
Potluck: Data Mash-Up Tool for Casual Users
David F. Huynh, Robert C. Miller, David R. Karger

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar St., Cambridge, MA 02139, USA

{dfhuynh, rcm, karger}@csail.mit.edu

Abstract. As more and more reusable structured data appears on the Web,
casual users will want to take into their own hands the task of mashing up data
rather than wait for mash-up sites to be built that address exactly their indi-
vidually unique needs. In this paper, we present Potluck, a Web user interface
that lets casual users—those without programming skills and data modeling
expertise—mash up data themselves.

Potluck is novel in its use of drag and drop for merging fields, its integration
and extension of the faceted browsing paradigm for focusing on subsets of
data to align, and its application of simultaneous editing for cleaning up data
syntactically. Potluck also lets the user construct rich visualizations of data
in-place as the user aligns and cleans up the data. This iterative process of inte-
grating the data while constructing useful visualizations is desirable when the
user is unfamiliar with the data at the beginning—a common case—and wishes
to get immediate value out of the data without having to spend the overhead of
completely and perfectly integrating the data first.

A user study on Potluck indicated that it was usable and learnable, and elic-
ited excitement from programmers who, even with their programming skills,
previously had great difficulties performing data integration.

Keywords: mash up, drag and drop, faceted browsing, simultaneous editing,
ontology alignment, end-user programming, semantic web, RDF.

1	 Introduction
The construction of a Web 2.0 mash-up site is typically done by programmers.
In this paper, we introduce Potluck, a tool that lets casual users—non-program-
mers—make mash-ups by themselves:

Potluck allows the user to merge fields from different data sources, so that •	
they are treated identically for sorting, filtering, and visualization. Fields are
merged using simple drag and drop of field names.
Potluck provides an efficient means for the user to clean up data syntactically, •	
homogenize data formats, and extract fields syntactically embedded within ex-
isting fields, all through the application of simultaneous editing [9].
Potluck supports faceted browsing [19] to let users explore and identify subsets •	
of data of interest or subsets of data that need alignment and clean up.

We conducted a user study of Potluck and report the results here, which show that
Potluck is a viable mash up solution for casual users and that it even has features
desired by programmers.

In contrast, today’s mash-up construction can only be done by programmers us-
ing complex technologies as it involves many technical challenges, particularly:

scraping data from the original sites, where it may be hidden behind complex •	
queries and web templates;
aligning the original sites’ data into a single coherent data model; and•	
creating an effective visualization of the merged data.•	

These challenges are only worth to overcome for mash-ups that will appeal to
many people, and they prevent the construction of mash-ups that are personal
or narrow in appeal, serving only a few users and giving little return on invest-
ment of efforts and resources. For example, a high-school student writing a term
report on the knowledge and use of mycology (mushrooms) among Polynesian
tribes will be unlikely to find a mash-up site containing data on both mycology
as well as Polynesians. She will also unlikely find enough resources (money and
programming skills) to get such a site built quickly enough to meet her deadline,
if ever built at all. The long tail of mash-up needs is thus left unanswered.

2	 Scenario
Before describing the user interface of Potluck, we motivate it with a scenario
that illustrates various idiosyncrasies of personal mash-up construction. Let us be
optimistic that within a decade, the Semantic Web will be prevalent and RDF data
will be everywhere. This scenario argues that even in this future world, users will
still face problems making mash-ups between data sources.

In 2017, a historian named Henry is documenting the first cases of a rare genet-
ic disease called GD726. These first cases occurred in the Valentine family in the
1820s. He wants to include in his final report a genealogical tree of the Valentine
family, annotated with the disease’s infliction, as well as a comprehensive table of
the Valentines’ data in an appendix.

Like most historians, Henry is not a programmer but he is experienced in col-
lecting and managing data in his professional work. The proliferation of RDF
means that Henry does not need programming skills to scrape HTML himself: all
the information needed for his research has been converted into RDF by various
independent organizations and individuals, both professionals and enthusiasts.
Henry thinks it would be trivial to simply pool the RDF together and call it done.

Henry tracks down various birth certificate issuing offices and death certificate
issuing offices where the Valentines lived for their RDF data. He notes that some
offices use dc:date in their data to mean “birth date,” some to mean “death
date,” and some “certificate issuing date.” It would be disastrous to consider all
the dc:dates the same even if the same predicate URI is used.

Henry also tracks down hospital records, which contain hospital:tod
(short for “time of death”). Hence, hospital:tod is equivalent to some of the
dc:dates. It would be hard to match hospital:tod with dc:date based on
string analysis alone, yet match for some of the cases only.

The records all have geographical location names, but these names are not
fully qualified. Those responsible for digitizing them thought that since all loca-
tions were within their country, there was no need to include the country name.
As a consequence, Henry needs to append the country name to the many location
names in order to map them.

People’s names are encoded in two different forms: “first-name last-name” in
some data sets and “last-name, first-name” in others. Nick names are also present
(e.g., “Bill” instead of “William”, and “Vicky” instead of “Victoria”).

The hospital records also pose problems. While most of their admittance dates
are in ISO 8601 format, a few are of the kind “Easter Day 1824.” Such sloppiness
has been observed in industrial and institutional databases, and should be ex-
pected on the Semantic Web.

Despite all these problems, there is one good thing about the data: Henry can
reliably get the mother and father of each Valentine through the gen:mother
and gen:father predicates, which seem to be very widely adopted. This helps
Henry construct a genealogical tree visualization.

However, as males and females both have equal chance of passing on GD726,
Henry wants to treat gen:mother and gen:father the same while tracing the
disease through the family. Unfortunately, adding an owl:sameAs equivalence
between those two predicates will break his genealogical tree.

While all parties involved in this scenario acted logically and responsibly, Hen-
ry still ends up with a mess of RDF. To fix up the data, Henry must be able to:

Merge •	 dc:dates into several groups (the birth dates and the death dates) even
though they all use the same predicate URI. This requires distinguishing the
fields by their origins rather than just by their URIs.
Merge •	 gen:mother and gen:father together in some situations while keep-
ing them separate in other situations. This precludes the simple approach of
adding owl:sameAs statements in the data model to implement equivalences.
Edit the data efficiently to unify its syntax.•	
Fix up the data iteratively as he learns more and more about the data.•	

3	 User Interface
We now describe Potluck’s user interface, showing how it addresses the problems
in the scenario above. The reader is encouraged to view a screencast to understand
Potluck’s interactivity: http://simile.mit.edu/potluck/.

Figure 1 shows the starting screen of Potluck where the user can paste in several
URLs of Exhibit-powered web pages and click Mix Data. This results in Figure 2,
which lists data records from the original web pages. The records are interleaved
by origins—the pages from which they have been extracted—to ensure that some
records of each data set are always visible.

Fields are rendered as field tags: , , and . Field tags are color-
coded to indicate their origins: blue from one source and pink from another in Fig-
ure 2. Three core fields, label, type, and origin, are automatically assigned
to all records and their tags are colored gray. Fields from different origins having
the same name are considered different. For example, while means office
phone, might mean secretary’s phone. Or more dangerously, dc:date in
the scenario (in section 2) has several distinct meanings. These semantic differ-
ences, subtle or significant, might or might not be important to one particular user
at one particular moment in time. Keeping the fields apart rather than automati-

Figure 1. The starting screen
of Potluck takes URLs to
Exhibit-powered web pages.
Clicking Mix Data yields the
mixed data in a screen like
Figure 2.

Figure 2. Potluck’s user interface shows data that has just been mixed together but not yet
processed by the user. Fields are rendered as draggable “field tags,” color-coded to indicate
their origins. There are two drop target areas for creating columns and facets.

cally merging them together allows the user to make the decision whether or not
to merge.

Creating columns and facets. A field tag can be dragged and dropped onto
the gray column to the left (Figure 2) to create a new column listing that field, or
onto the gray box to the right to create a facet for filtering by that field. Figure 3
shows a newly created column. A column or facet can be moved by dragging its
field tag and dropping the tag between other columns or facets. Deleting a column
or facet (by clicking its) removes the column or facet from the display but does
not delete the corresponding field’s data.

Merging fields. A field tag can be dropped onto an existing column or facet in
order to make that column or facet contain
data for both the original field and the new-
ly dropped field. Such an operation creates
a merged field, whose field tag is rendered
as a visual juxtaposition of the original tags,
taking on a pill-shaped form .
Figure 4 shows several columns and facets
of merged fields. Merged field tags can be
dragged and dropped just like elemental
field tags can in order to create new col-
umns and facets, or to merge into other ex-
isting columns and facets.

Creating a merged field does not disturb
the elemental fields. Thus, in the scenario,
it would be easy to have gen:mother
and gen:father merged together for one
purpose while keeping them separate for
another purpose, all at the same time. Fur-
thermore, the merging operation is not tran-
sitive, so that, say, merging fields mother
and father together (to mean parent)
and then mother and grandmother to-
gether (to mean female ancestor) does
not force all three fields to be merged into
mother/father/grandmother.

Simultaneous editing. The edit link next
to each field value opens up the Simultane-
ous Editing dialog box where the values of
that field can be edited en masse (Figure 5).
The concept of simultaneous editing origi-
nated from LAPIS [9], a text editor that dis-
plays several keyboard cursors simultane-
ously on a text document, generalizes the
user’s editing actions at one cursor, and ap-
plies them to the text at the rest of the cur-

Figure 3. Potluck renders a new col-
umn to the left when is dropped
into the New Column drop target.
Since the second record is not from
the same origin as the dropped field, its
cell in that column shows .

sors. Based on the user’s mouse clicks, LAPIS guesses how to divide the text docu-
ment into records (often into lines or paragraphs) and where the cursors should
be placed within those records (e.g., after the second word of the third sentence in
each paragraph). Whereas LAPIS has to guess what a record is for the purpose of
simultaneous editing, Potluck already has the field values conveniently separate.
Potluck groups field values into columns by structural similarity, e.g., the phone
numbers in the second column all have area code 212. These columns serve to
visually separate out values of different forms, call out outliers (such as “Easter
Day 1824” in the scenario), and let the user edit different forms differently. The
user can click on any field value to give it keyboard focus, and editing changes
made to it are applied to other values in the same column in a similar fashion.
The multiple cursors in Figure 5 give visual feedback of the simultaneous editing
operations in progress.

If a value appears in several records it is shown in only one entry in the dialog
box. In the scenario, if the nickname “Bill” appears in three records, the user can

Figure 4. A screen shot of Potluck showing several columns and facets of merged fields.
The records’ details have been collapsed to make space for the columns.

click on its single entry in the dialog box, set the checkbox Edit this value sepa-
rately from the others, and change it to “William” to correct all three records.

Simultaneous editing is useful for correcting inconsistencies between data sets
that occur many times, such as prefixing area codes to phone numbers and wrap-
ping existing area codes in parentheses. It is also useful for reformatting a field,
such as changing “first-name last-name” into “last-name, first-name”, and for
making a new field out of an existing field, such as extracting building numbers
(32) from within office numbers (32-582).

Faceted browsing [19] is a browsing paradigm in which a set of records can be
filtered progressively along several dimensions in any arbitrary order. For exam-
ple, a set of recipes can be filtered by picking an ingredient first, a cooking method
second, and a cuisine finally, or by picking a cuisine first, then an ingredient, and
a cooking method finally depending on which order suits the user best. Because
the data Potluck handles is often multidimensional, faceted browsing is useful
in Potluck as it is designed for exploring multidimensional data in flexible, user-
controllable ways. Exploration is needed for identifying and selecting out just the
subset of data that is useful as well as for isolating on records that need cleaning
up. All faceted browsers so far assume that they are fed data sets that have already
been cleaned and made coherent using other tools. In Potluck, we extended fac-
eted browsing for the mash-up task in which data arrives from many sources.

If within a facet there are records for which the corresponding field is missing,
the facet explicitly shows a choice for filtering to those records (Figure 6). This vi-
sual element, not present in conventional faceted browsing interfaces, also serves
to remind the user that, if that field is an elemental field instead of a merged field,
the field is not present for records in other data sets.

While working with multiple data sets at the same time, it can be easy to forget
that an elemental field from one data set does not exist in the others. Whenever a
facet choice causes all records from an origin to be filtered out completely, that

Figure 5. Potluck’s Simultaneous Editing dialog box lets the user change several similar
values simultaneously by editing any one of them. Multiple keyboard cursors are shown
and any editing change to the focused value is immediately reflected in the other values.

origin remains in the origin facet and a message is popped up drawing the user’s
attention to it (Figure 7).

Visualizations. Potluck currently provides two visualizations: a tabular view
and a map view. We have discussed the tabular view extensively while the map
view can be seen in the screencast accompanying this paper. Any field containing
street address or as latitude/longitude pair can be dropped onto the map view to
plot the records without doing any programming.

Miscellany. Potluck provides drop down menus on left clicks as alternatives to
drag and drop in order to increase the likelihood that the user succeeds at finding
some way to accomplish a task. The browser’s Back and Forward buttons can be
used to redo and undo user actions. Like contemporary highly interactive web in-
terfaces, Potluck also shows the most recently done or undone action and provides
a link to undo or redo it.

4	 Implementation
Potluck consists of two components: a server-side component implemented as a
Java servlet, responsible for retrieving the data within the Exhibit-embedding web
pages to mix; and a client-side component implemented in Javascript on top of the
Exhibit API [5], responsible for all the user interface interactivity.

Merged fields are implemented as query unions: when the values of a merged
field are requested, the values of each elemental field in that merged field are re-
turned in a single result set. No equivalence is added into the data model so that
merging operations will not be transitive and so that the original elemental fields
can still be used in isolation even after they have been merged.

Simultaneous editing is implemented in Javascript. Each field value is parsed
into a sequence of features. Features are runs of digits, of letters, or of white
spaces, or individual punctuation marks and symbols. For example, “733-3647”
is broken down into three features: the run of digits “733”, the symbol “-”, and

Figure 6. If inside a facet there are
records for which the correspond-
ing field is missing, the facet shows

 as a choice so that
the user can get to those records.

Figure 7. The origin facet does not remove
choices for which there are no records. More-
over, it pops up messages to call the user’s at-
tention to those filtered out origins.

the run of digits “3647”. Field values are then clustered into columns by greedily
aligning these sequences of features.

As the user moves the keyboard cursor, makes selections, and edits the text of
one value, the cursor positions are generalized to be relative to the features of the
field value being edited (e.g., “second character from the beginning of the third
last feature”), and then those generalized cursor positions are turned into absolute
cursor positions of each of the other field values in the same cluster and used to
apply the edit. Secondary cursors are rendered using colored elements.

As the clipboard Cut and Paste operations cannot be reliably detected in web
browsers, we must support cut-and-paste in the simultaneous editing paradigm
using a trick. When some text is inserted, we check if that same piece of text has
previously been deleted in one edit action and assume that what has taken place
is a cut-and-paste operation. Note that this trick works only for cut-and-paste, not
copy-and-paste.

5	 Evaluation
We conducted a user study on Potluck to ascertain whether people could learn
how to use Potluck as well as to discover usability problems. We also wanted to
observe how people use Potluck in an open-ended task using their own judgement
about which fields to merge and edit, and how to display them.

5.1	 Design and Procedure

This study consists of two tasks: a structured task during which the subjects per-
formed simple steps to familiarize themselves with Potluck, and an unstructured
task during which the subjects performed an open ended task based on the skills
they had just acquired.

In Task #1, subjects browsed two web pages containing information about 92
people in a lab and 33 people in another lab, and answered questions about these
people in ways that required the pages’ faceted browsing features (e.g., “how
many people are in the Gates tower?”). This warm-up exercise let the subjects
learn about the data and about faceted browsing. Then the subjects were asked to
use Potluck to mix the data in those pages and to achieve the following goals:

create a column listing the buildings where people work and make sure the •	
column is filled in with information for people from both labs;
create a column listing people’s phone numbers and edit them to have the form •	
(xxx) xxx-xxxx, using 617 for phone numbers without area code;
create a column listing people’s job titles;•	
create a facet of people’s job titles, use it to filter for people in directing posi-•	
tions (directors and co-directors), and determine how many such people there
are in each lab; and
create a column of people’s last names and sort it in ascending order.•	

These instructions were not worded in low-level details (e.g., click this button) so
to allow the subjects the opportunities to learn how to use Potluck’s user interface
by themselves and to allow us the chance to discover usability problems.

In Task #2, the subjects were asked to use Potluck to mix data from two Exhib-
it-powered web pages of 40 + 55 publications and then mock up a single web page
where hypothetical visitors could conveniently sort and filter through all of those
publications as if the data came from a single source. The subjects were left to
their own discretion to decide which columns and facets to create, although some
examples were given in case the subjects were not familiar with the domain.

5.2	 Participants and Apparatus

Six subjects (2 male, 4 female) from a university community were recruited by
sending an e-mail message to a mailing list and posting paper ads around our col-
lege campus. Four were younger than 30, and two older than 30. They were two
students (mechanical engineering and computer science), two researchers (applied
math and brain and cognitive science), a lawyer, and an applied math consultant.

We also recruited five subjects (1 male, 4 female) from our campus’ libraries,
who worked with data in their daily job. Two were in their 20s, one 30s, and two
40s. We wanted to observe if librarians, who have more experience working with
data, would use Potluck differently.

There were a total of 11 subjects, referred to as G1 to G6 from the general uni-
versity population and L1 to L5 from the libraries. All browsed the Web at least a
few times a day and used Firefox as one of their primary browsers.

Subjects received $10 each for participating in a 30 – 45 minute study session.
All sessions were conducted by one investigator on a single computer (Pentium 4
2.53GHz, 1.00GB) with an 18” LCD flat panel at 1600×1200 resolution in 32-bit
color and a Dell two-button mouse with wheel, running Microsoft Windows XP.
The study facilitator observed the subjects and took written notes.

5.4	 Results

All subjects were able to learn Potluck’s user interface with little guidance and to
complete the user study’s tasks within 45 minutes. We now report the results in
more details and point out usability issues to address in the future.

Columns. Nine subjects out of 11 used only drag and drop to create columns.
This indicates that the relevant visual cues may be sufficiently strong. One of the
other two subjects, G5, used the Create Column menu command at first but ad-
opted drag and drop later. L1 used only the menu command.

G5 and L5 had difficulty understanding that dragging a field tag to create a
column automatically filled up the whole column with data wherever the field was
available. They continued to drag the same field tag out again and again for each
row, paying no attention to the data already shown in the column. We can improve
the drag feedback to better indicate that the whole field is being dragged, such as
showing ghosted images of several field values near the mouse pointer.

All except one subject merged columns using drag and drop; G2 used the cor-
responding menu command. G3 and G4 expected the phone fields from both
sources in Task #1 to be merged automatically. We can make Potluck suggest
such merging if the field names match precisely.

Most subjects merged position and title together into one column, but one
subject also included group to more fully qualify position. This was because
most title values were more specific than most position values (e.g., “Codi-
rector of Marketing” vs. “professor”). This operation was actually not what the
subject intended (as he verbalized): the operation performed a set union of two
fields instead of a string concatenation. But as Potluck rendered the group value
after the position value for each record (e.g., “professor, computer architec-
ture”), the visual outcome looked right and the subject was contented. However,
sorting on this merged field would produce random orders and a facet created
out of this merged field would list the group and position values separately,
not paired together. Potluck should support string concatenation and suggest it as
an alternative to merging whenever the two fields involved come from the same
source. Note that in the scenario in section 2, concatenation is probably not the
desired choice when the gen:mother field is dropped onto the gen:father field
even though both come from the same source.

Facets. All subjects used drag and drop to create facets. Two subjects initially
created facets using the corresponding menu command, but they discovered the
drag and drop alternative and did not revert to the menu. Merging facets was done
solely using drag and drop. We note that the field tags on facets do not offer any
menu (an oversight in our implementation); only field tags in the details column
and in the column headers support menus.

Some subjects tended to drag already merged field tags from columns to create
facets while the others dragged elemental field tags from the Details column to
create merged facets. The latter behavior forced the user to re-merge fields she has
already merged; this is both inefficient and error-prone as some subjects did forget
to re-merge fields. Potluck should have automatically suggested or defaulted to
the merged field whenever an elemental field that has been merged is used.

G4 did not initially merge facets in Task #1 to filter for people in directing posi-
tions. Instead, he created two facets, position and title, from the two sources
separately and used to achieve the goal. In either facet, he selected
directing positions as well as so that records in the other source
were not excluded. This required on his part deeper understanding of how faceted
browsing worked. When asked to achieve the goal without using ,
he discovered that he could merge facets.

Simultaneous editing. All subjects were able to edit several phone numbers
using the simultaneous editing feature. G1 anticipated this feature even before
clicking edit, asking out loud, “can I edit them all together?” She later used the
feature to delete first names from people’s full names to get a field of last names.
This action properly utilized the simultaneous editing feature’s power but de-
stroyed data (the first names). We can make Potluck alert the user of this loss and
offer a convenient way to apply the edit on a copy of the original field instead.

G4 tried to move the leading “A” from publication titles to the end (e.g., “Tale
of Two Cities, A”) using simultaneous editing (a reasonable goal) but the facilita-
tor explained that the feature did not support that case. L2 and G6 tried to swap
first names and last names so that publications could be sorted by their authors’

last names. L2 selected a last name in the simultaneous editing dialog box and
dragged it to the front of the corresponding first name; unfortunately, a bug pre-
vented this from working. G6 used keyboard shortcuts for cut-and-paste and suc-
ceeded. These subjects’ actions indicated some intuitiveness in using cut-and-
paste and drag-and-drop for simultaneous editing.

G3 expressed that she did not want to see all phone numbers in the simultane-
ous editing dialog box but only their templates. G5 and L3 edited only the first
group of phone numbers, and L4 edited only the first and third groups, neglecting
the groups that were not scrolled into view. To avoid such oversight, we will need
to make it more apparent which pieces of data an edit does and does not affect.

Librarians vs. general subjects. Among the five librarians, four were catalog-
ers (who characterize physical artifacts such as books and enter their metadata
into databases), and one was a programmer responsible for integrating large data
sets. While the catalogers showed no significant difference with the general sub-
jects in their use of Potluck, the programmer, L1, was clearly an outlier: he created
10 columns and 7 facets in total. He was very excited about the user interface of
Potluck and described his data integration work, consisting of manual data entry
and Perl scripting, to be tedious and painful.

G6, who also needed programming skills to deal with some data for his work,
expressed equal enthusiasm for Potluck. He used simultaneous editing to swap
first name and last name. Thus, while there was no noticeable difference between
the subjects from the general population and the librarians, who purportedly work
with data and metadata on a daily basis, there was a difference between program-
mers and non-programmers in how much they appreciated Potluck. Programmers,
who have encountered difficulties in dealing with data even with their program-
ming skills, appreciated Potluck more. Non-programmers accomplished the tasks
in the study equally well, but were not equally excited perhaps because there
was not enough reusable data on the Web for them to feel the need to mash up
data themselves. However, when there will be more reusable data in the future,
interfaces like that of Potluck have the potential to level the playing field for non-
programmers, making them as effective as programmers for the task of mashing
up data.

6	 Related Work
Piggy Bank [6] and Tabulator [3] illustrate how personal mash-up tools with ge-
neric functionality can let individual Web users satisfy their own unique combina-
tions of mash-up needs. While Tabulator consumes only RDF data, Piggy Bank can
also run screen scrapers to extract data from HTML pages—a design to overcome
the current shortage of RDF data on the Web. While the proliferation of structured
data on the Web will hopefully eliminate the need to scrape fragile HTML, the data
still has to be cleaned up and aligned before it can appear coherent to the user and
thus become useful. The amount of broken HTML code at the present forebodes
messy real-world RDF in the future, broken perhaps not just in syntax but also in
semantics. Personal mash-up tools like Piggy Bank and Tabulator have largely ig-
nored this problem, assuming that once data is in RDF, conventional visualizations

and browsing techniques previously designed to work on individual coherent data
sets can be applied readily on mashed up data.

An exception to these tools is WebScripter [18], which lets casual users create
coherent reports out of data collected from several sources, offering data align-
ment features for that purpose. Although the desired target audience is casual us-
ers, WebScripter’s interface is still expert-oriented, full of jargon such as “DAML”,
“class”, “instance”, etc. WebScripter offers no feature for fixing data at the syn-
tactic level (e.g., swapping first name and last name) and it has not been formally
evaluated on actual users.

There are also web applications such as Dapper [1] that let users scrape exist-
ing web sites for data and serve that data up in structured formats as “feeds,” or
make use of data already scraped by other people. These web applications still
offer very limited capabilities for cleaning up data, integrating data in different
schemas, and constructing rich visualizations. Those that offer more capabilities,
such as Ning [2], require programming.

In research, data alignment tools have been built mostly for experts and re-
search has focused primarily on data modeling theories and automated agents
for ontology alignment [7, 8, 10, 11, 12, 13, 14, 16] rather than on user inter-
faces for making practical use of aggregated data. Because they specialize only in
data alignment, they implicitly assume that users work with the data in delineated
stages, first aligning the data and cleaning it up, and then making use of that
data in some other tools. We believe that users actually work iteratively on data,
switching from aligning and clean up the data to using the data, and back, as they
get to know the data better over time. Furthermore, these tools tend to work on
ontological abstractions, basing their interface interactions on concepts such as
classes. Casual users have little knowledge about data modeling and ontological
abstractions, and little interest in learning.

Faceted browsing was pioneered by Yee et. al. [19] and recently adopted by the
Semantic Web research community [4, 15, 17]. We extended faceted browsing to
allow selection of records that are missing data. Simultaneous editing has been
researched previously [9] and we extended it with the automatic clustering of field
values into columns.

7	 Conclusion
In this paper, we presented Potluck, a tool for casual users—those without pro-
gramming skills and data modeling expertise—to mash up data by themselves.
Potluck is novel in its use of drag and drop for merging fields, its integration
and extension of the faceted browsing paradigm for focusing on subsets of data
to align, and its application of the simultaneous editing technique for cleaning
up data syntactically. Potluck also lets the user construct rich visualizations of
data in-place as the user aligns and cleans up the data. This iterative process of
integrating the data while constructing useful visualizations is desirable when the
user is unfamiliar with the data at the beginning—a common case—and wishes to
get immediate value out of the data without having to spend the overhead of com-
pletely and perfectly integrating the data first. A user study on Potluck indicated

that it was usable and learnable, and solicited excitement from programmers who,
even with their programming skills, had great difficulties in integrating data.

8	 Acknowledgements
We are grateful to the user study subjects for their time and their feedback. We
thank the members of the Haystack group, the User Interface Design group, and
the Simile team for their insightful comments on our work. This work was sup-
ported by the National Science Foundation (under award number IIS-0447800),
by Nokia, and by the Biomedical Informatics Research Network. Any opinions,
findings, conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the funders.

9	 References
[1]	 Dapper: The Data Mapper. http://www.dapper.net/.
[2]	 Ning - Create your own Social Networks! http://www.ning.com/.
[3]	 Berners-Lee, T., et. al. Tabulator: Exploring and Analyzing linked data on the Semantic

Web. SWUI 2006.
[4]	 Hildebrand, M. and L. Hardman. /facet: A Browser for Heterogeneous Semantic Web

Repositories. ISWC 2006.
[5]	 Huynh, D., D. Karger, and R. Miller. Exhibit: Lightweight Structured Data Publishing.

WWW 2007.
[6]	 Huynh, D., S. Mazzocchi, D. Karger. Piggy Bank: Experience the Semantic Web Inside

Your Web Browser. ISWC 2005.
[7]	 Kalfoglou, Y. and M. Schorlemmer. Ontology Mapping: The State of the Art. The

Knowledge Engineering Review, Volume 18, Issue 1, 2003.
[8]	 Laera, L., V. Tamma, J. Euzenat, T. Bench-Capon, and T. Payne. Reaching Agreement

over Ontology Alignments. ISWC 2006.
[9]	 Miller, R. and B. Myers. Multiple Selections in Smart Text Editing. IUI 2002.
[10]	Mitra, P., N. F. Noy, and A. R. Jaiswal. Ontology Mapping Discovery with Uncertainty.

ISWC 2004.
[11]	 Mocan, A., E. Cimpian, M. Kerrigan. Formal Model for Ontology Mapping Creation.

ISWC 2006.
[12]	Noy, N. F. and M. A. Musen. SMART: Automated Support for Ontology Merging and

Alignment. Workshop on Knowledge Acquisition, Modeling and Management, 1999.
[13]	Noy, N. F. Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD

Record, Special Issue on Semantic Integration, 33 (4), December, 2004.
[14]	Noy, N. F., M. A. Musen. The PROMPT Suite: Interactive Tools For Ontology Merging

And Mapping. International Journal of Human-Computer Studies, 2003.
[15]	Oren, E., R. Delbru, and S. Decker. Extending faceted navigation for RDF data. ISWC

2006.
[16]	Scharffe, F. Schema Mappings for the Web. ISWC 2006.
[17]	 schraefel, m. c., D. Smith, A. Russel, A. Owens, C. Harris, and M. Wilson. The mSpace

Classical Music Explorer: Improving Access to Classical Music for Real People. Music-
Network Open Workshop, Integration of Music in Multimedia Applications, 2005.

[18]	Yan, B., M. Frank, P. Szekely, R. Neches, and J. Lopez. WebScripter: Grass-roots Ontol-
ogy Alignment via End-User Report Creation. ISWC 2003.

[19]	Yee, P., K. Swearingen, K. Li, and M. Hearst. Faceted Metadata for Image Search and
Browsing. CHI 2003.

