
ABSTRACT
It is no surprise that Semantic Web researchers and enthusiasts
are excited to publish and accumulate semi-structured data on the
Web. Beyond our community, however, we see many authors with
structured data who want to publish it in rich browsing interfaces.
These small-time authors are similar to early enthusiasts of the
Web, simply excited by the opportunity to use a new medium to
share information that they care about. For these users, we propose
Exhibit, a lightweight structured data publishing framework that
duplicates many of the desirable properties that contributed to the
original growth of the Web. We argue that appealing to this segment
of the Web population—addressing their publishing needs at very
low cost—lets us leverage their labor to put structure on content
that otherwise would be published in hand-authored HTML, and
thus very hard to harvest automatically.

Categories and Subject Descriptors
H5.2 [Information interfaces and presentation]:
 User Interfaces – Graphical user interfaces (GUI).
H5.4 [Information interfaces and presentation]:
 Hypertext/Hypermedia – User issues.

General Terms
Design, Human Factors.

Keywords
Web, publish, filter, sort, faceted browsing, dynamic query, HTML,
DOM, generated UI, lens, view, template.

1. INTRODUCTION
This paper describes Exhibit, a very lightweight AJAX framework
that lets relatively unskilled individuals create web pages contain-
ing rich, dynamic visualizations of structured data and supporting
faceted browsing and sorting on that structured data. With passing
knowledge of HTML, people can use Exhibit to quickly build struc-
tured data-centric web pages and unintentionally contribute to the
Semantic Web without having to install, configure, and maintain
any database, and without having to write a single line of server-
side code. They only have to be passionate about some structured
data that they wish to publish and Exhibit will make publishing

Exhibit: Lightweight Structured Data Publishing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the authors.
WWW2007, May 8–12, 2007, Banff, Canada.

David F. Huynh, David R. Karger, Robert C. Miller
MIT Computer Science and Artificial Intelligence Laboratory,

The Stata Center, Building 32, 32 Vassar Street, Cambridge, MA 02139, USA
{dfhuynh, karger, rcm}@csail.mit.edu

that structured data almost as easy as publishing unstructured docu-
ments.

1.1 Motivation
A search in Google for “breakfast cereals” turns up as the first hit
not a commercial or corporate site, but rather, Topher’s Breakfast
Cereal Character Guide [9], a homemade site run by a single person.
Topher’s site has won media honors and recognitions since 1997,
and has a high page rank as a result. But Topher’s site, like web
sites of many early adopters of the Web, still looks and behaves like
it was made in 1997, rather than in 2006. While most commercial
and institutional sites are now database-backed, serving up sophis-
ticated browsing, searching, and visualizing user interfaces, home-
made sites still consist of small sets of static HTML pages, lacking
advanced features that web users have now come to expect.

Consider yet other authors:
• A professor wants to let visitors to his web site sort his 97 publi-

cations by year or group them by research projects, conferences,
or co-authors.

• A history high-school teacher wants to showcase 57 important
discoveries of bronze age tools to her students through a web
site that renders both maps and time lines.

• A group of politically conscious citizens have observed unset-
tling patterns in the coming election and would like to report
their evidence in illuminating ways for the whole world to see.

For these authors, putting up RDF/XML data files will not meet their
goals because few users have tools able to access that data. Further-
more, the authors may be as interested in the precise presentation
of their data as they are in the data itself—they want to give users
the right pathways for structured browsing and rich visualizations.
But even to support a basic feature like sorting, they need to cre-
ate a database, design a schema, design the user interface, write
server-side code, write client-side code, and make sure that their
three-tier web application—overflowing with technical jargon like
SQL, PHP, CSS, and straddling between the web server and many
different browsers and platforms—works as expected.

On the early Web, it was easy for enthusiastic but relatively un-
skilled individuals to stake out territories on the Web by copying
other web pages and inserting their own data. These homestead-
ers were crucial contributors to the early growth of the Web. Their
homesteads slowly grew in size and complexity, with each home-
steader incrementally acquiring specific additional skills needed
to meet their growing ambitions for rich presentation. In contrast,
today’s hopeful homesteaders must pick up a whole alphabet soup
of tools before they can begin publishing structured content. It is no
wonder that structured browsing and rich presentations are offered
mostly by commercial sites and large institutions who can afford
web site engineering costs, or by the few technically-savvy who
have the whole package of web technologies under their belts.

istrative content authors embed them by adding a few tags to their
HTML documents, without touching the server..

There have also been numerous pieces of research work on
faceted browsing [13, 16, 17, 18, 20], many from the Semantic
Web community. While Exhibit provides a faceted browsing inter-
face, that is not our contribution in this paper. The interface sim-
ply serves to illustrate user interface riches made possible without
server reconfiguration when the structured data within a web page
is separated from its presentational elements.

On the authoring structured data front, traditional spreadsheet
software satisfy this need of non-technical users. Software for
making small databases, such as Microsoft Access, might be user-
friendly enough for some people. However, the data created by
these applications cannot be exported out and published as a dy-
namic web page or web site.

Wikis let authors input structured data through custom templates,
and the Semantic MediaWiki extension [19] extends MediaWiki’s
wikitext syntax to allow authors to enter arbitrary Semantic Web
annotations into wiki pages. These tools require installation, setup,
and maintenance—start-up costs that Exhibit does not have.

DabbleDB [2], Google Base [3], and the likes let people enter or
upload structured data into online databases owned and managed
by the respective companies. The flexibility in personalizing the
presentation of that data on these web services cannot match the
level of personalization achievable by coding HTML. Furthermore,
not every author likes to publish her own data through another
company’s web site.

Existing applications for generating web sites that support struc-
tured browsing, e.g., online photo albums, are all domain-specific.
Exhibit is domain-independent. These applications work by pro-
cessing data supplied by the author and churning out whole web
sites containing several web pages hard-wired together. The author
can select one of several themes, but there is little further personal-
ization of the output that can be done compared to Exhibit.

3. INTERFACE DESIGN
As Exhibit is a publishing framework, it has two interfaces: one
facing every user of the published information and one facing the
author. A web page that embeds Exhibit will be referred to as an
exhibit in lowercase hereafter.

3.1 User Interface
An exhibit looks just like any other web page, except that it has
more advanced features mostly seen on commercial and institu-
tional sites. Figure 1 and Figure 2 show two exhibits covering dif-
ferent types of information. Each is styled differently, but there are
several common elements, as described below.

Exhibit’s user interface consists of three panels: the browse
panel, the view panel, and the control panel, whose locations on
the page are controlled by the author. The view panel displays a
collection of items in one or more switchable views. The exhibit
in Figure 1 is configured by the author to support two different
views of the same data: THUMBNAILS and TIMELINE. THUMBNAILS
is currently selected by the user and it is showing. The exhibit in
Figure 2 is configured to support six views, and the BIRTH PLACES
view is currently showing. Each kind of view—map, timeline, ta-
ble, thumbnail, and tile—supports its own configuration settings.

1.2 Approach
We argue that with the right tools, people who want to publish
structured data—whether or not they care about the Semantic
Web—will be motivated and able to adopt the rich presentations
offered by our tools, and will thus slip into becoming homesteaders
of the Semantic Web alongside Semantic Web enthusiasts.

Our Exhibit framework duplicates several key features that en-
abled the growth of the original Web:
• No installation, configuration, or maintenance. Once a web

server was up, anyone could “join the web” simply by putting an
HTML file on the server. Similarly with Exhibit, an author joins
the Semantic Web simply by putting an HTML file and a data file
on their web server, and their site’s visitors immediately experi-
ence that data through a rich browsing interface.

• Copy and paste evolution. Any author who wishes to publish
their data can do so simply by copying someone else’s Exhibit
files and replacing specific elements with their own data. The
replacement can be done by simple pattern matching, without
any understanding of the formal syntax of the Exhibit system.

• Incremental complexity. As authors get more excited about the
system, they can add additional functionality and complexity in
small steps—they never need to swallow a whole new set of
ideas in one dose. At the same time, there are few limits placed
on what creative users can do with their material.

• No network effect required. Unlike social networking sites,
Exhibit provides immediate benefits to its first adopter, regard-
less of others’ actions. It simplifies the author’s management of
their information collection, and offers visitors using existing
web browsers a better interface to that collection than can be
built by typical web authoring tools with the same efforts.

Our contribution is two-fold: Exhibit (1) offers small-scale
authors access to the same types of rich interactive browsing of
structured content currently available only on large organizational
web sites and (2) gives such authors significant incentives with-
out significant barriers to adopt the technology, and as a side effect
makes their content available in structured form, where it can be
contributes to the growth of the Semantic Web.

2. RELATED WORK
From one point of view, Exhibit is designed to enliven home-made
web pages with advanced features such as sorting and filtering, and
richer visualizations including time lines and maps. Here, related
work includes Chickenfoot [12] and Greasemonkey [5], which let
users write scripts to modify web pages being displayed in their
browsers to enhance the pages for their personal use; and Sifter
[15], which automatically extracts items from a sequence of related
pages and offers a faceted browsing interface on those items right
within the original web page. While these efforts expect users to
do the work needed to augment web pages, Exhibit targets authors.
Compared to users, authors have more expertise about their own
data and care more about organizing and presenting it well.

Web widgets such as Google Maps [4] and Timeline [7] let au-
thors offer rich visualizations and interactions on their sites. These
widgets have been used far and wide, but only by individuals who
run their own servers and understand the Javascript programming
necessary to integrate the widgets with their data. Exhibit makes
use of these widgets itself, but lets non-programming non-admin-

Figure 2. A web page embedding Exhibit to show information about U.S. presidents in 6 ways, including maps, table, thumbnails,
and timelines.

Figure 1. A web page embedding Exhibit to show information about breakfast cereal characters. The information can be viewed as
thumbnails or on a timeline and filtered through a faceted browsing interface. Topher, the original author of the information, has
eagerly agreed to host this exhibit on his own web site.

The Google Maps [4] map in the BIRTH PLACES view is configured
to color-code its markers by the political parties of the presidents
being mapped. Although these settings are specified by the author,
some can be changed dynamically by the user (e.g., sorting order in
Figure 1). Exhibit’s user interface can be extended by third-parties’
views if the author chooses to included them.

Items can be presented differently in different views. Where
there is little space to render sufficient details in-place (e.g., on a
map), markers or links provide affordance for popping up bubbles
containing each item’s details (e.g., map bubble in Figure 2). The
rendition of each item contains a link for bookmarking it individu-
ally. Invoking this link later will load the exhibit and pop up a ren-
dition of the bookmarked item automatically.

The browse panel (left in Figure 1 and right in Figure 2) contains
facets by which users can filter the items in the view panel. This is

<html>
<head>
 <title>Topher’s Breakfast Cereal
 Character Guide</title>

 <link type=”text/javascript”
 rel=”exhibit/data” href=”cereal-characters.js” />

 <script type=”text/javascript”
 src=”http://simile.mit.edu/exhibit/api/exhibit-api.js”>
 </script>

</head>
<body>
 <table width=”100%”>
 <tr valign=”top”>
 <td width=”25%”>
 <div id=”exhibit-browse-panel”></div>
 </td>
 <td>
 <div id=”exhibit-control-panel”></div>
 <div id=”exhibit-view-panel”></div>
 </td>
 </tr>
 </table>
</div>
</body>
</html>

include Exhibit

link to one or more data files

declare
the exhibit’s panels
using predefined IDs
and lay them out

Figure 4. To create the web page in Figure 1, the author starts
with this boiler plate HTML code, which displays the charac-
ters in cereal-characters.js through the default lens that
lists property/value pairs.

Figure 3. An Exhibit JSON data file showing data for one break-
fast cereal character, which is encoded as property/value pairs.

{
 items: [
 { type: ‘Character’,
 label: ‘Trix Rabbit’,
 brand: ‘General Mills’,
 decade: 1960,
 country: [‘USA’, ‘Canada’],
 thumbnail: ‘images/trix-rabbit-thumb.png’,
 image: ‘images/trix-rabbit.png’,
 text: ‘First appearing on ...’
 },
 // ... more characters ...
]
}

a conventional dynamic query interface with preview counts. The
control panel is currently unused. In the future, it will host UI con-
trols that let the user manipulate the exhibit’s data and presentation
in more generic ways than the author has intended.

The reader is encouraged to visit http://simile.mit.edu/exhibit/ to
try out several live exhibits, including:
• Topher’s Breakfast Cereal Character Guide
• US Presidents
• Dinosaurs
• MIT Nobel Prize Winners
• The Kennedy Family

3.2 Author Interface
Making an exhibit like Figure 1 involves two tasks: authoring the
data and authoring the presentation. Both are iterated until the de-
sired result is achieved. This section briefly describes the publish-
ing process, leaving technical details to later sections.

3.2.1 Creating the Data
Exhibit currently can read data in its own JSON [6] format. The
data file for those breakfast cereal characters looks something like
Figure 3. The items’ data is coded as an array of objects containing
property/value pairs. Values can be strings, numbers, or booleans.
If a value is an array, then the corresponding item is considered to
have multiple values for that property. For instance, according to
Figure 3, the Trix Rabbit character is released in both the U.S. and
in Canada.

The author is mostly free to make up the names of the properties.
We will discuss the data model in the next major section.

Data for a single exhibit need not reside in a single file. It can
be split into multiple files for convenience. For example, a couple’s

recipes exhibit can store their data in two files: her-reci-
pes.json and his-recipes.json. The exhibit just needs to
load both.

Exhibit data files can be edited in any text editor. We
also offer a web service called Babel [1] through which
authors can convert various formats to the Exhibit JSON
format and even preview the results in a generic exhibit.
Babel can currently convert between RDF/XML, N3, Bib-
tex, Tab Separated Values, and Exhibit JSON. The reader
is encouraged to upload his or her own data to Babel,
or cut and paste rows of tab-separated values from a
spreadsheet into Babel, to experiment with Exhibit.

3.2.2 Creating the Presentation
The web page itself is just a regular HTML file that can
be created locally, iterated locally until satisfaction, and
then, if desired, uploaded together with the data files to
the web server. Figure 4 shows the initial HTML code
needed to start making the exhibit in Figure 1. This code
instantiates an Exhibit instance, loads it with the data
file referenced by the first <link> element, and config-
ures the exhibit’s view panel to show a tile view. The
tile view, by default, sorts all items in the exhibit by la-
bels and displays the top ten items using the default lens.
This lens shows property/value pairs for each item. A lot
of reasonable defaults are hardwired into Exhibit to give
the author some result with minimal initial work.

Figure 5. The author starts with the code in gray (from Figure 4), includes more and more of the code in black, and tweaks until
the desired result (Figure 1) is achieved (logo graphics and copyright omitted). Tweaking involves following online documentation
or just copying code from other existing exhibits. When more expressivity is needed than this declarative syntax allows for, a bit of
Javascript can be added (Figure 7).

<html>
<head>
 <title>Topher’s Breakfast Cereal Character Guide</title>
 <link href=”cereal-characters.js” type=”text/javascript” rel=”exhibit” />
 <script src=”http://simile.mit.edu/exhibit/api/exhibit-api.js?views=timeline”></script>

 <style>
 .thumbnail { margin: 0.5em; width: 120px; }
 .thumbnailContainer { overflow: hidden; height: 100px; text-align: center; }
 .caption { height: 4em; text-align: center; }
 </style>

</head>
<body>
 <table width=”100%”>
 <tr valign=”top”>
 <td width=”25%”>
 <div id=”exhibit-browse-panel” ex:facets=”.brand, .decade, .country, .form”></div>
 </td>
 <td>
 <div id=”exhibit-control-panel”></div>
 <div id=”exhibit-view-panel”>

 <table ex:role=”exhibit-lens” cellspacing=”5” style=”display: none;”>
 <tr>
 <td></td>
 <td>
 <h1 ex:content=”.label”></h1>
 <h2> </h2>
 <p ex:content=”.text”></p>
 <center><a ex:href-content=”.url” target=”new”>More...</center>
 </td>
 </tr>
 </table>

 <div ex:role=”exhibit-view”
 ex:viewClass=”Exhibit.ThumbnailView”
 ex:showAll=”true”
 ex:possibleOrders=”.brand, .decade, .form, .country”>

 <table ex:role=”exhibit-lens” class=”thumbnail”>
 <tr>
 <td valign=”bottom” class=”thumbnailContainer”>

 </td>
 </tr>
 <tr><td class=”caption” ex:content=”value”></td></tr>
 </table>
 </div>

 <div ex:role=”exhibit-view”
 ex:viewClass=”Exhibit.TimelineView”
 ex:start=”.decade”
 ex:marker=”.brand”
 ex:topBandIntervalPixels=”250”
 ex:bottomBandIntervalPixels=”400”
 ex:densityFactor=”1”></div>

 </div>
 </td>
 </tr>
 </table>
</div>
</body>
</html>

individual item’s
lens template

thumbnail view

timeline view

individual item’s
lens template, to be
used within the
thumbnail view

expression for retrieving starting
date/time of each item

expression for retrieving color-coding key
for each item’s marker on the timeline

style page layout,
lens templates,

Exhibit’s generated
UI elements

generate content dynamically
using Exhibit expressions

generate attributes dynamically
using Exhibit expressions

explicitly tell Exhibit to load
bulky external widgets like
map and time line

The author does not even need to write this initial HTML code
from scratch: it is trivial to copy this code from existing exhibits or
from online tutorials. This is how HTML pages are often made—by
copying existing pages, removing unwanted parts, and incremen-
tally improving until satisfaction. The declarative syntax of HTML,
the forgiving nature of web browsers and their reasonable defaults,
and the quick HTML edit/test cycle make HTML authoring easy. We
designed Exhibit to afford the same behavior.

Figure 5 shows the final HTML code needed to render the exhibit
in Figure 1 (logo graphics and copyright message omitted). The
additional code, in black, configures the facets in the browse panel,
the two views in the view panel, one all-purpose lens, and one lens
to be used in the THUMBNAILS view.

Making the presentation look better can also involve filling in
and fixing up the schema. Figure 6 shows how the plural label for
the type Character is declared so that plural labels in the UI, e.g.,
12 Characters, can be generated properly. The decade property val-
ues are declared to be dates instead of strings so that they can be
sorted as dates.

To change the schema, e.g., renaming a property, the author can
simply invoke the text editor’s Replace All command. Or if the data
is in a spreadsheet, she can just rename the corresponding column
header label. Saving old versions of the data involves making cop-
ies of the data files. Changing schema and versioning data might
not be as simple if databases were used.

Should more expressivity be required than the declarative syn-
tax allows for, a bit of Javascript code can be added to configure the
exhibit. Figure 7 shows how to configure a table view that contains
images and custom color-coded rows.

4. DATA MODEL
Although Exhibit data model instances are RDF graphs, but the ab-
stract Exhibit data model is a sub-model of RDF (as detailed be-
low). Hence, not all RDF data models can be expressed easily in
Exhibit. This design choice allows for specialized, simple syntax
(based on JSON) for rapid authoring. For simple, small data sets,
we believe that Exhibit data models are sufficiently expressive, yet
much easier to write than general-purpose RDF/XML or N3.

An Exhibit data model contains a set of items, each having a type
and several properties.

4.1 Items
Items in each exhibit are identified by IDs unique within that ex-
hibit. That is, IDs serve the same role as URIs, but in the closed
world of one exhibit.

So that items within exhibits can exported out into the Web and
still retain a globally unique identity, each item is assigned a URI
either explicitly by the author (by adding a uri property value to
the item) or automatically generated by appending its ID to the URL
of the exhibit where it originates. Even though each item has a URI,
it is still referenced locally by its ID because its ID should be much
shorter and more human-readable than its URI.

In fact, the author does not even have to make up the ID for each
item in her exhibit. If an item has no id property value, its ID is
taken to be the same as its label property value. Note that in Fig-
ure 3, the item has neither id nor uri property value; both values
will be generated.

Each item must have a label property value, which is a string
naming that item in a human-friendly manner (subject to the au-

thor’s discretion). This label is used to render the item wherever a
concise, textual description of that item is needed.

Hence, in most cases, the author is only burdened to make up
labels that are readable to other humans rather than globally unique
identifiers for the sake of machines; the former is less cognitively
demanding than the latter. We consider this departure from RDF to
be an improvement in this context of lightweight structured data
publishing.

4.2 Types
Each item has a type, which can be specified by the author as the
item’s type property value, or if missing, defaults to the generic
type Item (analogous to owl:Thing). Just like items, types are
also identified locally by IDs and globally by URIs; these IDs and
URIs can also be explicitly declared or generated in the same man-
ner as items’ IDs and URIs.

Beside id, uri, and label, a type has one more property, plu-
ralLabel, which is used to generate more grammatical user in-
terface text (e.g., 9 People instead of 9 Person). If pluralLabel is
not explicitly declared, its value is the same as the label property
value.

In fact, there is no need for the author to explicitly declare every
type in the schema. A type is added to the system whenever an item
of that type is added. This lets the author focus on the items—the
main point of her exhibit—and only add types and properties when
they make the user interface better.

4.3 Properties
Properties are also given human-readable labels and identified lo-
cally by IDs and globally by URIs in the same manner as items and
types. In addition to id, uri, and label, a property also has other
fields: reverseLabel, pluralLabel, reversePluralLabel,
groupingLabel, and reverseGroupingLabel. These additional
labels are used to generate more user-friendly UI text, e.g., child of
rather than reverse of parent of.

Property values—the equivalence of objects in RDF state-
ments—are not typed individually. That is, the values of each prop-
erty must all be text strings, or must all be numbers, or dates, or
booleans, etc.; or they must all be item IDs. In RDF terminology,

{
 types: {
 ‘Character’: {
 pluralLabel: ‘Characters’
 }
 },
 properties: {
 ‘url’: {
 valueType: “url”
 },
 ‘decade’: {
 valueType: “date”
 }
 }
 items: [
 // ... items ...
]
}

Figure 6. Schema information can be added to the JSON file to
improve Exhibit’s user interface.

all values of a property must be literals of the same XSD type, or
they are all resources (with potentially different rdf:type). This
departure from RDF compromises data modeling flexibility for edit-
ing convenience: there is one single place to change the types of all
values of a property. In most cases, and especially in small, simple
data sets, this compromise is sensible.

There is a fixed set of value types, currently including: text,
number, date, boolean, url, and item. Figure 6 shows how
property value types are declared in data files. All values of type
item are locally unique IDs of items in the same exhibit. When an
Exhibit data model is converted into RDF, values of types other than
item are converted to RDF literals, while values of type item are
converted to resources by interpreting those values as item IDs and
retrieving the URI property values of the corresponding items.

This design choice of tying value types to properties, rather than
requiring type declaration on each value, facilitates incremental
improvements to the data. For instance, brand property values in
Figure 3 are initially, by default, of type text. This might satisfy
the author until she wants to record details about the brands, at
which time she can simply specify the value type for brand to be
item and adds the data for the brands (Figure 8).

4.4 Data Management
Our choice for a data model simpler than RDF makes it easier for
authors to manage their data. Managing data in a text file is accept-
able for a few dozen items, but perhaps not for a few hundred items.
However, data sets of such sizes can be managed in spreadsheets,
copied off or saved in Tab Separated Value format, and converted
into the Exhibit JSON format using Babel [1]. If an item has several
values for one particular property, the values are separated by semi-
colons in the one single cell.

5. EXPRESSIONS
Exhibit provides an expression language for traversing from one
set of items to another set of items or values through one or more
hops. An Exhibit expression consists of a sequence of one or more
property IDs, each preceded by a hop operator. In RDF terminol-
ogy, the . hop operator traverses from subject to object while the !
hop operator traverses from object to subject. For example,
• evaluating .hasAuthor.teachesAt.locatedIn on some pa-

pers returns the locations of the schools where the authors of
those papers teach;

• evaluating .spouseOf!parentOf on some people returns their
parents-in-laws.

• evaluating !shot!arrested on John F. Kennedy returns the
police officers who arrested his assassinator.

Figure 7 shows a few expressions being used to specify columns
of a tabular view.

Currently, this expression language can only traverse the data
model, and in that way, it resembles the Fresnel Selector Language
[11]. In the future, we plan to extend the language to support com-
putations so that, for example, the author can specify

.lastName + “, ” + .firstName and
yearOf(now) - yearOf(.birthDate)

as columns in a tabular view.

Figure 8. Elaboration of brand property values by specify-
ing the value type for the property brand and adding Brand
items.

{
 properties: {
 ‘brand’: {
 valueType: ‘item’
 }
 },
 items: [
 { type: ‘Character’,
 label: ‘Trix Rabbit’,
 brand: ‘General Mills’,
 decade: 1960,
 country: [‘USA’, ‘Canada’],
 thumbnail: ‘images/trix-rabbit.png’,
 text: ‘First appearing on ...’
 },
 // ... more characters ...

 { type: ‘Brand’,
 label: ‘General Mills’,
 headQuarter: ‘Minnesota’,
 founded: 1856
 }
 // ... more brands ...
]
}

Figure 7. Advanced configuration of a tabular view. Mixing
HTML and Javascript yields the best of both worlds: famil-
iarity, simplicity, and forgiving nature of HTML’s declarative
syntax to start, and expressiveness of Javascript’s imperative
syntax whenever needed.

var rowStyler = function(item, database, tr) {
 var party = database.getObject(item, “party”);
 var color = “white”;
 switch (party) {
 case “Democratic”: color = “blue”; break;
 case “Republican”: color = “red”; break;
 }
 tr.style.background = color;
}

<div ex:role=”exhibit-view”
 ex:viewClass=”Exhibit.TabularView”
 ex:label=”Table”
 ex:columns = “.label, .imageURL, .party, .presidency.inDate, .presidency.outDate”
 ex:columnLabels = “name, photo, party, took office, left office”
 ex:columnFormats = “list, image, list, list, list”
 ex:sortColumn=”4”
 ex:sortAscending=”true”
 ex:rowStyler=”rowStyler”
 ></div>

column of
indirect
property

custom column format custom column
heading label

This expression language is currently sufficient for configur-
ing various parts of Exhibit. In the future when the needs arise, a
SPARQL [8] interface can be added.

6. LENSES AND VIEWS
An Exhibit lens renders one single item while an Exhibit view ren-
ders a set of items, possibly by composing several lenses in some
layout. Exhibit comes default with several views: tile view, thumb-
nail view, tabular view, time line view, and map view. Third parties
can add more views. Figure 2 shows a few of these views. Each
view has its own settings, which vary based on the complexity of
the view. For example, the map view needs an expression that spec-
ifies how to retrieve the latitude/longitude pair for each item and an
expression that retrieves some property which can be used to color
code the map markers; the tile view, on the other hand, needs to
know how to sort the items.

While views come pre-built (but are configurable), lenses can
be written by coding lens templates. A template is just a fragment
of HTML that can be specified in-line, as in Figure 9, or in a differ-
ent file.

Within a lens template, the content attribute of an element
specifies what content to stuff into that element when the template
is instantiated for an item. For example, in Figure 9, the <h1> ele-
ment will be filled with the label property value of the item.

Attributes that end with -content are assumed to contain Ex-
hibit expressions. These expressions are resolved into actual values
when the lens is instantiated, and the values are used to assert HTML
attributes of the same name but without the ex: namespace and the
-content suffix. For example, the ex:src-content attribute in
Figure 9 is replaced with the image property value of the item be-
ing rendered, generating the attribute src=“images/trix-rab-
bit.png” in the generated HTML element.

The if-exists attribute of an element determines whether that
element and its children in the template should be included in the
presentation of a particular item. For example, if an item does not
have an image property value, the template in Figure 9 will not
generate a broken image.

The control attribute specifies which Exhibit-specific control
to embed. There are only two controls supported at the moment:
the item-link control and the copy-button control; the first is a
permanent link to the item being rendered and the latter is a drop-
down menu button that lets the user copies the item’s data off in
various formats.

Note that Exhibit adopts a templating approach to generating
lenses. In contrast, Fresnel [11] takes a styling approach in which
styling rules are declared separately and then applied to morph a
generic presentation into a custom presentation.

7. EXPORTERS
The Copy button in Figure 9 and the Copy All button in Figure 2
pop up menus that let the user pick a format in which to export one
or more items. Exhibit currently provides exporters for RDF/XML,
Exhibit JSON, Semantic MediaWiki extension wikitext [19], and
Bibtex. The author can register third parties’ exporters with Exhibit
so that they show up in these menus.

The purpose of these exporters is to facilitate and encourage
propagation of structured data by offering convenience to both us-
ers and authors. For example, being able to copy off the Bibtex of

some publications that you have found in an exhibit so that you can
cite them is very convenient. You can also copy that data in Exhibit
JSON format and incorporate it into your own exhibit to make an
archive of related work.

Exhibit’s default exporters generate an origin property value
for each item to export. This value is the URL that, when invoked,
returns to the original exhibit and pops up the view of that item
automatically. This is a lightweight mechanism for attribution.

8. IMPLEMENTATION
The Exhibit framework is implemented in several Javascript, CSS,
and image files. It is available at a public URL where anyone can
reference it from within his or her HTML pages. Exhibit authors
do not need to download any software, and exhibit viewers do not
need to install any browser extension. This zero cost is the signa-
ture of client-side include Web APIs and is largely responsible for
the explosion in the embedding use of Google Maps [4].

Exhibit’s source code is available publicly. Any of its parts can
be overridden by writing more Javascript code and CSS definitions
after including Exhibit’s code. Third parties can implement addi-
tional views and exporters to supplement our library.

<table ex:role=”exhibit-lens” cellspacing=”5”
 style=”display: none;”>
 <tr>
 <td>
 <img ex:if-exists=”.cereal”
 ex:src-content=”.image” />
 <div ex:control=”copy-button”></div>
 </td>
 <td>
 <h1 ex:content=”.label”></h1>
 <h2>

 </h2>
 <p ex:content=”.text”></p>
 <center ex:if-exists=”.url”>
 <a ex:href-content=”.url”
 target=”new”>More...
 </center>
 </td>
 </tr>
</table>

Figure 9. Lens template for showing a breakfast cereal charac-
ter in a pop-up bubble.

Exhibit’s architecture is illustrated in Figure 10. At the bottom is
a database implemented in Javascript. The database and the expres-
sion facilities form the data layer on which much of the rest of the
system depends.

There are several points of extensibility. More views can be
added. More exporters can be registered. The Browse Panel can
also be extended with facets that don’t just list their choices but
specialize for the properties that they are configured with, such as
showing a calendar for a date property.

The localization component encapsulates localized UI resources,
including text strings, images, styles, and even layouts. This is only
our early attempt—internationalizing a framework that generates
user interfaces at run-time is very difficult. We note that even HTML
is biased for English. For example, bold and italics, which have na-
tive syntax in HTML, are foreign concepts to most Asian scripts.

Exhibit’s database is the main bottleneck for Exhibit’s perfor-
mance scalability at the moment. Each exhibit handles up to a few
hundred items and still remains usable. However, we expect that
our own implementation can be optimized further, that browsers’
Javascript engines will get faster, and that computer hardware will
also speed up in time. Furthermore, web browsers might expose
local database storage APIs to web pages in the future, which can
replace our Javascript-based implementation.

9. DISCUSSION
The sale distribution of books on Amazon is a long-tail distribution.
When books are ranked by popularity, plotting their sale records
yields a downward sloping, concave curve that approaches the x
axis but does not fall to zero for a long, long time .
There are hundreds of thousands of unpopular books, each selling
only a few to a few hundred copies, whose combined profit rivals
that of the few hundred books that sell millions of copies. This ob-
servation is explored in Anderson’s book, “The Long Tail.” [10]

Not only do the books themselves follow a long-tail distribution,
but so do the topics that those books cover. If we rank the various
kinds of information that people want to publish on the Web by
their popularity, we would also get a long tail (Figure 11): a few
dozens of readily recalled kinds of information such as consumer
products, news articles, events, locations, photos, videos, music,
and software projects populate the massive head of the curve while
hundreds of thousands of unpopular topics, such as sugar packet
collection and lock picking, spread thinly over the long, long tail.

Clustering search engines such as clusty.com show dozens of
sites of each unpopular topic, like sugar packet collection and lock
picking. Wikipedia’s several thousands of categories and DMoz’s
half a million categories show how long the tail is.

Here in the tail, we find a large number of potential homestead-
ers for our Semantic Web. We hope that Exhibit appeals to these
authors and thus achieve widespread adoption. We now discuss the
implications of this optimistic outcome.

po
pu

la
rit

y
or

 q
ua

nt
ity

information domains

head:
• consumer products + reviews
• news articles
• locations + events
• photos + music + videos
• software projects

tail:
• sugar packet collection
• lock picking
• breakfast cereal characters
• itinerary of King John (12th century)
• Fore Cemetery burial chronology

Figure 11. The Long Tail of Information Domains.

Database (in Javascript)

Expressions
Data Layer

Browse Engine

R
D

F/
X

M
L

B
ib

te
x

S
em

an
tic

 w
ik

ite
xt

E
xh

ib
it

JS
O

N

Exporters

Database (in Javascript)

Expressions

Browse Engine

Localization

Theme

UI Layer
View Panel

M
ap

 V
ie

w

Ti
m

el
in

e
Vi

ew

Ta
bu

la
r V

ie
w

Le
ns

es

...

Browse Panel

List
Facet

...

Control Panel

Figure 10. Exhibit’s architecture.

From a Semantic Web point of view, millions of exhibits, with
different ontologies, do not immediately give rise to a globally co-
herent “web of data.” However, these exhibits will have achieved
two improvements over the current state of the Web. First, struc-
tured data previously encoded in HTML but now in exhibits is much,
much easier to harvest. There is no need to develop sophisticated
scrapers for each of the millions of hand-built web sites—likely an
impossible task at that scale. Instead, by baiting them with good
UIs, we convince authors to structure the data for us. This improve-
ment can be seen as the first step to structurizing the Web, done by
humans to help out the machine processing that follows. Getting the
data into machine-readable structured representation means that we
can focus on the semantic problem of ontology alignment instead
of the blurry syntactic problem of scraping. Second, by including
Exhibit, the current web browser is automatically “upgraded” to
be a structured data-aware browser at no cost to the user nor to the
author. This improvement can be seen as the first step in morphing
the web browser into the semantic web browser without requiring
users’ buy-in.

Even without solving ontology alignment, the data harvested
from these exhibits can already improve web searching and brows-
ing. For example, one can now search for data having a particu-
lar Exhibit type, e.g., “Character”, and a particular property, e.g.,
“brand”. The search engine might confound breakfast cereal char-
acters with action hero characters, but not with movie characters
who have no “brand.” These extra structured data-based query
terms will help reduce the search space.

Indeed, moving all information on the Web to the Semantic Web
is a grand challenge. The insight into the long tail of information
domains has inspired both this work and our previous efforts, Piggy
Bank [14] and Sifter [15]. Piggy Bank and Sifter target users at the
head of the distribution where the information comes from large
publishers and is relatively well formatted by server-side technolo-
gies. By scraping that information and using it to provide more val-
ues to users, we hope to “trick” users into converting information
at the head into Semantic Web format. At the tail, the existing infor-
mation is too unstructured to scrape reliably. So at the tail, Exhibit
enrolls authors, instead of users, into converting that information
into more structured form. Thus, we have the whole distribution
curve covered.

10. CONCLUSION
In this paper, we presented Exhibit, a lightweight structured data
publishing framework that targets authors at the tail of the informa-
tion domain distribution on the Web. These authors are motivated to
publish their data although they have few skills and fewer resources.
However, if given the right tools that yield instant gratification for
little efforts, these authors can help structure-ize information at the
tail of the Web—information that has previously been authored in
HTML by hand and remains resistant to automatic scraping.

If Exhibit achieves wide adoption, we will study the structured
data medium that it creates. In particular, we will explore ways for
users to mash up data from several exhibits and perform ontology
alignment on the fly to achieve value from such aggregation.

11. ACKNOWLEDGMENTS
We are grateful to the members of the Haystack group, the User
Interface Design group, the Simile team, and the W3C at MIT CSAIL
for their insightful comments on our work. This work has been
funded by [funders].

REFERENCES
[1] Babel. http://simile.mit.edu/babel/.
[2] DabbleDB. http://dabbledb.com/.
[3] Google Base. http://base.google.com/.
[4] Google Maps. http://maps.google.com/.
[5] Greasemonkey. http://greasemonkey.mozdev.org/.
[6] Introducing JSON. http://www.json.org/.
[7] Simile Timeline. http://simile.mit.edu/timeline/.
[8] SPARQL Query Language for RDF. http://www.w3.org/TR/

rdf-sparql-query/.
[9] Topher’s Breakfast Cereal Character Guide. http://www.la-

vasurfer.com/cereal-guide.html.
[10] Anderson, C. The Long Tail: Why the Future of Business is

Selling Less of More. New York: Hyperion, 2006.
[11] Bizer, C., E. Pietriga, D. Karger, R. Lee. Fresnel: A Browser-

Independent Presentation Vocabulary for RDF. ISWC 2006.
[12] Bolin, M., M. Webber, P. Rha, T. Wilson, and R. Miller. Au-

tomation and Customization of Rendered Web Pages. UIST
2005.

[13] Hildebrand, M., J. van Ossenbruggen, L. Hardman. /facet:
A Browser for Heterogeneous Semantic Web Repositories.
ISWC 2006.

[14] Huynh, D., S. Mazzocchi, and D. Karger. Piggy Bank: Ex-
perience the Semantic Web Inside Your Web Browser. ISWC
2005.

[15] Huynh, D., R. Miller, and D. Karger. Enabling Web Browser
to Augment Web Sites’ Filtering and Sorting Functionality.
UIST 2006.

[16] Oren, E., R. Delbru, S. Decker. Extending faceted navigation
for RDF data. ISWC 2006.

[17] schraefel, m. c., Karam, M. and Zhao, S. mSpace: interaction
design for user-determined, adaptable domain exploration in
hypermedia. AH 2003: Workshop on Adaptive Hypermedia
and Adaptive Web Based Systems.

[18] Sinha, V. and D. Karger. Magnet: Supporting Navigation in
Semistructured Data Environments. SIGMOD 2005.

[19] Völkel, M., M. Krötzsch, D. Vrandecic, H. Haller, R. Studer.
Semantic Wikipedia. WWW 2006.

[20] Yee, P., K. Swearingen, K. Li, and M. Hearst. Faceted Meta-
data for Image Search and Browsing. CHI 2003.

