
ABSTRACT
Existing augmentations of web pages are mostly small cos-
metic changes (e.g., removing ads) and minor addition of 
third-party content (e.g., product prices from competing 
sites). None leverages the structured data presented in web 
pages. This paper describes Sifter, a web browser extension 
that can augment a well-structured web site with advanced 
filtering and sorting functionality. These added features 
work inside the site’s own pages, preserving the site’s pre-
sentational style and the user’s context. Sifter contains an 
algorithm that scrapes structured data out of well-structured 
web pages while usually requiring no user intervention. We 
tested Sifter on real web sites and real users and found that 
people could use Sifter to perform sophisticated queries and 
high-level analyses on sizable data collections on the Web. 
We propose that web sites can be similarly augmented with 
other sophisticated data-centric functionality, giving users 
new benefits over the existing Web.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces – Graphical user interfaces (GUI).

General Terms: Algorithms, Design, Human Factors.

Keywords: Web, augment, filter, sort, faceted browsing,  dy-
namic query, tree alignment, HTML, DOM.

INTRODUCTION
Much of the data on the Web resides in structured data-
bases behind web sites. However, as the contemporary web 
browser understands only rendering instructions (HTML), the 
typical web site must transform its structured data into HTML 
before serving up that data. When the data reaches the user’s 
browser, it has lost most if not all of its original informa-
tional structure, carrying only some presentational structure. 
Made readable for humans through web browsers, it is no 
longer conducive to semantic machine processing.

Enabling Web Browsers to Augment Web Sites’  
Filtering and Sorting Functionalities

Retaining structure in the data transfer from web site to web 
browser gives the web browser an opportunity to repurpose 
that data in ways that might better meet the user’s needs. For 
example, it can add faceted browsing [23] functionality if 
none is offered by the original web sites. It can provide more 
sophisticated, novel visualizations such as starfield displays 
[6], FOCUS tables [18], and parallel bargrams [21].

Researchers have been attempting to recover lost structure 
within the existing Web. But their efforts so far fall into two 
disconnected camps: at one end, web data extraction algo-
rithms that are neither designed for nor evaluated on real 
web users performing real tasks; and at the other end, web 
data re-purposing tools, such as Piggy Bank [3, 10], that rely 
on custom scripts to extract web data although scripting re-
mains beyond the skills of most users.

In this paper, we present the first end-to-end solution that 
integrates a web data extraction algorithm with a user inter-
face designed for one particular web data-repurposing task: 
Sifter is a web browser extension that can augment a well-
structured site with filtering and sorting functionality. The 
added features work inside the site’s own pages, preserving 
the site’s presentational style, keeping the user’s context. For 
example, suppose the user visits a library web site and sub-
mits a search for books that returns several hundred results 
divided into 15 pages. Sifter allows the entire set of results to 
be filtered or sorted (e.g. by author, date), without having to 
switch away from the browser or even away from the library 
site. This augmentation is useful when the site itself does not 
support such sorting and filtering features.

Sifter’s web data extraction algorithm usually requires no 
training examples from the user. In the book search example 
above, this algorithm would start from the first search result 
page, iterate through the 14 subsequent pages, and produce 
a database record for each result on every page. Having ex-
tracted all items in that 15 page collection, Sifter can then 
compute filtering and sorting choices. As the user invokes 
filtering and sorting commands, Sifter reconstructs the web 
page in-place, showing only those items that satisfy the cur-
rent filters in the current sorting order using data served from 
the local database, no longer relying on the original site.

Our contributions include (1) a user interface that lets end-
users perform advanced data manipulations on web pages in 
their original context; and (2) a lightweight data extraction 
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algorithm that works on multiple web pages and produces 
field values intended for filtering and sorting.

We tested Sifter on real web sites and real users and found 
that the test subjects could use Sifter to perform sophisti-
cated queries on realistic data collections on the Web.

RELATED WORK
There are two main areas of related work: automatic web 
data extraction and web page augmentation.

Although there has recently been a spate of efforts on au-
tomatically extracting data from the Web—[12, 16, 20, 24] 
to name just a few—these approaches mostly work outside 
the web browser (e.g., as independent crawlers) and do not 
make the extracted data usable to end-users. An exception 
is Thresher [9] (built into Haystack [15]), which embeds a 
web browser and lets the user extract structured data from 
a web page by selecting some HTML fragment, invoking a 

context menu command on that selection, and then labelling 
fields in that sample item. Having identified the “semantic 
items” on the web page and extracted their data, Thresher 
then adds a context menu to each semantic item (e.g., “Call 
this person”). The user can also use Haystack’s rich brows-
ing functionality on the items but to do so, she must switch 
into Haystack’s own browsing view where the original web 
page’s presentational style is not preserved.

The earliest work on augmenting web pages injected navi-
gation guides into web pages [7, 11]. More recent efforts 
enable users to script modifications on web pages [2, 8], but 
so far they lack a rich data model to support augmentations 
more sophisticated than just cosmetic changes (e.g., remov-
ing ads) and simple addition of third-party content to web 
pages (e.g., injecting prices from competing sites). None can 
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Figure 1. Sifter’s two-click interface to detect items and subsequent pages and to extract the data within.



work on multiple pages or extensively re-shuffle the content 
of a page in response to user interaction.

There has also been related work that augments arbitrary 
unstructured text, not just web content, with semantic op-
erations, e.g., Data Detectors [13], the Selection Recogni-
tion Agent [14], CyberDesk [22], and Microsoft Smart Tags. 
These approaches used hand-coded parsers to discover and 
extract structured data while Sifter discovers structured data 
automatically. Moreover, Sifter provides operations over en-
tire sets of items rather than over invididual items.

USER INTERFACE DESIGN
Interaction with Sifter consists of two stages:
• Extraction: the system ascertains which parts of the web 

site to extract, and gives the user feedback about this pro-
cess; and

• Augmentation: the system adds new controls to the web 
page and the browser that allow the user to filter and sort 
the extracted items in-place.

Extraction User Interface
Sifter’s user interface resides within a pane docked to the 
right side of the web browser (Figure 1). When the user first 
visits a web site, the Sifter pane shows a single button that, 
when clicked, triggers the detection of items on the current 
web page as well as links to subsequent pages, if any. (An 
item is, for example, a product as in Figure 1.) Items are 
highlighted in-place, and the total number of items spanning 
the detected series of pages is displayed prominently in the 
pane. If the system has incorrectly detected the items or the 
subsequent-page links, the user can correct it by clicking on 
an example item or a subsequent-page link in the web page. 
Once the Continue button (Figure 1) is clicked, the extraction 
process starts and Sifter pops up a dialog box showing the 
subsequent web pages being downloaded. Over all, getting 
the data extracted usually takes 2 button clicks.

During the extraction process, Sifter locates all items on all 
the web pages, extracts field values from each item as well 
as its HTML code, and stores each item as a record in a lo-
cal database. For example, the database accumulated from 
extracting the 7 pages of items in Figure 1 would contain 59 
records, each having one text field (title), two numeric fields 
(price and percent saving), and an HTML fragment represent-
ing the whole item. This HTML fragment is used as a render-
ing of the item when the result set is filtered or sorted.

If the items are detected incorrectly, the user can click on 
the Locate Items button (Figure 1) and the Sifter pane will 
change to highlighting mode (Figure 2). In this mode, as the 
user moves the mouse cursor over the web page, the system 
inspects the smallest HTML element under the mouse cursor, 
generalizes it to other similar elements on the page, expands 
those elements to form whole items, and highlights these 
candidate items with translucent overlays. When the user is 
satisfied with the highlighting, she can click the mouse but-
ton and the Sifter pane switches out of highlighting mode.

Through early prototypes, we realized that the extraction UI 
must be streamlined as much as possible because data extrac-
tion is not by itself a user goal, but merely a system precon-
dition for achieving the user’s real goal (filtering or sorting). 
Scraping—transforming data to a more machine processible 
form—is an unfamiliar concept and perhaps seemingly un-
necessary to the user, which the user may initially consider 
not worth the effort.

We considered eliminating the extraction UI altogether and 
providing a correction UI after the extraction process has fin-
ished. However, as the extraction process may be lengthy 
and not completely reliable, providing a preview of what the 
system is going to do makes the wait more acceptable and 
gives the user a sense of greater control over the system.

Position of mouse 
pointer helps identify 
items to be extracted.

Candidate items are 
highlighted and their 
indices and count are 
shown as watermarks.

The whole Web page 
is shown in miniature 
for an overview of the 
highlighted items, bring-
ing attention to misses 
evident as whitespace 
gaps, if any.

Figure 2. Sifter’s highlighting mode provides an interactive mechanism for the user to correct the automatic detection of 
items by hovering the mouse pointer of the web page and clicking once the items have been highlighted correctly.



Augmentation User Interface
Figure 3 shows Sifter in action as the user makes use of new 
filtering and sorting functionality. An asterisk is inserted after 
each field value in the web page. When an asterisk is clicked, 
a browsing control box is displayed in the Sifter pane, con-
taining the filtering and sorting controls for that field. Hov-
ering the mouse pointer over either a field’s asterisks or its 
browsing control box highlights both synchronously, so that 
the user can distinguish among them. This design addresses 
a critical problem in automatic data extraction: Sifter cannot 
automatically derive meaningful field names with which to 
label the browsing controls, because many field names are 
completely missing from the web page (e.g., nowhere in the 
Amazon page in Figure 3 are the book titles explicitly la-
beled “Title”). So instead of a field name, Sifter relies on the 
field values themselves, and their context within the items, 
as a way to attach meanings to the browsing controls.

Figure 3. After extraction is complete, the Sifter pane hosts sorting and filtering controls, which when invoked, re-render 
the resulting items inside the same web page (without invoking the original web site).

The filtering controls for different field types (text, numbers, 
date/time) manage the field values differently. For numbers 
and date/time fields the values are classified into ranges and 
sub-ranges hierarchically, while for text fields the values are 
listed individually. Selecting a value or a range filters the 
current collection of items down to only those having that 
value or having values in that range. Multi-selection in a 
single field adds disjunctive query terms. Filtering on more 
than one field forms conjunctive queries. Selecting and de-
selecting field values or ranges in a browsing control box 
updates the available values and ranges in other boxes as in 
any dynamic query interface [17].

As the user invokes filtering and sorting commands, Sifter 
dynamically rewires the web page to show the set of items 
satisfying the current filters in the current sorting order, as if 
the web site itself had performed the filtering and sorting op-
erations. Sifter does so by removing the HTML fragment of 
each item on the page and then injecting into the same slots 
(where those removed fragments previously fit) the HTML 
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general enough to cover more than just the original <A> ele-
ment, but restrictive enough to address only those elements 
similar to it. This is called the generalization phrase, as il-
lustrated by the straight arrows in Figure 4.

Each of these <A> xpaths addresses a collection of <A> ele-
ments that could correspond one-to-one with the collection 
of items to be detected. We wish to find which of these  <A> 
xpaths corresponds to a collection of items that take the larg-
est amount of screen space.

Next, each <A> xpath is expanded to fully encompass the hy-
pothetical items that the <A> elements reside within. To ex-
pand an xpath, we repeatedly append /.. to it (see the curved 
arrows in Figure 4). As /.. is appended, the set of HTML ele-
ments that the xpath addresses gets closer and closer to the 
document root. As long as the cardinality of that set remains 
unchanged, each HTML element in that set still resides spa-
tially inside a hypothetical item. When the cardinality of the 
set drops, the xpath has been expanded too much such that it 
now describes the parent node(s) of the hypothetical items.  
For example, in Figure 4, if we append another /.., the re-
sulting xpath would address a single TBODY element rather 
than two TR elements. We stop appending /.. just before that 
happens. The result is a candidate item xpath.

Note that we append /.. rather than truncate ending segments 
because truncation loses information. If the xpath in Figure 
4 were instead truncated 4 times, the resulting xpath, /HTML/
BODY/TABLE/TBODY/TR, would have included the middle TR, 

fragments of the items satisfying the current dynamic query. 
These HTML fragments are retrieved from the local database, 
so there is no need to make a request to the original site when 
the dynamic query changes.

While the user is using Sifter’s filtering and sorting func-
tionality, the rest of the original web page is faded out to 
indicate that interaction is now focused on the items alone. 
The original status indicators (e.g., number of items, number 
of pages) are faded to imply that they no longer apply to the 
items inside the web page. The original pagination, sorting, 
and browsing controls are faded to imply that invoking them 
would switch out of Sifter’s augmentation mode and let the 
user interact with the web site. We used fading rather than 
completely removing the rest of the web page so that the 
user still has a way to invoke the original web site. Further-
more, some parts of the original page may still be vital for 
the user to understand the items (e.g., column headers).

Since exploring the collection of items may involving click-
ing a link to view details about an item, Sifter stores the 
query state and automatically restores it when the user re-
turns to the augmented page.

DATA EXTRACTION
Extraction of structured data from web pages takes 3 steps: 
locating items to extract; identifying subsequent web pages; 
and parsing useful field values from each item.

Item Detection
We posit that for many sequences of web pages containing 
lists of items (e.g., search results, product listings), there ex-
ists an xpath [5] that can precisely address the set of items on 
each page. Thus, our item detection algorithm involves de-
riving such an xpath. (We will address the cases where each 
item consists of sibling or cousin nodes [24] in future work.) 
We also posit that this xpath can be computed just from the 
sample items on the first page in a sequence of pages. We 
have found that these assumptions hold on many database-
backed web sites that generate HTML from templates.

Our algorithm is based on two observations. First, in most 
item collections, each item contains a link, often to a detail 
page about the item. So, links are likely to be useful as start-
ing points for generating hypotheses for the xpath. Second, 
the item collection is typically the main purpose of the web 
page, so the items themselves consume a large fraction of the 
page’s visual real-estate. This gives us a way to choose the 
most likely hypothesis, namely, the one that uses the largest 
area of the page.

The item detection algorithm starts by collecting all unique 
xpaths to <A> elements on the current web page. For each 
element, its xpath is calculated by stringing together the tag 
names of all elements from the document root down to that 
element. CSS class names are also included. The resulting 
xpath looks something like this: /HTML/BODY/TABLE/TBODY/
TD/DIV[@class=‘product’]/SPAN/A. Each such xpath is 

Figure 4. From a starting HTML element, an item 
xpath is formed by generalization (to similar elements, 
straight arrows) and expansion (curved arrows).
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which does not have a link inside and could be extraneous, 
intervening content.

For each candidate item xpath, we calculate the total screen 
space covered by the HTML elements it addresses. The can-
didate item xpath with the largest screen space wins and is 
then used to add highlight overlays to the web page.

Subsequent-Page Detection
We use two heuristics to automatically detect subsequent 
pages. The heuristics are run in the order presented below, 
and when one succeeds, its results are taken as final.

Link Label Heuristic – Often, a web page that belongs in 
a sequence of pages contains links to the other pages pre-
sented as a sequence of page numbers, e.g.,

 Pages: 1 [2] [3] [4] [5] [Next] [Last]

Occasionally, such a sequence shows not the page numbers 
but the indices of the items starting on those pages, e.g.,

 Items: 1–10 [11–20] [21–30]

This heuristic attempts to pick out URLs from such a se-
quence of linearly increasing numbers. First, the text labels 
of all <A> links on the current web page are parsed. Only la-
bels that contain numbers are kept. They are then grouped by 
the xpaths generated from the <A> elements. For each xpath, 
the numbers parsed from the labels are sorted in ascending 
order. Only those xpaths with linearly increasing sequences 
of numbers are kept. These final candidates are then sorted 
by the lengths of their sequences. The xpath with the longest 
sequence is then used to pick out URLs to subsequent pages. 
If there is a tie, the xpath whose sequence increases at the 
highest rate wins. This heuristic fails if no xpath has a lin-
early increasing sequence of numbers.

URL Parameter Heuristic – URLs of pages in a sequence 
often encode the page numbers or the starting item indices 
as numeric URL parameters. For instance, Amazon.com 
encodes page numbers in the page parameter and Yahoo.
com encodes starting item indices in the b parameter (Ta-
ble 1). This heuristic attempts to detect such parameters so 
that URLs to subsequent pages can be generated. The URLs 
pointed to by all the links on the current web page are parsed 
to extract out URL parameters. For each parameter that has 
numeric values, its numeric values are collected in an array 
and sorted in ascending order. Then, only parameters whose 
values form linearly increasing sequences are kept. These 
final candidates are sorted by the lengths of their value se-
quences. The parameter with the longest sequence is then 
used to generate URLs to subsequent pages. If there is a tie, 
the parameter whose sequence increases at the highest rate 
wins. This heuristic fails if no parameter has a linearly in-
creasing sequence of values.

If these heuristics fail then the user can intervene and point 
at the link to one of the subsequent pages (not necessarily the 

immediately following page). We compute the xpath of that 
link, which describes a collection of <A> elements. Given 
such a collection of <A> elements, we use the following heu-
ristic to pick out the one that points to the next page.

Next Page Heuristic – Table 1 gives some sample URL spaces 
of contemporary web sites. Pages in a sequence might not 
differ by only one URL parameter which encodes either the 
page number or the index of the starting item. In some cases, 
more parameters are inserted (e.g., %5Fencoding=UTF8 at 
Amazon) and some existing ones are removed (e.g., search-
alias=aps at Amazon). In other cases, URL parameters are 
not used at all (e.g., at Dogpile); instead, some segments of 
the URL specify the current page. Worse yet, the whole URL 
of the current page is encoded as a single URL parameter to 
another domain for some tracking purpose (e.g., at Yahoo).

The next page heuristic sorts candidate URLs together with 
the current page’s URL and picks out the URL immediately 
“larger” than the current page’s URL. Simple string sorting 
does not work as page=10 will be “less” than page=9. In-
stead, we break each URL into fragments separated by /, ?, 
and &. We then sort the URLs by comparing corresponding 
fragments that contain numbers. (This heuristic cannot han-
dle Yahoo’s URL space as shown in Table 1.)

Field Detection
We use a greedy algorithm to build a template out of sample 
items from sample pages in a sequence of pages. We con-
struct the initial template by copying the first sample item’s 
DOM tree. We then align the other sample items’ DOM trees 
with the template. As a result of alignment, the template gets 
some new nodes inserted and some existing nodes marked 
optional. This is similar to the tree alignment techniques  
[19] used by other systems [9, 16].

However, unlike previous tree alignment approaches, our al-
gorithm also discovers data fields marked by text, not just 
by HTML tags. It tokenizes content of text nodes into typed 
tokens and then align them as well. For example, given the 
HTML text node You save $14.99!, we break it into 4 string 
tokens (You, save, $, and !) and a numeric token with a value 
of 14.99. As we align sequences of typed tokens from sev-
eral corresponding text nodes in the sample items, we mark 
some tokens as fixed (present and constant across all sample 
items) and some as variable (missing or changing values 
across sample items). Note that being able to extract typed 
field values is crucial to provide sorting and filtering features 
in meaningful ways (e.g., breaking a date field into ranges of 
years and months).

After aligning all sample items’ DOM trees with the template, 
we then traverse the template and assign automatically gen-
erated field names. Each variable token in the template is as-
signed a field name. However, if there are too many variable 
tokens that are siblings of one another, then their immedi-
ate parent is assigned a field name instead. This is to avoid 



from 2 to 25 pages, with each page containing from 9 to 50 
items. (The test data is available online [1].)

The item detection algorithm worked perfectly on the first 
pages of 23 collections (out of 30, 77% accuracy). For the 
failure cases, we used Sifter’s item highlighting tool and 
were able to correct 4 cases. Overall, item xpaths could be 
found for 27 of the 30 collections (90%). In the remaining 
3 cases, items consisted of sibling nodes, which we do not 
currently handle.

Among the 30 sites, 24 (80%) displayed sequences of page 
numbers (rather than just Next Page links). The Link Label 
Heuristic detected 13 sequences, and the URL Parameter 
Heuristic detected 2 (15/24 = 63%). The Next Page Heuristic 
(requiring users’ intervention) worked on 9 of the remaining 
15 cases (9/15 = 60%). Overall, subsequent pages could be 
identified for 24 out of 30 collections (80%).

There were 22 collections for which item xpaths could be 
found and subsequent pages could be identified accurately. 
Out of these 22 collections, 19 were perfectly extracted, 
yielding precisely the original numbers of items. The overall 
accuracy of extraction is 19/30 = 63%.

Note that accuracy was measured per collection rather than 
per item as in related data extraction work. To put this in per-
spective, the latest work on data extraction [24] processed 72 
manually provided pages from 49 sites and achieved 40/49 = 
82% collection accuracy. Over the 24 collections for which 
subsequent pages could be identified, our algorithm  pro-
cessed 176 pages automatically and achieved 19/24 = 79% 
collection accuracy.

The fields extracted that could be useful for filtering and sort-
ing included: current price, original price, percent saving, 

assigning too many field names to paragraphs of text (e.g., 
product review comments, publication abstracts).

After field assignment is complete, the template is ready to 
be used. Each item to be extracted is bound to the template. 
If a node or token in the item gets bound to a variable node or 
token in the template, its text content is extracted and stored 
in the corresponding field.

IMPLEMENTATION
Sifter was implemented on top of the Piggy Bank extension 
[3, 10] for the Mozilla Firefox browser as Piggy Bank already 
implements a faceted browsing engine on top of an RDF [4] 
store. RDF, a graph-based data model, is the core technol-
ogy of the Semantic Web, designed to describe semistruc-
tured data. RDF promotes the “data first, structure second” 
philosophy in which data can exist without any predefined 
schema, and schemas can be added later on whenever they 
prove truly useful and necessary. (Conventional database 
technologies require schemas to be solidly defined before 
any data can be recorded.) This flexibility makes it conve-
nient for us to store data extracted from web pages without 
worrying about generating “good” schemas. RDF still leaves 
the door open to fixing up that data later and solidifying its 
schemas for more advanced usage.

The data extraction algorithms were implemented entirely 
in Javascript operating directly on DOM trees that Firefox 
exposes. Piggy Bank’s faceted browsing engine was imple-
mented in Java.

EVALUATION OF DATA EXTRACTION
We tested Sifter on 30 collections of items from 30 com-
mon web sites, including Amazon, Best Buy, CNET Reviews, 
Froogle, Target, Walmart, and Yahoo Shopping. These col-
lections contain from about 25 to 450 items each, spanning 

Amazon.com (search for “metallica”)

Page 1 http://www.amazon.com/gp/search/ref=br_ss_hs/103-8791841-3931026?search-alias=aps&keywords=metallica

Page 2 http://www.amazon.com/gp/search/103-8791841-3931026?%5Fencoding=UTF8&keywords=metallica&rh=i%3Aaps%2Ck%3Ametallica&page=2

Dogpile.com (search for “haystack”)

Page 1
http://www.dogpile.com/info.dogpl/search/web/haystack/1/-/1/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-
/-/-/-/-/-/-/-/-/-/-/-/-/-/-/417/top

Page 2
http://www.dogpile.com/info.dogpl/search/web/haystack/21/20/2/-/0/-/1/1/1/off/-/-/-/on7%253A1142948788129/-/-/-/-/-/-/-/-/-/-/-/-
/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/0/417/top/-/Moderate/0/1

Yahoo.com (search for “piggy bank”)

Page 1 http://search.yahoo.com/search?p=piggy+bank&sm=Yahoo%21+Search&fr=FP-tab-web-t&toggle=1&cop=&ei=UTF-8

Page 2

http://rds.yahoo.com/_ylt=A0SO7BP_BSBEmDUBnB1XNyoA/SIG=1a95brnl3/EXP=1143035775/**http%3a//search.yahoo.com/search%3fp=piggy%2bba
nk%26sm=Yahoo%2521%2bSearch%26toggle=1%26ei=UTF-8%26xargs=12KPjg1hVSt4GmmvmnCOObHb%255F%252Dvj0Zlpi3g5UzTYR6a9RL8nQJDqADN%255F2a
P%255FdLHL9y7XrQ0JOkvqV2HOs3qODiIxkSdWH8UbKsmJS5%255FIppC7fdaXlzO4EdhLu3xdZvcEwddl%252DCKIGrnZrMAebJ%26pstart=6%26fr=FP-tab-web-
t%26b=11

Page 3

http://rds.yahoo.com/_ylt=A0Je5rSsRClEQEMBMnZXNyoA/SIG=1ee941i5r/EXP=1143641644/**http%3a//search.yahoo.com/search%3fp=piggy%2bba
nk%26sm=Yahoo%2521%2bSearch%26toggle=1%26ei=UTF-8%26xargs=12KPjg1wlSrYe9mvinCOObHb%255F%252Dvj0Zlpi298gfUcw7Ctdb8wZsHdFKaMee27khE
7c73zzVzoPFrx4lLLvKhaK6UAbWdU%255F9KP537Zco%255FblIfv7yHZF8ny4dx2bJhNJ%252DxEnwUSzg0%255FG96gL9PZrI51h56MlamFqDYcL67GOa3P8trJbq2
yZ47l7PQqtGvrUp4fyPAxY%252DU0xkfKiODxZKVmB6%252Dd1zhe%252DiJlwigB%252DQ5WgZqFw2DDMLDZ3WaL466ObkmfuYSNPN%26pstart=11%26fr=FP-tab-
web-t%26b=21

Table 1. The URL spaces of Web sites are diverse and opaque. They present difficulties in determining the “next page” 
link given a page within a sequence of search result pages. URL fragments that vary from page to page are bolded. Frag-
ments that might specify page numbers or starting item indices are underlined.



author, artist, medium, date, shipping option, brand, number 
of store reviews, number of bids, container size, city, etc.

EVALUATION OF USER INTERFACE
Augmentation of web sites is a novel concept even to expe-
rienced web users, so we conducted a formative evaluation 
of Sifter to determine whether it was basically usable and 
useful, assuming that the automatic extraction algorithm 
performed its best. For this purpose, we chose to test on Am-
azon.com and Ashford.com for which Sifter worked well. 
The Discussion section will cover the impact on the user ex-
perience when the algorithm fails.

Design and Procedure
This study consisted of a structured task (during which the 
subjects took simple steps to familiarize with Sifter) followed 
by an unstructured task (during which the subjects employed 
their own knowledge of Sifter for problem solving).

At the beginning of each study session, the subject was told 
that she would learn how to use something called Sifter her-
self but was given no particular instructions on how to use it. 
This was patterned after the study on the Flamenco system 
in which the subjects were not introduced to the system in 
order to better mimic real world situations [23]. 

Task #1 required the subject to:

• follow a sequence of simple steps to use the Sifter pane 
to sort and filter a collection of 48 items spread over 3 
web pages obtained by searching Amazon.com for “jef-
frey archer.” The desired final result was the sub-collec-
tion of only hardcovers and paperbacks published in 2004 
or later, sorted in descending order by their used & new 
prices. The sequence of steps consisted of high-level “fil-
ter by date” and “sort by price” instructions, not low-level 
UI “click this button” and “select that list item” actions.

• use the Sifter pane by herself to obtain the list of 3 cheap-
est (if bought used) paperbacks by John Grisham in 2005 
from Amazon.

• spend no more than 5 minutes using only the Amazon 
web site, but not Sifter, to find the 3 cheapest (if bought 
used) hardcovers by John Grisham in 2004.

Task #2 required the subject to:

• use the Sifter pane to decide whether the sale on Prada 
products on Ashford.com was good or not.

• use the Sifter pane to list 2 or 3 products among those that 
the subject considered good deals.

• use only the Ashford.com web site to judge whether the 
sale on Gucci products on Ashford was good or not, using 
the same criteria that the subject had used in judging the 
sale on Prada products.

Amazon was chosen for Task #1 as its search results were 
very structured, containing many fields useful for filtering 
and sorting. Furthermore, Amazon is popular and the sub-
jects were more likely to be familiar with it. Ashford was 
chosen for Task #2 as its search results contained only two 
fields (price and percent saving), making it simpler to per-
form the high-level task of judging its sales.

At the end of the session, the subject rated her agreement/
disagreement with 12 statements (on a 9-point Likert scale)  
regarding her experience learning and using Sifter.

Participants
Eight subjects (4 male, 4 female) were recruited by sending 
an e-mail to a mailing list and posting paper ads around a 
local college campus. Six were in their 20s, the other two 
30s and 40s. All subjects used the Web almost everyday and 
visited Amazon.com at least a few times a month. None had 
ever visited Ashford.com.

All subjects had used the Web for more than just shopping. 
They had searched for some combinations of the following 
types of information: news; images; contact information of 
people and organizations; maps and driving directions; hob-
bies (e.g., recipes, chess); reviews (on restaurants, movies, 
books, products); tutorials (e.g., languages, logics); and pro-
fessional research (e.g., publications, scientific data).

Apparatus
Subjects received $10 each for participating in a 30 – 45 
minute study session. All sessions were conducted by one 
investigator on a single computer (Pentium 4 2.53 GHz, 1.00 
GB) with an 18” LCD flat panel at 1600×1200 resolution in 
32-bit color and a Microsoft Wireless IntelliMouse Explorer 
2.0 (with mousewheel), running Microsoft Windows XP. UI 
events were recorded in a timestamped log and the investiga-
tor observed the subjects and took written notes.

Results
All subjects completed the parts of Task #1 involving Sifter.
Only 5 out of 8 completed the parts involving using the 
Amazon web site without Sifter. The other subjects could 
not learn how to use Amazon to perform sophisticated que-
ries within 5 minutes. Among the 5 subjects who succeeded, 
only one made use of Amazon’s Advanced Search feature. 
The other 4, despite their previous experience with the Ama-
zon web site, could only sort the items by one criterion and 
manually scan the list for items satisfying the other criteria. 
This indicates that advanced browsing features implemented 
by the web browser in a unified manner across web sites may 
be more discoverable, learnable, and usable than those same 
advanced features officially supported by individual web 
sites but have been suppressed in favor of more commonly 
used functionality.

Seven subjects completed Task #2 and one refused to finish 
Task #2 as he said he had no knowledge of Prada and Gucci 
products and thus could not judge their sales. For the first 



Table 2. Results from the exit survey of the formative evaluation show encouraging evidence that the Sifter pane is usable 
(1, 2, 6) and useful (8, 9, 11, 12) even when it is considered to offer advanced functionalities (7).

part of Task #2, 6 out of the 7 subjects used Sifter to look at 
the distribution of the percent saving. One subject could not 
understand how Sifter would help her judge the sale.

Table 2 shows encouraging evidence that the subjects found 
Sifter powerful yet easy to learn and use. However, the ex-
traction process was thought to be slow. Data extraction 
speed depends on network performance and web server re-
sponsiveness, but on average,  each test collection of 50 or so 
items took 30 seconds to extract.

Although there was no show-stopper problem with the user 
interface, some users were taken aback by the verification 
step (when the system announced its estimate of the items 
to be extracted and asked for confirmation). As they saw no 
other choice except clicking Continue, they did so just to see 
what would happen next, in hope but not certain that that 
route would ultimately allow them to sort and filter. This be-
havior was not a surprise as web site augmentation was a 
new experience and the necessity for extracting data before 
augmentation could take place was poorly understood, if un-
derstood at all. To fix this problem, we will have to boost the 
accuracy of our algorithms, pre-load and process subsequent 
pages even before the user clicks Filter/Sort Items, and let the 
user make corrections from the augmentation UI.

Sorting operations took very little time and the re-shuffling 
of items inside the web page was too fast and subtle to shift 
the user’s attention from the Sifter pane where she just in-
voked a sorting command to the web page. The user often 
had to double-check the resulting list of items herself. To fix 
this, we can slow down or animate the changes in the web 
page. Filtering operations produced more drastic changes 
and did not suffer from the same problem.

One subject opened too many browsing control boxes and 
became confused as to which field each box corresponded 
to. He was not able to notice the synchronized highlighting 

strongly 
disagree 1  9

strongly 
agree  1. Sifter is hard to learn how to use.

1  9  2. Sifter is tedious to use.

1  9  3. The filtering and sorting features in Sifter are slow.

1  9  4. Sifter shows redundant information (easily found on the Web sites).

1  9  5. After clicking “Continue,” I need to wait for a long time before I can use Sifter.

1  9  6. Sifter is simple to use.

1  9  7. Sifter is powerful (providing advanced features).

1  9  8. Sifter displays interesting information.

1  9  9. Sifter displays useful information.

1  9  10. Sifter is enjoyable to use.

1  9  11. Sifter adds value to the Web sites in this user study.
strongly 
disagree 1  9

strongly 
agree  12. I believe Sifter will add value to some other Web sites I have used.

of browsing control boxes and field asterisks. To fix this, we 
can color-code the asterisks and the browsing control boxes 
as well as use a variety of shapes rather than just asterisks.

Asked to filter for only items published in 2005, some sub-
jects had to manually find one sample item published in 
2005 in order to click on the asterisk next to its publishing 
date. Other subjects simply clicked on the asterisk next to 
any publishing date. If we are able to derive meaningful field 
names, this problem will be resolved.

Only 5 of the 8 subjects interacted with the faded areas of 
the web pages when they needed to use the web sites’ func-
tionality (e.g., performing a search for “john grisham”). In 
the future, we will need to change Sifter’s UI such that users 
can feel comfortable making use of the original web sites’ 
features, knowing the difference between those original fea-
tures and the added functionality.

One subject—the only one who used Amazon’s Advanced 
Search feature—asked when she would be able to use Sifter 
in her own browser. She mentioned that there were a number 
of sites she used frequently which did not offer the browsing 
functionality that she needed. Another subject said that al-
though he never had to perform the kinds of task in this study 
on the Web, he had to perform similar tasks in spreadsheets.

DISCUSSION
The formative user study did not cover scenarios in which 
the extraction algorithm failed.  There are several modes of 
failure:

First, if item detection fails on the first page, then the items 
will be highlighted incorrectly and the total number of items 
might also be estimated incorrectly.  Both pieces of evidence 
may catch the user’s attention, and the user can correct it by 
highlighting the items herself.



Next, if subsequent page detection fails, then the estimated 
total number of items will be incorrect, which may be no-
ticeable.  The user can point to a sample next-page link to 
correct it using the next-page heuristic, but if that fails as 
well, then there is no further recourse.

Finally, if field detection fails, then some fields that the user 
wants to use may lack asterisks, and some browsing control 
boxes may contain values that are useless for filtering and 
sorting.  Sifter currently has no UI mechanism for correcting 
this failure, but we are exploring ways for the user to select 
an example of a desired field to fix it.

CONCLUSION
We were able to devise heuristics for automatically scraping 
structured data out of lists of items from sequences of well-
structured web pages and augment the original web pages 
with advanced sorting and filtering features right within 
those pages. Based on the encouraging results from the user 
study, enabling the web browser with structured data pro-
cessing capabilities benefits end-users. For better user ex-
perience, we propose that web sites serve structured data in 
a structure-preserving format along with HTML so that the 
inherently slow and inaccurate data extraction process is no 
longer necessary.

While, in theory, each web site can evolve to support the 
majority of its users’ needs, no single site can ever offer an 
integrated experience over data aggregated from multiple 
sites chosen for the unique combination of needs of an indi-
vidual user in a particular situation. We will next investigate 
user interfaces for such data aggregation. The challenges are 
in preserving important aspects of the original sites (such as 
the presentation of items) while providing new features over 
the unified data in a coherent manner.
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