
ABSTRACT
The early Web was hailed for giving individuals the same publish-
ing power as large content providers. But over time, large content
providers learned to exploit the structure in their data, leveraging
databases and server side technologies to provide rich browsing
and visualization. Individual authors fall behind once more: neither
old-fashioned static pages nor domain-specific publishing frame-
works supporting limited customization can match custom data-
base-backed web applications.

In this paper, we propose Exhibit, a lightweight framework for
publishing structured data on standard web servers that requires no
installation, database administration, or programming. Exhibit lets
authors with relatively limited skills—those same enthusiasts who
could write HTML pages for the early Web—publish richly interac-
tive pages that exploit the structure of their data for better brows-
ing and visualization. Such structured publishing in turn makes
that data more useful to all of its consumers: individual readers get
more powerful interfaces, mashup creators can more easily repur-
pose the data, and Semantic Web enthusiasts can feed the data to
the nascent Semantic Web.

Categories and Subject Descriptors
H5.2 [Information Interfaces and Presentation]:
 User Interfaces – Graphical user interfaces (GUI).
H5.4 [Information Interfaces and Presentation]:
 Hypertext/Hypermedia – User issues.

General Terms
Design, Human Factors.

Keywords
Publish, presentation, faceted browsing, lens, view, template.

1. INTRODUCTION
This paper describes Exhibit, a very lightweight AJAX framework
that lets individuals who know only basic HTML create web pages
containing rich, dynamic visualizations of structured data and sup-
porting faceted browsing and sorting on that structured data. These
authors do not have to install, configure, and maintain any database
or to write a single line of server-side code. They only have to be
passionate about some structured data that they wish to publish and
Exhibit will make publishing that structured data almost as easy as
publishing unstructured documents in HTML.

Exhibit: Lightweight Structured Data Publishing

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

David F. Huynh, David R. Karger, Robert C. Miller
MIT Computer Science and Artificial Intelligence Laboratory

The Stata Center, Building 32, 32 Vassar Street, Cambridge, MA 02139, USA
{dfhuynh, karger, rcm}@csail.mit.edu

1.1 Motivation
A search on Google for “breakfast cereals” (as of February 2007)
turns up as the first hit not a commercial or corporate site, but rather,
Topher’s Breakfast Cereal Character Guide [9], a homemade site
run by a single person. The site has won media honors and recogni-
tions since 1997. But Topher’s site, like sites of many early adopt-
ers of the Web, still looks and behaves like it was made in 1997,
rather than in 2007. While most commercial and institutional sites
are now database-backed, serving up sophisticated browsing and
visualization user interfaces, homemade sites still consist of small
sets of static HTML pages, lacking advanced features that web users
have now come to expect. For example, while each cereal character
is documented with its brand, the year it came on the market, and
the countries in which it was marketed, the web site is organized
only by brand so it is impossible to browse by year or by country.

Consider other authors similar to Topher:
• A professor wants to let visitors to his site sort his 97 papers by

year or group them by projects, conferences, or co-authors.
• A history high-school teacher wants to showcase 57 important

discoveries of bronze age tools to her students through a web
site that renders both maps and time lines.

• Some politically conscious citizens have observed unsettling
campaign funding patterns and would like the whole world to
scrutinize their findings through dynamic plots and charts.

Simply putting up spreadsheets and raw data files will not meet
these authors’ goals as that requires their audience to download
and then explore the data unaided. Much as authors of unstructured
content want control over their documents’ appearance, authors of
structured data want control over their data’s presentation—they
want to give users the right pathways for structured browsing and
rich visualizations. But to support even a basic feature like sorting,
they need to create a database, design a schema, design the user
interface, write server-side and client-side code, and make sure that
their three-tier web application—overflowing with technical jar-
gon like SQL, PHP, CSS, and straddling between the web server and
many different browsers and platforms—works as expected.1

On the early Web, it was easy for enthusiastic but relatively un-
skilled individuals to stake out territory on the Web by copying
other web pages and inserting their own data. These small-time
homesteaders were crucial contributors to the early growth of the
Web. Their homesteads slowly grew in size and complexity, with
each homesteader incrementally acquiring specific additional skills
as needed to meet their growing ambitions for rich presentation. In
contrast, today’s hopeful homesteaders of structured content must

1Even database researchers rarely run database backed web sites for their
own collections. In an informal survey conducted by one of the authors at
CIDR 2007, only seven out of roughly 140 database researchers claimed
to have their publication web sites backed by databases. Even when such a
site is database-backed, it might not support any user-controllable browsing
features like sorting and filtering.

that tree-based presentation technologies can be used. It does not
include any solution for richer browsing, either.

From the perspective of a web user rather than a web author, Ex-
hibit is designed to enliven home-made web pages with advanced
features such as sorting and filtering, and richer visualizations in-
cluding time lines and maps. Here, related work includes Chick-
enfoot [12] and Greasemonkey [5], which let users write scripts
to modify web pages being displayed in their browsers to enhance
the pages for their personal use; and Sifter [15], which automati-
cally extracts items from a sequence of related pages and offers a
faceted browsing interface on those items right within the original
web page. While these tools let users augment web pages to benefit
themselves individually, Exhibit targets authors whose efforts will
benefit all users. Compared to users, authors have more expertise
about their own data and care more about organizing and present-
ing it well.

There have also been numerous pieces of research work on fac-
eted browsing [13, 16, 17, 18, 20], many from the Semantic Web
community. While Exhibit provides a faceted browsing interface,
that is not our contribution in this paper. The interface simply
serves to illustrate user interface richness made possible without
server reconfiguration when the structured data within a web page
is separated from its presentational elements.

3. INTERFACE DESIGN
As Exhibit is a publishing framework, it has two interfaces: one
facing every user of the published information and one facing the
author. A web page that embeds Exhibit will be referred to as an
exhibit in lowercase hereafter.

3.1 User Interface
An exhibit looks just like any other web page, except that it has
more advanced features mostly seen on commercial and institu-
tional sites. Figure 2 and Figure 3 show two exhibits covering dif-
ferent types of information. Each is styled differently, but there are
several common elements, as described below.

Exhibit’s user interface consists of two panels: the browse panel
and the view panel, whose locations on the page are controlled by
the author. The view panel displays a collection of items in one or
more switchable views. The exhibit in Figure 2 is configured by
the author to support two different views of the same data: THUMB-

NAILS and TIMELINE. THUMBNAILS is currently selected by the user
and is showing. The exhibit in Figure 3 is configured to support six

pick up a whole alphabet soup of tools before they can begin. The
evolution of complex web sites has dramatically raised people’s
expectations of what web sites ought to offer without giving small-
time authors tools to meet such expectations. Consequently, struc-
tured browsing and rich presentations are offered mostly by com-
panies and institutions who can afford web site engineering costs,
or by the few technically-savvy programmers who have the whole
package of web technologies under their belts.

1.2 Approach
We describe Exhibit, a lightweight structured data publishing
framework designed to do for structured content what HTML has
done for unstructured content: lowering the barrier to publishing
while offering a high level of control over presentation.

Exhibit lowers the barrier to publishing by duplicating several
key features that enabled the growth of the early Web:
• No installation, configuration, or maintenance. Anyone could

“join the Web” simply by putting an HTML file on a web server.
Similarly with Exhibit, one only need to put an HTML file plus a
human-readable data file on a standard web server and their au-
dience immediately experience that data through a rich brows-
ing interface.

• Copy and paste evolution. Anyone who wishes to publish data
can do so simply by copying someone else’s Exhibit files and
changing them to suit their needs.

• Incremental complexity. Authors can add additional function-
ality and complexity in small steps, never needing to swallow a
whole new set of ideas in one dose. Meanwhile, there are few
limits placed on what creative users can do with their material.

• No network effect required. Unlike social networking sites,
Exhibit provides immediate benefits to its first adopter, regard-
less of others’ actions. It simplifies the author’s management of
their data, and offers visitors using existing web browsers a bet-
ter interface to that data than can be built by typical web author-
ing tools with the same effort.

Exhibit offers fine-grained control over presentation by starting
with the HTML syntax, inheriting its presentation expressivity, and
extending it to let authors specify dynamic generation of presenta-
tion.

Exhibit makes each author’s job easier and the published data
more useful to all of its consumers: readers get more powerful UIs,
mashup creators can more easily repurpose the data, and Semantic
Web enthusiasts can feed the data to the nascent Semantic Web.

2. RELATED WORK
Exhibit competes with many existing frameworks for publishing
structured data in terms of flexibility of presentation and data mod-
eling as well as the required efforts for adoption and usage (Figure
1). Domain-specific services and tools like Flickr and web album
generators are restrictive in terms of data modeling as well as pre-
sentation. Domain-generic services and frameworks like DabbleDB
[2], Google Base [3], and the Semantic MediaWiki extension [19]
allow for flexible data models but offer little control over the pre-
sentation of that data. Any attempt to achieve a bit more control
over the presentation immediately requires installation, database
administration, and programming.

Fresnel [11] is a language for presenting RDF [7] data, but it only
specifies how to transform a graph of structured data into a tree so

Figure 1. Flexibility of presentation and data modeling
as well as the efforts required to adopt and use (circle size)

for various publishing frameworks.

fle
xi

bi
lit

y
of

 d
at

a
m

od
el

in
g

flexibility of presentation

Flickr

Exhibit
custom

web app

Google Base,
DabbleDB,
Semantic MediaWiki
 extension

Customized
Semantic MediaWiki
 extension

HTML

Figure 3. A web page embedding Exhibit to show information about U.S. presidents
in 6 ways, including maps, table, thumbnails, and timelines.

Figure 2. A web page embedding Exhibit to show information about breakfast cereal characters.
The information can be viewed as thumbnails or on a timeline and filtered through a faceted browsing interface.

Topher, the original author of the information, has eagerly agreed to host this exhibit on his own web site.

Data for a single exhibit need not reside in a single file. It can
be split into multiple files for convenience. For example, a couple’s
recipes exhibit can store their data in two files: her-recipes.json and
his-recipes.json. The exhibit just needs to load both.

Exhibit data files can be edited in any text editor. We also offer
a web service called Babel [1] through which authors can convert
various formats to the Exhibit JSON format and even preview the
results in a generic exhibit. Babel can currently convert between
RDF/XML, N3, Bibtex, Tab Separated Values, Excel files, and Ex-
hibit JSON. Exhibit can also read data directly from the RSS feed
of a Google spreadsheet. The reader is encouraged to upload his or
her own data to Babel, or cut and paste rows of tab-separated values
from a spreadsheet into Babel, to experiment with Exhibit.

3.2.2 Creating the Presentation
The web page itself is just a regular HTML file that can be created
locally, iterated locally until satisfactory, and then, if desired, saved
together with the data files on a web server. Figure 5 shows the ini-
tial HTML code needed to start making the exhibit in Figure 2. This
code instantiates an Exhibit instance, loads it with the data file ref-
erenced by the first <link> element, and configures the exhibit’s
view panel to show a tile view. The tile view, by default, sorts all
items in the exhibit by labels and displays the top ten items using
the default lens. This lens shows property/value pairs for each item.
Many defaults are hardwired into Exhibit to give the author a rea-
sonable outcome with minimal initial work.

The author does not even need to write this initial HTML code
from scratch: they can simply copy code from any existing exhibit
or from online tutorials. This is how HTML pages are often made—
by copying existing pages, removing unwanted parts, and incre-
mentally improving until satisfaction is achieved. The declarative
syntax of HTML, the forgiving nature of web browsers and their
reasonable defaults, and the quick HTML edit/test cycle make HTML
authoring easy. We designed Exhibit to afford the same behavior.

views, and the BIRTH PLACES view is currently showing. Each kind
of view—map, timeline, table, thumbnail, and tile—supports its
own configuration settings, almost all of which default to reason-
able values. The Google Maps [4] map in the BIRTH PLACES view
is configured to color-code its markers by the political parties of
the presidents being mapped. Although these settings are specified
by the author, some can be changed dynamically by the user (e.g.,
sorting order in Figure 2).

Items can be presented differently in different views. Where
there is little space to render sufficient details in-place (e.g., on a
map), markers or links provide affordance for popping up bubbles
containing each item’s details (e.g., map bubble in Figure 3). The
rendition of each item contains a link for bookmarking it individu-
ally. Invoking this link later will load the exhibit and pop up a ren-
dition of the bookmarked item automatically.

The browse panel (left in Figure 2 and right in Figure 3) contains
facets by which users can filter the items in the view panel. This is a
conventional dynamic query interface with preview counts.

The reader is encouraged to visit http://simile.mit.edu/wiki/Ex-
hibit/Examples to try out several live exhibits, particularly those
not made by the authors of this paper. They range in subjects from
books, recipes, and restaurants to sports cars, ancient buildings,
space launch sites, breweries, playscripts, and tavern keepers.

3.2 Author Interface
Making an exhibit like Figure 2 involves two tasks: au-
thoring the data and authoring the presentation. Both are
iterated until the desired result is achieved. This section
briefly describes the publishing process, leaving techni-
cal details to later sections.

3.2.1 Creating the Data
Exhibit can read data in its own JSON [6] format. The
data file for those breakfast cereal characters looks some-
thing like Figure 4. The items’ data is coded as an array
of objects containing property/value pairs. Values can
be strings, numbers, or booleans. If a value is an array,
then the corresponding item is considered to have mul-
tiple values for that property. For instance, according to
Figure 4, the Trix Rabbit character is released in both the
U.S. and in Canada. The author is mostly free to make
up the names of the properties. We will discuss the data
model in section 4.

<html>
<head>
 <title>Topher’s Breakfast Cereal
 Character Guide</title>

 <link type=”text/javascript”
 rel=”exhibit/data” href=”cereal-characters.js” />

 <script type=”text/javascript”
 src=”http://static.simile.mit.edu/exhibit/api/exhibit-api.js”>
 </script>
</head>
<body>
 <table width=”100%”>
 <tr valign=”top”>
 <td width=”25%”>
 <div id=”exhibit-browse-panel”></div>
 </td>
 <td>
 <div id=”exhibit-control-panel”></div>
 </td>
 </tr>
 </table>
</div>
</body>
</html>

include Exhibit

link to one or more data files

declare
the exhibit’s panels
using predefined IDs
and lay them out

Figure 5. To create the web page in Figure 2, the author starts with this
boiler plate HTML code, which displays the characters in cereal-char-

acters.js through the default lens that lists property/value pairs.

Figure 4. An Exhibit JSON data file showing
data for one breakfast cereal character,

encoded as property/value pairs.

{
 items: [
 { type: ‘Character’,
 label: ‘Trix Rabbit’,
 brand: ‘General Mills’,
 decade: 1960,
 country: [‘USA’, ‘Canada’],
 thumbnail: ‘images/trix-rabbit-t.png’,
 image: ‘images/trix-rabbit.png’,
 text: ‘First appearing on ...’
 },
 // ... more characters ...
]
}

Figure 6. The author starts with the code in gray (from Figure 5), includes more and more of the code in black,
and tweaks until the desired result (Figure 2) is achieved (logo graphics and copyright omitted).

Tweaking involves following online documentation or just copying code from other existing exhibits.

<html>
<head>
 <title>Topher’s Breakfast Cereal Character Guide</title>
 <link href=”cereal-characters.js” type=”text/javascript” rel=”exhibit” />
 <script src=”http://static.simile.mit.edu/exhibit/api/exhibit-api.js?views=timeline”>
 </script>

 <style>
 .thumbnail { margin: 0.5em; width: 120px; }
 .thumbnailContainer { overflow: hidden; height: 100px; text-align: center; }
 .caption { height: 4em; text-align: center; }
 </style>

</head>
<body> <table width=”100%”><tr valign=”top”>
 <td width=”25%”>
 <div id=”exhibit-browse-panel” ex:facets=”.brand, .decade, .country, .form”></div>
 </td>
 <td>
 <div id=”exhibit-view-panel”>

 <table ex:role=”exhibit-lens” cellspacing=”5” style=”display: none;”>
 <tr>
 <td></td>
 <td>
 <h1 ex:content=”.label”></h1>
 <h2> </h2>
 <p ex:content=”.text”></p>
 <center><a ex:href-content=”.url” target=”new”>More...</center>
 </td>
 </tr>
 </table>

 <div ex:role=”exhibit-view”
 ex:viewClass=”Exhibit.ThumbnailView”
 ex:showAll=”true”
 ex:possibleOrders=”.brand, .decade, .form, .country”>

 <table ex:role=”exhibit-lens” class=”thumbnail”>
 <tr>
 <td valign=”bottom” class=”thumbnailContainer”>

 </td>
 </tr>
 <tr><td class=”caption” ex:content=”value”></td></tr>
 </table>
 </div>

 <div ex:role=”exhibit-view”
 ex:viewClass=”Exhibit.TimelineView”
 ex:start=”.decade”
 ex:marker=”.brand”
 ex:topBandIntervalPixels=”250”
 ex:bottomBandIntervalPixels=”400”
 ex:densityFactor=”1”></div>

 </div>
 </td>
</tr></table></body>
</html>

individual item’s
lens template

used in tile views
and pop-up bubbles

thumbnail view

timeline view

individual item’s
lens template
used within this
thumbnail view

expression for retrieving starting
date/time of each item

expression for retrieving color-coding key
for each item’s marker on the timeline

CSS style rules to
overload Exhibit

default styles

generate content dynamically
using Exhibit expressions

generate attributes dynamically
using Exhibit expressions

explicitly tell Exhibit to load
bulky external widgets like
map and time line

Figure 6 shows the final HTML code needed to render the exhibit
in Figure 2 (logo graphics and copyright message omitted). The
additional code, in black, configures the facets in the browse panel,
the two views in the view panel, one all-purpose lens, and one lens
to be used in the THUMBNAILS view.

Making the presentation look better can also involve filling in
and fixing up the schema. Figure 7 shows how the plural label for
the type Character is declared so that plural labels in the UI, e.g.,

12 Characters, can be generated properly. The decade property val-
ues are declared to be dates instead of strings so that they can be
sorted as dates. Changing the schema is just a matter of text editing
rather than database administration.

So to not limit advanced authors, Exhibit provides points to es-
cape to Javascript code. Figure 8 shows how to color-code rows of
a table view using Javascript.

4. DATA MODEL
The data model of each exhibit is a set of items in which each item
has a type and several properties. A lot of exhibits are flat, but some
contain items that reference one another. In those exhibits, the data
models are graphs.

4.1 Items
Each item is guaranteed to have a textual label, which the author
is required to specify as the item’s label property value. This re-
quirement ensures that Exhibit always knows how to present the
item wherever its textual description is needed.

The label of an item is also used as the item’s default ID—to
identify that item uniquely within the exhibit. If two items need to
have the same label, then the author must explicitly assign them
different IDs by explicitly specifying their id property values.

An item’s ID is also used to generate its URI by prepending the
exhibit’s URL to the ID. Essentially, each exhibit creates its own
namespace. If a particular item is intended to describe some re-
source with an existing URI, that URI can be explicitly specified as
the item’s uri property value.

4.2 Types
Each item has a type, which can be specified by the author as the
item’s type property value, or if missing, defaults to the generic
type Item.

Just like items, types are required to have textual labels and can
also be explicitly given IDs and URIs. In addition to id, uri, and
label, a type has one more field,2 pluralLabel, which is used
to generate more grammatical user interface text (e.g., 9 People in-
stead of 9 Person). If pluralLabel is not explicitly declared, its
value is the same as the type’s label.

In fact, there is no need for the author to explicitly declare every
type in the schema. A type is added to the system whenever an item
of that type is added. This lets the author focus on the items—the
main point of her exhibit—and only talk about types and properties
when they make the user interface better.

4.3 Properties
Properties are also required to have textual labels and can optionally
be explicitly given IDs and URIs. In addition to id, uri, and label,
a property also has other fields: reverseLabel, pluralLabel,
reversePluralLabel, groupingLabel, and reverseGroup-
ingLabel. These additional labels are used to generate more user-
friendly UI text, e.g., child of rather than reverse of parent of.

Each property can also be assigned a value type as its valu-
eType field value. This specifies how all values of that property
should be interpreted. For example, the age property should be as-
signed the value type number so that Exhibit will interpret all age
property values as numbers. There is a fixed set of value types:
text, number, date, boolean, url, and item. Figure 7 shows
how property value types are declared. All values of value type
item are interpreted as locally unique IDs of items in the exhibit.

This design choice of tying value types to properties, rather than
requiring value type declaration on each property value, facilitates
incremental improvements to the data. For instance, brand prop-

erty values in Figure 4 are initially, by default, of value type text.
This might satisfy the author until she wants to record details about
the brands, at which time she can simply specify the value type for
brand to be item and add the data for the brands (Figure 9).

The Exhibit abstract data model is essentially the RDF [7] ab-
stract data model except that property values cannot be assigned
value types individually. In this way, the Exhibit data model is a
sub-model of the RDF data model, less powerful but sufficient for
many simple use cases. This simplicity allows for Exhibit’s simple
JSON format.

5. EXPRESSIONS
Exhibit provides an expression language for selecting data to dis-
play in lenses and views. An Exhibit expression consists of a se-
quence of one or more property IDs, each preceded by a hop opera-
tor. In RDF terminology, the . hop operator traverses from subject
to object while the ! hop operator traverses from object to subject.
For example,
• evaluating .hasAuthor.teachesAt.locatedIn on some pa-

pers returns the locations of the schools where the authors of
those papers teach;

• evaluating .hasSpouse!hasChild on some people returns
their parents-in-law;

• evaluating !shot!arrested on John F. Kennedy returns the
police officers who arrested his assassinator.

Figure 8 shows a few expressions being used to specify columns
of a tabular view.

Currently, this expression language can only traverse the data
model, and in that way, it resembles the Fresnel Selector Language
[11]. In the future, we plan to extend the language to support com-
putations so that, for example, the author can specify

.lastName + “, ” + .firstName and
yearOf(now) - yearOf(.birthDate)

as columns in a tabular view.
This expression language is currently sufficient for configuring

various parts of Exhibit. In the future, a SPARQL [8] interface might
be added.

{
 types: {
 ‘Character’: {
 pluralLabel: ‘Characters’
 }
 },
 properties: {
 ‘url’: {
 valueType: “url”
 },
 ‘decade’: {
 valueType: “date”
 }
 }
 items: [
 // ... items ...
]
}

Figure 7. Schema information can be added to
the JSON file to improve Exhibit’s user interface.

2We use “fields” to mean properties of types and properties, and we use
“properties” to mean properties of items.

6. LENSES AND VIEWS
In Exhibit, lenses and views are used to display data. An Exhibit
lens renders one single item while an Exhibit view renders a set of
items, possibly by composing several lenses in some layout. Ex-
hibit comes with several views: tile view, thumbnail view, tabular
view, time line view, and map view. Figure 3 shows a few of these
views. Third parties can implement more views and authors can use
them simply by linking in their Javascript code. Each view has its
own settings, which vary based on the complexity of the view. For
example, the map view needs an expression that specifies the lati-

tude/longitude pair for each item and an expression that retrieves
some property which can be used to color code the map markers;
the tile view, on the other hand, needs to know how to sort the
items.

While views come pre-built (but are configurable), lenses can be
written by coding lens templates. A template is just a fragment of
HTML that can be specified in-line, as in Figure 10.

Within a lens template, the content attribute of an element
specifies what content to stuff into that element when the template

Figure 9. Elaboration of brand property values by
specifying the value type and adding Brand items.

{
 properties: {
 ‘brand’: {
 valueType: ‘item’
 }
 },
 items: [
 { type: ‘Character’,
 label: ‘Trix Rabbit’,
 brand: ‘General Mills’,
 decade: 1960,
 country: [‘USA’, ‘Canada’],
 thumbnail: ‘images/trix-rabbit.png’,
 text: ‘First appearing on ...’
 },
 // ... more characters ...

 { type: ‘Brand’,
 label: ‘General Mills’,
 headQuarter: ‘Minnesota’,
 founded: 1856
 }
 // ... more brands ...
]
}

Figure 8. Advanced configuration of a tabular view.
Mixing HTML and Javascript yields the best of both worlds:

familiarity, simplicity, and forgiving nature of HTML’s
declarative syntax to start, and expressiveness of Javascript’s

imperative syntax whenever needed.

var rowStyler = function(item, database, tr) {
 var party = database.getObject(item, “party”);
 var color = “white”;
 switch (party) {
 case “Democratic”: color = “blue”; break;
 case “Republican”: color = “red”; break;
 }
 tr.style.background = color;
}

<div ex:role=”exhibit-view”
 ex:viewClass=”Exhibit.TabularView”
 ex:label=”Table”
 ex:columns = “.label, .imageURL, .party, .presidency.inDate, .presidency.outDate”
 ex:columnLabels = “name, photo, party, took office, left office”
 ex:columnFormats = “list, image, list, list, list”
 ex:sortColumn=”4”
 ex:sortAscending=”true”
 ex:rowStyler=”rowStyler”
 ></div>

column of
indirect
property

custom column format custom column
heading label

<table ex:role=”exhibit-lens” cellspacing=”5”
 style=”display: none;”>
 <tr>
 <td>
 <img ex:if-exists=”.image”
 ex:src-content=”.image” />
 <div ex:control=”copy-button”></div>
 </td>
 <td>
 <h1 ex:content=”.label”></h1>
 <h2>

 </h2>
 <p ex:content=”.text”></p>
 <center ex:if-exists=”.url”>
 <a ex:href-content=”.url”
 target=”new”>More...
 </center>
 </td>
 </tr>
</table>

Figure 10. Lens template for showing
a breakfast cereal character in a pop-up bubble.

is instantiated for an item. For example, in Figure 10, the <h1> ele-
ment will be filled with the label property value of the item.

Attributes that end with -content are assumed to contain Ex-
hibit expressions. These expressions are resolved into actual values
when the lens is instantiated, and the values are used to assert HTML
attributes of the same name but without the ex: namespace and the
-content suffix. For example, the ex:src-content attribute in
Figure 10 is replaced with the image property value of the item be-
ing rendered, generating the attribute src=“images/trix-rab-
bit.png” in the generated HTML element.

The if-exists attribute of an element determines whether that
element and its children in the template should be included in the
presentation of a particular item. For example, if an item does not
have an image property value, the template in Figure 10 will not
generate a broken image.

The control attribute specifies which Exhibit-specific control
to embed. There are only two controls supported at the moment: the
item-link control is a permanent link to the item being rendered
and the copy-button control is a dropdown menu button that lets
the user copy the item’s data off in various formats.

Note that Exhibit adopts a template-based approach to generat-
ing lenses. In contrast, Fresnel [11] takes a rule-based approach
in which styling rules are declared separately and then applied to
morph a generic presentation into a custom presentation.

7. EXPORTERS
The Copy button in Figure 10 and the Copy All button in Figure 3
pop up menus that let the user pick a format in which to export one
or more items. Exhibit currently provides exporters for RDF/XML,
Exhibit JSON, Semantic MediaWiki extension wikitext [19], and
Bibtex. The author can register third parties’ exporters with Exhibit
so that they show up in these menus.

The purpose of these exporters is to facilitate and encourage
propagation of structured data by offering convenience to both us-
ers and authors. For example, being able to copy off the Bibtex of
some publications that you have found in an exhibit so that you can
cite them is very convenient. You can also copy that data in Exhibit
JSON format and incorporate it into your own exhibit to make an
archive of related work.

Exhibit’s default exporters generate an origin property value
for each item to export. This value is the URL that, when invoked,

returns to the original exhibit and pops up the view of that item
automatically. This is a lightweight mechanism for attribution.

8. IMPLEMENTATION
The Exhibit framework is implemented in several Javascript, CSS,
and image files. It is available at a public URL where anyone can
reference it from within his or her HTML pages. Exhibit authors
do not need to download any software, and exhibit viewers do not
need to install any browser extension. This zero cost is the signa-
ture of client-side include Web APIs and is largely responsible for
the explosion in the use of Google Maps for mashups.

Exhibit’s source code is available publicly. Any of its parts can
be overridden by writing more Javascript code and CSS definitions
after including Exhibit’s code. Third parties can implement addi-
tional views and exporters to supplement our library.

Exhibit’s architecture is illustrated in Figure 11. At the bottom is
a database implemented in Javascript. The database and the expres-
sion facilities form the data layer on which much of the rest of the
system depends.

There are several points of extensibility. More views can be
added. More exporters can be registered. The Browse Panel can
also be extended with facets that don’t just list their choices but
specialize for the properties that they are configured with, such as
showing a calendar for a date property.

The localization component encapsulates localized UI resources,
including text strings, images, styles, and even layouts. This is only
our early attempt—internationalizing a framework that generates
user interfaces at run-time is very difficult. We note that even HTML
is biased for English. For example, bold and italics, which have na-
tive syntax in HTML, are foreign concepts to most Asian scripts.

Exhibit’s database and its DOM generating code are the two main
bottlenecks for Exhibit’s performance scalability at the moment.
Currently an exhibit can handle up to a few hundred items while re-
maining responsive. However, we expect that our own implementa-
tion can be optimized further, that browsers’ Javascript engines will
get faster, and that computer hardware will also speed up in time.
Furthermore, web browsers might expose local database storage
APIs to web pages in the future, which can replace our Javascript-
based implementation.

Figure 11. Exhibit’s architecture.

Database (in Javascript)

Expressions
Data Layer

R
D

F/
X

M
L

B
ib

te
x

S
em

an
tic

 w
ik

ite
xt

E
xh

ib
it

JS
O

N

Exporters

Database (in Javascript)

Expressions

Browse Engine

Localization

Theme

UI Layer
View Panel

M
ap

 V
ie

w

Ti
m

el
in

e
Vi

ew

Ta
bu

la
r V

ie
w

Le
ns

es

...

Browse Panel

List
Facet

...

...

9. DISCUSSION
The incentive for each author to use Exhibit is the ease of publish-
ing structured data and the resulting sophisticated user interfaces.
While this motivation is personal and the immediately perceptible
benefit is local, there are far reaching effects as a result of the pub-
lished data being entirely, publicly accessible in structured form.
We now discuss how Exhibit, by design, is related to mashups, the
Semantic Web, and the Long Tail of information domains.

9.1 An Ecology of Mashup Data
Although we have pitched Exhibit primarily to potential authors
of structured data, we note that it also benefits all kinds of con-
sumer of that data. Having the structured data readily available lets
mashup creators focus on the fun of making mashups rather than
on the labor of scraping data. Making mashups can also mean mak-
ing new exhibits from data found on existing exhibits, and making
exhibits is much easier than building web applications. The data
from Exhibit-based mashups is also readily reusable for even more
mashups. In contrast, the data in traditional mashups is liberated
from the original sites only to be locked up again behind web serv-
ers on the mashup sites.

While mashup is often the act of repurposing existing data for
new, public uses, this definition can be extended to include personal
uses as well. Browser-based tools such as Piggy Bank [14] have
illustrated how users can get more utility out of existing data by
scraping it out of web pages, combining data from different sites, or
combining public data with private data. These tools are currently
not widely accepted because they either require tedious hand-writ-
ten screen scrapers (as in Piggy Bank) or rely on fragile web data
extraction algorithms (as in Sifter [15]). They can be made to con-
sume exhibits’ data if exhibits proliferate.

In other words, Exhibit makes presentation cheaper for authors,
and reusable data cheaper for everyone else.

9.2 Exhibit as A Semantic Web Application
It is now time to admit that we see Exhibit as a Semantic Web ap-
plication. The Semantic Web has been dismissed by many as an
unrealistic vision because it is often pitched as a medium wherein
automated software agents harvest structured data to accomplish
complex tasks on behalf of their users. But as our tools hopefully
demonstrate, even without automated agents there is tremendous
value to standardizing a model of structured data involving objects
with properties and values. Such standardization offers a clean way
to separate content from presentation, supporting easy repurposing
of content in multiple presentations and easy creation of complex
presentations for an infinite variety of content.

Some of the Semantic Web faithful might dismiss our conten-
tion that Exhibit is a Semantic Web application. Where is the RDF?
Where are the OWL ontologies? How will all these Exhibit authors’
half-baked ontologies and duplicated instances be aligned? In re-
sponse, we observe, first, that the RDF is in plain sight: it is the
model being instantiated by each exhibit. We have simply chosen
to offer a different syntax—other than the standard RDF/XML and
more recent N3—for expressing that model. Granted, our syntax
cannot express arbitrary RDF. However, we have accepted this limi-
tation in pursuit of a simpler syntax that can be authored by less-
skilled users. As for OWL and ontology alignment, we argue that
worrying about these now is premature and counterproductive. For

the time being, these can be left to humans, who by using Exhibit
will still be far ahead of the current state thanks to a unified data
syntax that does not need to be scraped. The critical first step for the
Semantic Web is to generate lots of data, and Exhibit is a tool that
creates incentives for authors to make this happen. Rationalization
of the data can come later. The early Web was an anarchy, only
later tamed by directories and search engines. Similarly, the early
Semantic Web is likely to be a chaotically structured entity whose
existence can motivate the development of the sophisticated align-
ment and reasoning tools that will bring some order to it.

Even without solving ontology alignment, the data harvested
from these exhibits can already improve web searching and brows-
ing. For example, one could search for data having a particular Ex-
hibit type, e.g., “Character”, and a particular property, e.g., “brand.”
The search engine might confound breakfast cereal characters with
action hero characters, but not with movie characters who have no
“brand.” These extra query criteria help reduce the search space.

9.3 The Long Tail of Information Domains
Indeed, millions of ontologies will arise whether or not they need to
be aligned. Like the Web, the Semantic Web should let anybody say
anything about anything, and there are simply a lot of people with a
lot to say about many things. This diversity should be cherished.

Diversity already brings big profits to online retailers. On Ama-
zon, there are hundreds of thousands of unpopular books, each sell-
ing only a few to a few hundred copies, whose combined profit
rivals that of the few hundred books that sell millions of copies.
This observation is explored in “The Long Tail” [10].

If we rank the various kinds of information that people want to
publish on the Web by their popularity, we should also get a long
tail (Figure 12): a few dozens of readily recalled kinds of informa-
tion such as consumer products, news articles, events, locations,
photos, videos, music, and software projects populate the massive
head of the curve while hundreds of thousands of unpopular topics,
such as sugar packet collection and lock picking, spread thinly over
the long tail. Clustering search engines such as clusty.com show
dozens of sites of each unpopular topic. Wikipedia’s several thou-
sand categories and DMoz’s half a million categories show how
long the tail is.

It is much more appealing to target the head where there are
more resources, more rewards, a larger target audience, and a
greater sense of urgency. Consequently, too many Semantic Web
projects are aimed at displacing specific existing solutions for in-
formation domains at the head, such as building Semantic Web-
enabled web applications for photos and publications. These young
Semantic Web technologies must compete against decades old
solutions that have been heavily invested, well understood, long
refined, and broadly deployed. A Semantic Web-backed web site
looks just like any other web site, except that it usually suffers from
poor scalability. The lack of supporting expertise, solid infrastruc-
tures, and mature programming paradigms leaves Semantic Web
solutions unpolished. Where the old solutions fail in lack of gener-
ality, there has not been sufficient user interface research to make
Semantic Web principles shine.

To compete on any one particular information domain at the
head is to ensure defeat. It is comparable to trying to kickstart the
Web by first attempting to displace large publishing houses.

Exhibit is an attempt to embrace the information at the tail where
there are few established solutions but many opportunities to diver-
sify the Semantic Web. Two months after Exhibit was released, we
have found new exhibits about sports cars, ancient buildings, space
launch sites, breweries, playscripts, tavern keepers, and more. Note
that it would be foolish to build custom solution for any one of
these domains because the target users in that one domain are few
and the amount of data is little. It is rather in the aggregate of all
these domains that lies the huge amount of structured data to fuel
the Semantic Web.

The insight into the long tail of information domains gives con-
text to our previous efforts. Piggy Bank [14] and Sifter [15] target
users at the head of the distribution, where the information comes
from large publishers and is relatively well formatted by server-side
technologies. By scraping that information to provide more values
to users, we hope to “trick” users into converting information at
the head into Semantic Web format. At the tail, where the existing
information is too unstructured to scrape reliably, Exhibit enrolls
authors into converting that information into more structured form.
Thus, we have the whole distribution curve covered.

10. CONCLUSION
In this paper, we presented Exhibit, a framework that lets small-
time authors publish structured data in sophisticated user interfaces
at very low cost. Their efforts, personally motivated and personally
rewarding, may yield a large, diverse repertoire of entirely, pub-
licly accessible structured data, ready to fuel the nascent Semantic
Web.

If Exhibit achieves wide adoption, we will study the structured
data medium that it creates. In particular, we will explore ways for
users to mash up data from several exhibits and perform ontology
alignment on the fly to achieve value from such aggregation.

11. ACKNOWLEDGMENTS
We are grateful to the members of the Haystack group, the User
Interface Design group, the Simile team, and the W3C at MIT CSAIL
for their insightful comments on our work.

This work was supported by the National Science Foundation
(under award number IIS-0447800), by the Biomedial Informatics
Research Network (NIH NCRR mBIRN U24-RR021382), and by
Nokia (AGMT. DTD. 9/2/05). Any opinions, findings, conclusions
or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the funders.

REFERENCES
[1] Babel. http://simile.mit.edu/babel/.
[2] DabbleDB. http://dabbledb.com/.
[3] Google Base. http://base.google.com/.
[4] Google Maps. http://maps.google.com/.
[5] Greasemonkey. http://greasemonkey.mozdev.org/.
[6] Introducing JSON. http://www.json.org/.
[7] Resource Description Framework (RDF). http://www.

w3.org/RDF/.
[8] SPARQL Query Language for RDF. http://www.w3.org/TR/

rdf-sparql-query/.
[9] Topher’s Breakfast Cereal Character Guide. http://www.

lavasurfer.com/cereal-guide.html.
[10] Anderson, C. The Long Tail: Why the Future of Business is

Selling Less of More. New York: Hyperion, 2006.
[11] Bizer, C., E. Pietriga, D. Karger, R. Lee. Fresnel: A

Browser-Independent Presentation Vocabulary for RDF.
ISWC 2006.

[12] Bolin, M., M. Webber, P. Rha, T. Wilson, and R. Miller. Au-
tomation and Customization of Rendered Web Pages. UIST
2005.

[13] Hildebrand, M., J. van Ossenbruggen, L. Hardman. /facet:
A Browser for Heterogeneous Semantic Web Repositories.
ISWC 2006.

[14] Huynh, D., S. Mazzocchi, and D. Karger. Piggy Bank:
Experience the Semantic Web Inside Your Web Browser.
ISWC 2005.

[15] Huynh, D., R. Miller, and D. Karger. Enabling Web Browser
to Augment Web Sites’ Filtering and Sorting Functionality.
UIST 2006.

[16] Oren, E., R. Delbru, S. Decker. Extending faceted naviga-
tion for RDF data. ISWC 2006.

[17] schraefel, m. c., Karam, M. and Zhao, S. mSpace: interac-
tion design for user-determined, adaptable domain explo-
ration in hypermedia. AH 2003: Workshop on Adaptive
Hypermedia and Adaptive Web Based Systems.

[18] Sinha, V. and D. Karger. Magnet: Supporting Navigation in
Semistructured Data Environments. SIGMOD 2005.

[19] Völkel, M., M. Krötzsch, D. Vrandecic, H. Haller, R. Studer.
Semantic Wikipedia. WWW 2006.

[20] Yee, P., K. Swearingen, K. Li, and M. Hearst. Faceted Meta-
data for Image Search and Browsing. CHI 2003.

po
pu

la
rit

y
or

 q
ua

nt
ity

information domains

head:
• consumer products + reviews
• news articles
• locations + events
• photos + music + videos
• software projects

tail:
• sugar packet collection
• lock picking
• breakfast cereal characters
• itinerary of King John (12th century)
• Fore Cemetery burial chronology

Figure 12. The Long Tail of Information Domains.

