
“larger” than the current page’s URL. Simple string sorting
does not work as page=10 will be “less” than page=9. In-
stead, we break each URL into fragments separated by /, ?,
and &. We then sort the URLs by comparing corresponding
fragments that contain numbers. (This heuristic cannot han-
dle Yahoo’s URL space as shown in Table 1.)

Field Detection
We use a greedy algorithm to build a template out of sample
items from sample pages in a sequence of pages. We con-
struct the initial template by copying the first sample item’s
DOM tree. We then align the other sample items’ DOM trees
with the template. As a result of alignment, the template gets
some new nodes inserted and some existing nodes marked
optional. This is similar to the tree alignment techniques
[19] used by other systems [9, 16].

However, unlike previous tree alignment approaches, our al-
gorithm also discovers data fields marked by text, not just
by HTML tags. It tokenizes content of text nodes into typed
tokens and then align them as well. For example, given the
HTML text node You save $14.99!, we break it into 4 string
tokens (You, save, $, and !) and a numeric token with a value
of 14.99. As we align sequences of typed tokens from sev-
eral corresponding text nodes in the sample items, we mark
some tokens as fixed (present and constant across all sample
items) and some as variable (missing or changing values
across sample items). Note that being able to extract typed
field values is crucial to provide sorting and filtering features
in meaningful ways (e.g., breaking a date field into ranges of
years and months).

After aligning all sample items’ DOM trees with the template,
we then traverse the template and assign automatically gen-
erated field names. Each variable token in the template is as-
signed a field name. However, if there are too many variable
tokens that are siblings of one another, then their immedi-
ate parent is assigned a field name instead. This is to avoid

from 2 to 25 pages, with each page containing from 9 to 50
items. (The test data is available online [1].)

The item detection algorithm worked perfectly on the first
pages of 23 collections (out of 30, 77% accuracy). For the
failure cases, we used Sifter’s item highlighting tool and
were able to correct 4 cases. Overall, item xpaths could be
found for 27 of the 30 collections (90%). In the remaining
3 cases, items consisted of sibling nodes, which we do not
currently handle.

Among the 30 sites, 24 (80%) displayed sequences of page
numbers (rather than just Next Page links). The Link Label
Heuristic detected 13 sequences, and the URL Parameter
Heuristic detected 2 (15/24 = 63%). The Next Page Heuristic
(requiring users’ intervention) worked on 9 of the remaining
15 cases (9/15 = 60%). Overall, subsequent pages could be
identified for 24 out of 30 collections (80%).

There were 22 collections for which item xpaths could be
found and subsequent pages could be identified accurately.
Out of these 22 collections, 19 were perfectly extracted,
yielding precisely the original numbers of items. The overall
accuracy of extraction is 19/30 = 63%.

Note that accuracy was measured per collection rather than
per item as in related data extraction work. To put this in per-
spective, the latest work on data extraction [24] processed 72
manually provided pages from 49 sites and achieved 40/49 =
82% collection accuracy. Over the 24 collections for which
subsequent pages could be identified, our algorithm pro-
cessed 176 pages automatically and achieved 19/24 = 79%
collection accuracy.

The fields extracted that could be useful for filtering and sort-
ing included: current price, original price, percent saving,

assigning too many field names to paragraphs of text (e.g.,
product review comments, publication abstracts).

After field assignment is complete, the template is ready to
be used. Each item to be extracted is bound to the template.
If a node or token in the item gets bound to a variable node or
token in the template, its text content is extracted and stored
in the corresponding field.

IMPLEMENTATION
Sifter was implemented on top of the Piggy Bank extension
[3, 10] for the Mozilla Firefox browser as Piggy Bank already
implements a faceted browsing engine on top of an RDF [4]
store. RDF, a graph-based data model, is the core technol-
ogy of the Semantic Web, designed to describe semistruc-
tured data. RDF promotes the “data first, structure second”
philosophy in which data can exist without any predefined
schema, and schemas can be added later on whenever they
prove truly useful and necessary. (Conventional database
technologies require schemas to be solidly defined before
any data can be recorded.) This flexibility makes it conve-
nient for us to store data extracted from web pages without
worrying about generating “good” schemas. RDF still leaves
the door open to fixing up that data later and solidifying its
schemas for more advanced usage.

The data extraction algorithms were implemented entirely
in Javascript operating directly on DOM trees that Firefox
exposes. Piggy Bank’s faceted browsing engine was imple-
mented in Java.

EVALUATION OF DATA EXTRACTION
We tested Sifter on 30 collections of items from 30 com-
mon web sites, including Amazon, Best Buy, CNET Reviews,
Froogle, Target, Walmart, and Yahoo Shopping. These col-
lections contain from about 25 to 450 items each, spanning

Amazon.com (search for “metallica”)

Page 1 http://www.amazon.com/gp/search/ref=br_ss_hs/103-8791841-3931026?search-alias=aps&keywords=metallica

Page 2 http://www.amazon.com/gp/search/103-8791841-3931026?%5Fencoding=UTF8&keywords=metallica&rh=i%3Aaps%2Ck%3Ametallica&page=2

Dogpile.com (search for “haystack”)

Page 1
http://www.dogpile.com/info.dogpl/search/web/haystack/1/-/1/-
/-/-/-/-/-/-/-/-/-/-/-/-/-/-/417/top

Page 2
http://www.dogpile.com/info.dogpl/search/web/haystack/21/20/2/-/0/-/1/1/1/off/-/-/-/on7%253A1142948788129/-/-/-/-/-/-/-/-/-/-/-/-
/-/0/417/top/-/Moderate/0/1

Yahoo.com (search for “piggy bank”)

Page 1 http://search.yahoo.com/search?p=piggy+bank&sm=Yahoo%21+Search&fr=FP-tab-web-t&toggle=1&cop=&ei=UTF-8

Page 2

http://rds.yahoo.com/_ylt=A0SO7BP_BSBEmDUBnB1XNyoA/SIG=1a95brnl3/EXP=1143035775/**http%3a//search.yahoo.com/search%3fp=piggy%2bba
nk%26sm=Yahoo%2521%2bSearch%26toggle=1%26ei=UTF-8%26xargs=12KPjg1hVSt4GmmvmnCOObHb%255F%252Dvj0Zlpi3g5UzTYR6a9RL8nQJDqADN%255F2a
P%255FdLHL9y7XrQ0JOkvqV2HOs3qODiIxkSdWH8UbKsmJS5%255FIppC7fdaXlzO4EdhLu3xdZvcEwddl%252DCKIGrnZrMAebJ%26pstart=6%26fr=FP-tab-web-
t%26b=11

Page 3

http://rds.yahoo.com/_ylt=A0Je5rSsRClEQEMBMnZXNyoA/SIG=1ee941i5r/EXP=1143641644/**http%3a//search.yahoo.com/search%3fp=piggy%2bba
nk%26sm=Yahoo%2521%2bSearch%26toggle=1%26ei=UTF-8%26xargs=12KPjg1wlSrYe9mvinCOObHb%255F%252Dvj0Zlpi298gfUcw7Ctdb8wZsHdFKaMee27khE
7c73zzVzoPFrx4lLLvKhaK6UAbWdU%255F9KP537Zco%255FblIfv7yHZF8ny4dx2bJhNJ%252DxEnwUSzg0%255FG96gL9PZrI51h56MlamFqDYcL67GOa3P8trJbq2
yZ47l7PQqtGvrUp4fyPAxY%252DU0xkfKiODxZKVmB6%252Dd1zhe%252DiJlwigB%252DQ5WgZqFw2DDMLDZ3WaL466ObkmfuYSNPN%26pstart=11%26fr=FP-tab-
web-t%26b=21

Table 1. The URL spaces of Web sites are diverse and opaque. They present difficulties in determining the “next page”
link given a page within a sequence of search result pages. URL fragments that vary from page to page are bolded. Frag-
ments that might specify page numbers or starting item indices are underlined.

author, artist, medium, date, shipping option, brand, number
of store reviews, number of bids, container size, city, etc.

EVALUATION OF USER INTERFACE
Augmentation of web sites is a novel concept even to expe-
rienced web users, so we conducted a formative evaluation
of Sifter to determine whether it was basically usable and
useful, assuming that the automatic extraction algorithm
performed its best. For this purpose, we chose to test on Am-
azon.com and Ashford.com for which Sifter worked well.
The Discussion section will cover the impact on the user ex-
perience when the algorithm fails.

Design and Procedure
This study consisted of a structured task (during which the
subjects took simple steps to familiarize with Sifter) followed
by an unstructured task (during which the subjects employed
their own knowledge of Sifter for problem solving).

At the beginning of each study session, the subject was told
that she would learn how to use something called Sifter her-
self but was given no particular instructions on how to use it.
This was patterned after the study on the Flamenco system
in which the subjects were not introduced to the system in
order to better mimic real world situations [23].

Task #1 required the subject to:

• follow a sequence of simple steps to use the Sifter pane
to sort and filter a collection of 48 items spread over 3
web pages obtained by searching Amazon.com for “jef-
frey archer.” The desired final result was the sub-collec-
tion of only hardcovers and paperbacks published in 2004
or later, sorted in descending order by their used & new
prices. The sequence of steps consisted of high-level “fil-
ter by date” and “sort by price” instructions, not low-level
UI “click this button” and “select that list item” actions.

• use the Sifter pane by herself to obtain the list of 3 cheap-
est (if bought used) paperbacks by John Grisham in 2005
from Amazon.

• spend no more than 5 minutes using only the Amazon
web site, but not Sifter, to find the 3 cheapest (if bought
used) hardcovers by John Grisham in 2004.

Task #2 required the subject to:

• use the Sifter pane to decide whether the sale on Prada
products on Ashford.com was good or not.

• use the Sifter pane to list 2 or 3 products among those that
the subject considered good deals.

• use only the Ashford.com web site to judge whether the
sale on Gucci products on Ashford was good or not, using
the same criteria that the subject had used in judging the
sale on Prada products.

Amazon was chosen for Task #1 as its search results were
very structured, containing many fields useful for filtering
and sorting. Furthermore, Amazon is popular and the sub-
jects were more likely to be familiar with it. Ashford was
chosen for Task #2 as its search results contained only two
fields (price and percent saving), making it simpler to per-
form the high-level task of judging its sales.

At the end of the session, the subject rated her agreement/
disagreement with 12 statements (on a 9-point Likert scale)
regarding her experience learning and using Sifter.

Participants
Eight subjects (4 male, 4 female) were recruited by sending
an e-mail to a mailing list and posting paper ads around a
local college campus. Six were in their 20s, the other two
30s and 40s. All subjects used the Web almost everyday and
visited Amazon.com at least a few times a month. None had
ever visited Ashford.com.

All subjects had used the Web for more than just shopping.
They had searched for some combinations of the following
types of information: news; images; contact information of
people and organizations; maps and driving directions; hob-
bies (e.g., recipes, chess); reviews (on restaurants, movies,
books, products); tutorials (e.g., languages, logics); and pro-
fessional research (e.g., publications, scientific data).

Apparatus
Subjects received $10 each for participating in a 30 – 45
minute study session. All sessions were conducted by one
investigator on a single computer (Pentium 4 2.53 GHz, 1.00
GB) with an 18” LCD flat panel at 1600×1200 resolution in
32-bit color and a Microsoft Wireless IntelliMouse Explorer
2.0 (with mousewheel), running Microsoft Windows XP. UI
events were recorded in a timestamped log and the investiga-
tor observed the subjects and took written notes.

Results
All subjects completed the parts of Task #1 involving Sifter.
Only 5 out of 8 completed the parts involving using the
Amazon web site without Sifter. The other subjects could
not learn how to use Amazon to perform sophisticated que-
ries within 5 minutes. Among the 5 subjects who succeeded,
only one made use of Amazon’s Advanced Search feature.
The other 4, despite their previous experience with the Ama-
zon web site, could only sort the items by one criterion and
manually scan the list for items satisfying the other criteria.
This indicates that advanced browsing features implemented
by the web browser in a unified manner across web sites may
be more discoverable, learnable, and usable than those same
advanced features officially supported by individual web
sites but have been suppressed in favor of more commonly
used functionality.

Seven subjects completed Task #2 and one refused to finish
Task #2 as he said he had no knowledge of Prada and Gucci
products and thus could not judge their sales. For the first

Table 2. Results from the exit survey of the formative evaluation show encouraging evidence that the Sifter pane is usable
(1, 2, 6) and useful (8, 9, 11, 12) even when it is considered to offer advanced functionalities (7).

part of Task #2, 6 out of the 7 subjects used Sifter to look at
the distribution of the percent saving. One subject could not
understand how Sifter would help her judge the sale.

Table 2 shows encouraging evidence that the subjects found
Sifter powerful yet easy to learn and use. However, the ex-
traction process was thought to be slow. Data extraction
speed depends on network performance and web server re-
sponsiveness, but on average, each test collection of 50 or so
items took 30 seconds to extract.

Although there was no show-stopper problem with the user
interface, some users were taken aback by the verification
step (when the system announced its estimate of the items
to be extracted and asked for confirmation). As they saw no
other choice except clicking Continue, they did so just to see
what would happen next, in hope but not certain that that
route would ultimately allow them to sort and filter. This be-
havior was not a surprise as web site augmentation was a
new experience and the necessity for extracting data before
augmentation could take place was poorly understood, if un-
derstood at all. To fix this problem, we will have to boost the
accuracy of our algorithms, pre-load and process subsequent
pages even before the user clicks Filter/Sort Items, and let the
user make corrections from the augmentation UI.

Sorting operations took very little time and the re-shuffling
of items inside the web page was too fast and subtle to shift
the user’s attention from the Sifter pane where she just in-
voked a sorting command to the web page. The user often
had to double-check the resulting list of items herself. To fix
this, we can slow down or animate the changes in the web
page. Filtering operations produced more drastic changes
and did not suffer from the same problem.

One subject opened too many browsing control boxes and
became confused as to which field each box corresponded
to. He was not able to notice the synchronized highlighting

strongly
disagree 1  9

strongly
agree 1. Sifter is hard to learn how to use.

1  9 2. Sifter is tedious to use.

1  9 3. The filtering and sorting features in Sifter are slow.

1  9 4. Sifter shows redundant information (easily found on the Web sites).

1  9 5. After clicking “Continue,” I need to wait for a long time before I can use Sifter.

1  9 6. Sifter is simple to use.

1  9 7. Sifter is powerful (providing advanced features).

1  9 8. Sifter displays interesting information.

1  9 9. Sifter displays useful information.

1  9 10. Sifter is enjoyable to use.

1  9 11. Sifter adds value to the Web sites in this user study.
strongly
disagree 1  9

strongly
agree 12. I believe Sifter will add value to some other Web sites I have used.

of browsing control boxes and field asterisks. To fix this, we
can color-code the asterisks and the browsing control boxes
as well as use a variety of shapes rather than just asterisks.

Asked to filter for only items published in 2005, some sub-
jects had to manually find one sample item published in
2005 in order to click on the asterisk next to its publishing
date. Other subjects simply clicked on the asterisk next to
any publishing date. If we are able to derive meaningful field
names, this problem will be resolved.

Only 5 of the 8 subjects interacted with the faded areas of
the web pages when they needed to use the web sites’ func-
tionality (e.g., performing a search for “john grisham”). In
the future, we will need to change Sifter’s UI such that users
can feel comfortable making use of the original web sites’
features, knowing the difference between those original fea-
tures and the added functionality.

One subject—the only one who used Amazon’s Advanced
Search feature—asked when she would be able to use Sifter
in her own browser. She mentioned that there were a number
of sites she used frequently which did not offer the browsing
functionality that she needed. Another subject said that al-
though he never had to perform the kinds of task in this study
on the Web, he had to perform similar tasks in spreadsheets.

DISCUSSION
The formative user study did not cover scenarios in which
the extraction algorithm failed. There are several modes of
failure:

First, if item detection fails on the first page, then the items
will be highlighted incorrectly and the total number of items
might also be estimated incorrectly. Both pieces of evidence
may catch the user’s attention, and the user can correct it by
highlighting the items herself.

Next, if subsequent page detection fails, then the estimated
total number of items will be incorrect, which may be no-
ticeable. The user can point to a sample next-page link to
correct it using the next-page heuristic, but if that fails as
well, then there is no further recourse.

Finally, if field detection fails, then some fields that the user
wants to use may lack asterisks, and some browsing control
boxes may contain values that are useless for filtering and
sorting. Sifter currently has no UI mechanism for correcting
this failure, but we are exploring ways for the user to select
an example of a desired field to fix it.

CONCLUSION
We were able to devise heuristics for automatically scraping
structured data out of lists of items from sequences of well-
structured web pages and augment the original web pages
with advanced sorting and filtering features right within
those pages. Based on the encouraging results from the user
study, enabling the web browser with structured data pro-
cessing capabilities benefits end-users. For better user ex-
perience, we propose that web sites serve structured data in
a structure-preserving format along with HTML so that the
inherently slow and inaccurate data extraction process is no
longer necessary.

While, in theory, each web site can evolve to support the
majority of its users’ needs, no single site can ever offer an
integrated experience over data aggregated from multiple
sites chosen for the unique combination of needs of an indi-
vidual user in a particular situation. We will next investigate
user interfaces for such data aggregation. The challenges are
in preserving important aspects of the original sites (such as
the presentation of items) while providing new features over
the unified data in a coherent manner.

ACKNOWLEDGEMENTS
This work was supported by the National Science Founda-
tion (IIS-0447800) and the Mellon Foundation. Any opin-
ions, findings, conclusions, or recommendations expressed
in this publication are those of the authors and do not neces-
sarily reflect the views of the sponsoring organizations.

We are grateful to all of our user study participants and pi-
lots. We would like to thank members of the Haystack group,
the User Interface Design group, and the Simile group at MIT
CSAIL for their valuable discussions on our work.

REFERENCES
[1] Evaluation of Sifter’s data extraction algorithm.

http://people.csail.mit.edu/dfhuynh/research/papers/
uist2006-augmenting -web-sites-stats.pdf.

[2] Greasemonkey. http://greasemonkey.mozdev.org/.
[3] Piggy Bank. http://simile.mit.edu/piggy-bank/.
[4] Resource Description Framework (RDF) / W3C Seman-

tic Web Activity. http://www.w3.org/RDF/.

[5] XML Path Language (XPath) Version 1.0. http://www.
w3.org/TR/xpath.

[6] Ahlberg, C., B. Shneiderman. Visual information
seeking: tight coupling of dynamic query filters with
starfield displays. CHI 1994.

[7] Barrett, R., P. Maglio, and D. Kellem. How to personal-
ize the web. CHI 1997.

[8] Bolin, M., M. Webber, P. Rha, T. Wilson, and R. Miller.
Automation and customization of rendered Web pages.
UIST 2005.

[9] Hogue, A. and D. Karger. Thresher: automating the
unwrapping of semantic content from the World Wide
Web. WWW 2005.

[10] Huynh, D., S. Mazzocchi, and D. Karger. Piggy Bank:
experience the Semantic Web inside your Web browser.
ISWC 2005.

[11] Joachims, T., D. Freitag, and T. Mitchell. WebWatcher:
a tour guide for the World Wide Web. IJCAI 1997.

[12] Lerman, K., L. Getoor, S. Minton, and C. Knoblock.
Using the structure of Web sites for automatic segmen-
tation of tables. SIGMOD 2004.

[13] Nardi, B.A., J.R. Miller, and D.J. Wright. Collabora-
tive, programmable intelligent agents. Communica-
tions of the ACM 41:33, 96-104, March 1998.

[14] Pandit, M.S., and S. Kalbag. The Selection Recogni-
tion Agent: instant access to relevant information and
operations. IUI 1997.

[15] Quan, D., D. Huynh, and D. Karger. Haystack: a plat-
form for authoring end-user Semantic Web applica-
tions. ISWC 2003.

[16] Reis, D.C., P.B. Golgher, A.S. Silva, and A.F. Laender.
Automatic Web news extraction using tree edit dis-
tance. WWW 2004.

[17] Shneiderman, B. Dynamic queries for visual informa-
tion seeking. IEEE Software, 11:6, 70-77, 1994.

[18] Spenke, M., C. Beilken, and T. Berlage. FOCUS: the
interactive table for product comparison and selection.
UIST 1996.

[19] Tai, K.-C. The tree-to-tree correction problem. J. Asso-
ciation of Computing Machinery, 26(3):422–433, July
1979.

[20] Wang, J.-Y., and F. Lochovsky. Data extraction and la-
bel assignment for Web databases. WWW 2003.

[21] Wittenburg, K., T. Lanning, M. Heinrichs, and M. Stan-
ton. Parallel bargrams for consumer-based information
exploration and choice. UIST 2001, 51–60.

[22] Wood, A., A. Dey, and G.D. Abowd. CyberDesk: au-
tomated integration of desktop and network services.
CHI 1997.

[23] Yee, K-P., K. Swearingen, K. Li, and M. Hearst. Fac-
eted metadata for image search and browsing. CHI
2003.

[24] Zhai, Y., and B. Liu. Web data extraction based on par-
tial tree alignment. WWW 2005.

