
89

Just as Exhibit has wrapped up much complexity in the conventional three-tier web
application architecture in order to making data publishing easy enough for casual
users, to bring web data extraction technologies to casual users we must also wrap
them up in a ready-to-use package.

First, some set of commonly needed features such as sorting and filtering can •
be provided out-of-the-box.

Second, to keep the user’s visual context from before to after extraction, and •
to take advantage of already well designed visual elements from the original web
page, the presentation elements in the original page are reused as much as possible.
In particular, when a data record is extracted from a part of the original page, that
fragment of the page is also extracted so that in order to show that data record later
on, we can simply show the fragment again. The rest of the web page, which does
not contain data to extract, is kept as-is.

Finally, direct manipulation “handles” can be inserted right into the web •
page, next to each data value, so that the user can essentially grab a data value and
interact with it, such as invoking a sorting or filtering command. This application
of direct manipulation lets us do away with extracting field labels or with requiring
the user to label the fields herself.

These ideas have been built into a browser extension called Sifter that can
augment a sequence of web pages (typically search result pages) in-place with filter-
ing and sorting functionality while requiring from the user as few as two clicks.
The remainder of this chapter first describes the user interface of Sifter from the
extraction phase to the augmentation phase. Next, the data extraction algorithm is
explained. Finally, evaluations of the algorithm and the user interface are reported
and discussed.

Extracting Data4.

4. Extracting Data

90

User Interface Design4.1

User interaction with Sifter consists of two stages:
extraction, when the system ascertains which parts of the web site to extract, •
and gives the user feedback about this process; and
augmentation, when the system adds new controls to the web page and the •
browser that allow the user to filter and sort the extracted items in-place.

Extraction User Interface4.1.1

Sifter’s user interface resides within a pane docked to the right side of the web
browser (Figure 4.1). When the user first visits a web site, the Sifter pane shows
a single button that, when clicked, triggers the detection of items on the current
web page as well as links to subsequent pages, if any. An item is, for example, a
product as in Figure 4.1. Items are highlighted in-place, and the total number of
items spanning the detected series of pages is displayed prominently in the pane. If
the system has incorrectly detected the items or the subsequent-page links, the user
can correct it by clicking on an example item or a subsequent-page link in the web
page. Once the Continue button (Figure 4.1) is clicked, the extraction process starts
and Sifter pops up a dialog box showing the subsequent web pages being down-
loaded. Over all, getting the data extracted usually takes two button clicks.

During the extraction process, Sifter locates all items on all the web pages,
extracts field values from each item as well as its HTML code, and stores each item
as a record in a local database. For example, the local database accumulated from
extracting the 7 pages of 59 items in Figure 4.1 would contain 59 records, each
having one text field (title), two numeric fields (price and percent saving), and an
HTML code fragment representing the entire item. This code fragment is used as a
rendering of the item when the result set is filtered or sorted.

Making Corrections4.1.1.1

If the items are detected incorrectly, the user can click on the Locate Items but-
ton (Figure 4.1) and the Sifter pane will change to highlighting mode (Figure 4.2).
In this mode, as the user moves the mouse cursor over the web page, the system
inspects the smallest HTML element under the mouse cursor, generalizes it to other
similar elements on the page, expands those elements to form whole items, and
highlights these candidate items with translucent overlays. When the user is sat-
isfied with the highlighting, she can click the mouse button and the Sifter pane
switches out of its highlighting mode.

There was consideration to eliminate the extraction UI altogether and provide
a correction UI after the extraction process has finished. However, as the extraction
process may be lengthy and not completely reliable, providing a preview of what
the system is going to do makes the wait more acceptable and gives the user a sense
of greater control over the system.

4. Extracting Data

91

Items are detected automati-
cally and then highlighted by
translucent overlays. Their
indices and count are shown.

A single button click triggers the
detection of items and pages.

Subsequent pages are auto-
matically detected. The number
of pages is used to estimate
the total number of items.

A second button
click starts the
extraction
process.

1

2 3

4

Figure 4.1. Sifter provides a one-click interface for triggering the detection of
items and pages. One more button click starts the extraction process.

4. Extracting Data

92

Augmentation User Interface4.1.2

Figure 4.4 shows Sifter in action as the user makes use of new filtering and sorting
functionality. An asterisk is inserted after each field value in the web page. When an
asterisk is clicked, a browsing control box is displayed in the Sifter pane, containing the
filtering and sorting controls for that field. Hovering the mouse pointer over either
a field’s asterisks or its browsing control box highlights both synchronously, so that
the user can tell which browsing control box corresponds to which asterisk, and
hence, which field. By keeping the original presentations of the items, Sifter can
provide affordance for applying direct manipulation techniques on the field values
without ever knowing the field labels.

As the user invokes filtering and sorting commands, Sifter dynamically rewires
the web page to show the set of items satisfying the current filters in the current
sorting order, as if the web site itself had performed the filtering and sorting op-
erations. Sifter does so by removing the HTML fragment of each item on the page
and then injecting into the same slots (where those removed fragments previously
fit) the HTML fragments of the items satisfying the current dynamic query. These
HTML fragments are retrieved from the local database, so there is no need to make
a request to the original site when the dynamic query changes.

Position of mouse
pointer helps identify
items to be extracted.

Candidate items are highlighted
and their indices and count are
shown as watermarks.

The whole Web page is shown in miniature for an
overview of the highlighted items, bringing atten-
tion to misses evident as whitespace gaps, if any.

Figure 4.2. Sifter’s highlighting mode provides an interactive mechanism for the
user to correct the automatic detection of items by hovering the mouse pointer
over the web page and clicking once the items have been highlighted correctly.

4. Extracting Data

93

Since exploring the collection of items may involve clicking a link to view de-
tails about an item, Sifter stores the query state and automatically restores it when
the user returns to the augmented page.

Filtering4.1.2.1

The filtering controls for different field types (text, numbers, date/time) manage
the field values differently. For numbers and date/time fields the values are clas-
sified into ranges and sub-ranges hierarchically, while for text fields the values are
listed individually. Selecting a value or a range filters the current collection of items

Extraneous content (e.g., spon-
sor links) is faded away to avoid
confusion and distraction.

An asterisk is inserted after each field value. Clicking on
an asterisk adds a browsing control box to the Sifter pane.
Corresponding asterisks and boxes are co-highlighted when hovered.

Items satisfying the current dynamic
query are inserted into the original
Web page as if the Web site itself
has performed the query.

Paging controls for the
whole collection.

Sorting controls
for a field

Figure 4.4. After extraction is complete, the Sifter pane hosts filtering and sort-
ing controls, which when invoked, re-render the resulting items inside the same
web page (without needing to contact the original web server again).

4. Extracting Data

94

down to only those having that value or having values in that range. Multi-selection
in a single field adds disjunctive query terms. Filtering on more than one field
forms conjunctive queries. Selecting and de-selecting field values or ranges in a
browsing control box updates the available values and ranges in other boxes as in
any dynamic query interface [66].

Note that filtering in Sifter is equivalent to faceted browsing in Exhibit (the
different terminologies are an artifact of the evolution of my research). Whereas in
Exhibit each facet has a label (taken from the corresponding property’s label or as-
signed explicitly by the publisher), in Sifter none of the browsing control boxes has
label. Furthermore, in Exhibit, a facet’s class (list or numeric range) and placement
are determined by the publisher who knows the data and is interested in making
her exhibit look and behave however she feels appropriate. In contrast, a Sifter
user does not know a web page’s data as well and is only interested in sorting or
filtering the items therein. For that reason, Sifter takes a more utility-focused than
creativity-focused approach: the user is not given control over how the browsing
control boxes look and their classes (list, numeric range, or date range) are chosen
automatically as much as possible.

Visual Context4.1.2.2

While the user is using Sifter’s filtering and sorting functionality, the rest of the
original web page is kept for three reasons:

To maintain visual context so that the user does not have to orient herself in •
a completely new view of the same information she was seeing before invok-
ing Sifter.
To avoid throwing away vital information that helps the user understand the •
items. For instance, the fact that the sale prices are only applicable to students
might not be embedded in every item’s presentation but is isolated in another
part of the page. It would be hard to extract that piece of information.
To make features offered by the original page still accessible to the user.•

However, while preserved, the rest of the page is faded out to visually indicate a
disconnection between the features in the original page and the items under Sifter’s
control. The original status indicators (e.g., number of items, number of pages)
are faded to imply that they no longer apply to the items inside the web page. The
original pagination, sorting, and browsing controls are faded to imply that invoking
them would switch out of Sifter’s augmentation mode and let the user interact with
the original web site.

4. Extracting Data

95

Data Extraction4.2

Given the user interface design described above that requires minimal user inter-
vention during the extraction phase, this section explains how the data extraction
algorithm is designed to support that interface. The extraction algorithm consists
of three steps: locating items to extract; identifying subsequent web pages; and
parsing useful field values from each item.

Item Detection4.2.1

Let us posit that for many sequences of web pages containing lists of items (e.g.,
search results, product listings), there exists an XPath [38] that can precisely ad-
dress the set of items on each page. Thus, our item detection algorithm involves
deriving such an XPath. (The cases where each item consists of sibling or cousin
nodes [77] will be addressed in future work.) Let us also posit that this XPath can
be computed just from the sample items on the first page in a sequence of pages.
These assumptions are expected to generally hold on database-backed web sites
that generate HTML from templates as opposed to hand-writing their HTML.

The algorithm is based on two observations. First, in most item collections,
each item contains a link, often to a detail page about the item. So, links are likely
to be useful as starting points for generating hypotheses for the XPath. Second, the
item collection is typically the main purpose of the web page, so the items them-
selves consume a large fraction of the page’s visual real-estate. This gives us a way
to choose the most likely hypothesis, namely, the one that uses the largest area of
the page.

The item detection algorithm starts by collecting all unique XPaths to <A> ele-
ments on the current web page. For each element, its XPath is calculated by string-
ing together the tag names of all elements from the document root down to that
element. CSS class names are also included. The resulting XPath looks something
like this: /HTML/BODY/TABLE/TBODY/TD/DIV[@class='product']/SPAN/A. Each
such XPath is general enough to cover more than just the original <A> element,
but restrictive enough to address only those elements similar to it. This is called the
generalization phase, as illustrated by the straight arrows in Figure 4.3.

Each of these <A> XPaths addresses a collection of <A> elements that could
correspond one-to-one with the collection of items to be detected. We wish to find
which of these <A> XPaths corresponds to a collection of items that take the larg-
est amount of screen space.

Next, each <A> XPath is expanded to fully encompass the hypothetical items
that the <A> elements reside within. To expand an XPath, we repeatedly append
/.. to it (see the curved arrows in Figure 4.3). As /.. is appended, the set of HTML
elements that the XPath addresses gets closer and closer to the document root. As
long as the cardinality of that set remains unchanged, each HTML element in that
set still resides spatially inside a hypothetical item. When the cardinality of the set
drops, the XPath has been expanded too much such that it now describes the par-

4. Extracting Data

96

ent node(s) of the hypothetical items. For example, in Figure 4.3, if we append
another /.., the resulting XPath would address a single TBODY element rather than
two TR elements. We stop appending /.. just before that happens. The result is a
candidate item XPath.

Note that we append /.. rather than truncate ending segments because trun-
cation loses information. If the XPath in Figure 4.3 were instead truncated 4 times,
the resulting XPath, /HTML/BODY/TABLE/TBODY/TR, would have included the mid-
dle TR, which does not have a link inside and could be extraneous, intervening con-
tent. Using /.. guarantees matching only nodes that have the link inside them.

For each candidate item XPath, we calculate the total screen space covered by
the HTML elements it addresses. The candidate item XPath with the largest screen
space wins and is then used to add highlight overlays to the web page.

Figure 4.3. Given a starting HTML element, an item XPath is constructed by
generalization to similar elements (straight arrows) and then expansion (curved
arrows).

/HTML/BODY/TABLE/TBODY/TR/TD/DIV[@class='product']/SPAN/A/../../../..

BODY

ASPAN

DIV[@class= ‘product’]
TDTD

TR

ASPAN

DIV[@class= ‘product’]
TDTD

TR

TBODY

TABLE

TDTD
TR starting

element

1. generalization
2. expansion

4. Extracting Data

97

Subsequent-Page Detection4.2.2

Two heuristics are used to automatically detect subsequent pages. The heuristics
are run in the order presented below, and when one succeeds, its results are taken
as final.

Link Label Heuristic4.2.2.1

Often, a web page that belongs in a sequence of pages contains links to the other
pages presented as a sequence of page numbers, e.g.,

 Pages: 1 [2] [3] [4] [5] [Next] [Last]
Occasionally, such a sequence shows not the page numbers but the indices of the
items starting on those pages, e.g.,

 Items: 1–10 [11–20] [21–30]
This heuristic attempts to pick out URLs from such a sequence of linearly increas-
ing numbers. First, the text labels of all <A> links on the current web page are
parsed. Only labels that contain numbers are kept. They are then grouped by the
XPaths generated from the <A> elements. For each XPath, the numbers parsed
from the labels are sorted in ascending order. Only those XPaths with linearly in-
creasing sequences of numbers are kept. These final candidates are then sorted by
the lengths of their sequences. The XPath with the longest sequence is then used
to pick out URLs to subsequent pages. If there is a tie, the XPath whose sequence
increases at the highest rate wins. This heuristic fails if no XPath has a linearly
increasing sequence of numbers.

URL Parameter Heuristic4.2.2.2

URLs of pages in a sequence often encode the page numbers or the starting item
indices as numeric URL parameters. For instance, Amazon.com encodes page
numbers in the page parameter and Yahoo.com encodes starting item indices in
the b parameter (Table 4.1). This heuristic attempts to detect such parameters so
that URLs to subsequent pages can be generated. The URLs pointed to by all the
links on the current web page are parsed to extract out URL parameters. For each
parameter that has numeric values, its numeric values are collected in an array
and sorted in ascending order. Then, only parameters whose values form linearly
increasing sequences are kept. These final candidates are sorted by the lengths of
their value sequences. The parameter with the longest sequence is then used to
generate URLs to subsequent pages. If there is a tie, the parameter whose sequence
increases at the highest rate wins. This heuristic fails if no parameter has a linearly
increasing sequence of values.

If these heuristics fail then the user can intervene and point at the link to
one of the subsequent pages (not necessarily the immediately following page). The
XPath of that link is then computed, which describes a collection of <A> elements.
Given such a collection of <A> elements, the following heuristic is used to pick out
the one that points to the next page.

4. Extracting Data

98

Next Page Heuristic4.2.2.3

Table 4.1 gives some sample URL spaces of contemporary web sites. Pages in a
sequence might not differ by only one URL parameter which encodes either the
page number or the index of the starting item. In some cases, more parameters are
inserted (e.g., %5Fencoding=UTF8 at Amazon.com) and some existing ones are re-
moved (e.g., search-alias=aps at Amazon.com). In other cases, URL parameters
are not used at all (e.g., at Dogpile.com). Rather, some segments of the URL are
used to specify the current page. Worse yet, the whole URL of the current page is
encoded as a single URL parameter to another domain for some tracking purpose
(e.g., at Yahoo.com).

The next page heuristic sorts candidate URLs together with the current page’s
URL and picks out the URL immediately “larger” than the current page’s URL.
Simple string sorting does not work as page=10 will be “less” than page=9. Instead,
each URL is broken into fragments separated by /, ?, and &. Then the URLs are
sorted by comparing corresponding fragments that contain numbers. (This heuris-
tic cannot handle Yahoo’s URL space as shown in Table 4.1.)

Amazon.com (search for “metallica”)

Page 1 http://www.amazon.com/gp/search/ref=br_ss_hs/103-8791841-3931026?search-
alias=aps&keywords=metallica

Page 2 http://www.amazon.com/gp/search/103-8791841-3931026?%5Fencoding=UTF8&keywords=metal
lica&rh=i%3Aaps%2Ck%3Ametallica&page=2

Dogpile.com (search for “haystack”)

Page 1 http://www.dogpile.com/info.dogpl/search/web/haystack/1/-/1/-/-/-/-/-/-/-/-/-/-/-/-
/-/417/top

Page 2
http://www.dogpile.com/info.dogpl/search/web/haystack/21/20/2/-/0/-/1/1/1/

off/-/-/-/on7%253A1142948788129/-
/-/-/-/-/-/-/-/-/-/0/417/top/-/Moderate/0/1

Yahoo.com (search for “piggy bank”)

Page 1 http://search.yahoo.com/search?p=piggy+bank&sm=Yahoo%21+Search&fr=FP-tab-web-
t&toggle=1&cop=&ei=UTF-8

Page 2

http://rds.yahoo.com/_ylt=A0SO7BP_BSBEmDUBnB1XNyoA/SIG=1a95brnl3/
EXP=1143035775/**http%3a//search.yahoo.com/search%3fp=piggy%2bbank%26sm=Yahoo%2521%2bSe
arch%26toggle=1%26ei=UTF-8%26xargs=12KPjg1hVSt4GmmvmnCOObHb%255F%252Dvj0Zlpi3g5UzTYR6a9
RL8nQJDqADN%255F2aP%255FdLHL9y7XrQ0JOkvqV2HOs3qODiIxkSdWH8UbKsmJS5%255FIppC7fdaXlzO4Edh
Lu3xdZvcEwddl%252DCKIGrnZrMAebJ%26pstart=6%26fr=FP-tab-web-t%26b=11

Page 3

http://rds.yahoo.com/_ylt=A0Je5rSsRClEQEMBMnZXNyoA/SIG=1ee941i5r/
EXP=1143641644/**http%3a//search.yahoo.com/search%3fp=piggy%2bbank%26sm=Yahoo%2521%2bSe
arch%26toggle=1%26ei=UTF-8%26xargs=12KPjg1wlSrYe9mvinCOObHb%255F%252Dvj0Zlpi298gfUcw7Ct
db8wZsHdFKaMee27khE7c73zzVzoPFrx4lLLvKhaK6UAbWdU%255F9KP537Zco%255FblIfv7yHZF8ny4dx2bJh
NJ%252DxEnwUSzg0%255FG96gL9PZrI51h56MlamFqDYcL67GOa3P8trJbq2yZ47l7PQqtGvrUp4fyPAxY%252D
U0xkfKiODxZKVmB6%252Dd1zhe%252DiJlwigB%252DQ5WgZqFw2DDMLDZ3WaL466ObkmfuYSNPN%26pstart=1
1%26fr=FP-tab-web-t%26b=21

Table 4.1. The URL spaces of web sites are diverse and opaque. They present
difficulties in determining the “next page” link given a page within a sequence
of search result pages. URL fragments that vary from page to page are in bold
typeface. Fragments that might specify page numbers or starting item indices are
underlined.

4. Extracting Data

99

Field Detection4.2.3

Field values within the DOM fragments of items can be picked out if what vary
among the fragments can be isolated from what are common among many of them.
To detect what are common and what vary, any tree alignment algorithm [53, 62,
70] can be applied to these DOM fragments. The result of the tree alignment is a
DOM tree template with some nodes marked as variable and some nodes marked as
common, or non-variable. The non-variable nodes are decorative elements, and
the variable nodes correspond to fields. Generic field names (e.g., “field0”, “field1”)
are then assigned to the variable nodes in the DOM tree template.

After field assignment is complete, the template is ready to be used. The DOM
fragment of each item to be extracted is aligned to the DOM tree template. If a
node in the item is aligned to a variable node in the template, its text content is
extracted and stored in the corresponding field.

Embedded, Typed Fields4.2.3.1

Often, a field value does not take up a whole HTML text node. That is, you might
not find a price field value “14.99” to be the only text inside a DOM text node.
Instead, you might find that the text node contains “You save $14.99!” To handle
such cases, the tree alignment must work not at the granularity of HTML nodes, but
at the granularity of tokens within text nodes.

Care must be taken when parsing “You save $14.99!” into tokens lest “14” and
“99” be split into different tokens. Splitting “14” and “99” apart will cause two
different fields to be generated; sorting or filtering by a single price field is no lon-
ger possible. Similarly, splitting “Published on March 29, 1998” into tokens must
keep “March”, “29”, and “1998” together as a single date token. In other words,
tokenization must generate typed tokens for numbers and dates so that sorting and
filtering on the corresponding fields will be possible.

A side effect of tokenization is that paragraphs of text (e.g., product review
comments, publication abstracts) can cause too many fields to be generated as their
tokens don’t align. To solve this problem, in the field assignment phase, if there are
too many variable tokens that are siblings of one another, then their immediate
parent is assigned a field name instead.

4. Extracting Data

100

Evaluation4.3

Sifter has been tested for robustness in its extraction algorithm as well as for usabil-
ity in its user interface. The two evaluations are presented separately below.

Evaluation of Data Extraction4.3.1

Sifter’s extraction algorithm has been tested on 30 collections of items from 30
common web sites, including Amazon, Best Buy, CNET Reviews, Froogle, Target,
Walmart, and Yahoo Shopping (Table 4.3). These collections contain from about
25 to 450 items each, spanning from two to 25 pages, with each page containing
from nine to 50 items. The results are shown in Table 4.4.

The item detection algorithm worked perfectly on the first pages of 23 col-
lections (out of 30, 77% accuracy). For the failure cases, Sifter’s item highlighting
tool was used and four cases were corrected. Overall, item XPaths could be found
for 27 of the 30 collections (90%). In the remaining three cases, items consisted of
sibling nodes, which we do not currently handle.

Among the 30 sites, 24 (80%) displayed sequences of page numbers, also called
page tables of content (rather than just “Next Page” links). The Link Label Heu-
ristic detected 13 sequences, and the URL Parameter Heuristic detected two ((13
+ 2)/24 = 63%). The Next Page Heuristic (requiring users’ intervention) worked
on 9 of the remaining 15 cases (9/15 = 60%). Overall, subsequent pages could be
identified for 23 out of 30 collections (77%).

There were 21 collections for which item XPaths could be found and subse-
quent pages could be identified accurately. Out of these 21 collections, 19 were
perfectly extracted, yielding precisely the original numbers of items. The overall
accuracy of extraction is 19/30 = 63%.

Note that accuracy was measured per collection rather than per item as in
other data extraction work. To put this in perspective, the latest work on data ex-
traction [77] processed 72 manually provided pages from 49 sites and achieved 40/49
= 82% collection accuracy. Over the 23 collections for which subsequent pages
could be identified, our algorithm processed 176 pages automatically and achieved
19/23 = 82.6% collection accuracy.

The fields extracted that could be useful for filtering and sorting included: cur-
rent price, original price, percent saving, author, artist, medium, date, shipping op-
tion, brand, number of store reviews, number of bids, container size, city, etc.

Evaluation of User Interface4.3.2

Since augmentation of web sites is a novel concept even to experienced web users,
a formative evaluation of Sifter’s user interface has been conducted to determine
whether it was basically usable and useful, assuming the automatic extraction algo-
rithm performed its best.

4. Extracting Data

101

Design and Procedure4.3.2.1

This study consisted of a structured task (during which the subjects took simple
steps to familiarize with Sifter) followed by an unstructured task (during which the
subjects employed their own knowledge of Sifter for problem solving).

At the beginning of each study session, the subject was told that she would
learn how to use something called Sifter herself but was given no particular in-
structions on how to use it. This was patterned after the study on the Flamenco
system in which the subjects were not introduced to the system in order to better
mimic real world situations [76].

Task #1 required the subject to:
follow a sequence of simple steps to use the Sifter pane to sort and filter a •
collection of 48 items spread over 3 web pages obtained by searching Ama-
zon.com for “jeffrey archer.” The desired final result was the sub-collection
of only hardcovers and paperbacks published in 2004 or later, sorted in de-
scending order by their used & new prices. The sequence of steps consisted
of high-level “filter by date” and “sort by price” instructions, not low-level UI
“click this button” and “select that list item” actions.
use the Sifter pane by herself to obtain the list of 3 cheapest (if bought used) •
paperbacks by John Grisham in 2005 from Amazon.com.
spend no more than 5 minutes using only the Amazon web site, but not •
Sifter, to find the 3 cheapest (if bought used) hardcovers by John Grisham
in 2004.

Task #2 required the subject to:
use the Sifter pane to decide whether the sale on Prada products on Ashford.•
com was good or not.
use the Sifter pane to list 2 or 3 products among those that the subject con-•
sidered good deals.
use only the Ashford.com web site to judge whether the sale on Gucci prod-•
ucts on Ashford.com was good or not, using the same criteria that the subject
had used in judging the sale on Prada products.

Amazon.com was chosen for Task #1 as its search results were very structured,
containing many fields useful for filtering and sorting. Furthermore, Amazon.com
is popular and the subjects were more likely to be familiar with it. Ashford.com was
chosen for Task #2 as its search results contained only two fields (price and percent
saving), making it simpler to perform the high-level task of judging its sales.

At the end of the session, the subject rated her agreement/disagreement with
12 statements (on a 9-point Likert scale) regarding her experience learning and
using Sifter.

Participants4.3.2.2

Eight subjects (4 male, 4 female) were recruited by sending an e-mail message to a
mailing list and posting paper ads around a local college campus. Six were in their
20s, the other two were 30s and 40s. All 8 subjects used the Web almost everyday,
and all subjects visited Amazon.com at least a few times a month. None had ever
visited Ashford.com.

4. Extracting Data

102

Web Site Collection within Web Site #Items/Page x #Pages Has Page TOC? Total #Items
1. acehardware.com Kitchen faucets (plumbing) 9 x 5 44
2. adesso.us Keyboards 16 x 2 26
3. alibris.com Search for “John Grisham” 25 x 4 96

4. amazon.com

Search for “Jeffrey Archer” 16 x 3 48

5. ashford.com Prada products 9 x 7 59
6. bargainoutfitters.com Women’s footware 12 x 25 290
7. bestbuy.com Point & shoot digital cameras 25 x 5 111
8. buy.com Box sets 12 x 6 72
9. cameraworld.com SLR lens over $400 25 x 4 95

10. reviews.cnet.com Dell desktops 10 x 10 93
11. compusa.com Search for “hard drive” 20 x 15 287
12. dealtime.com Lavender (flowers and plants) 21 x 9 179
13. drugstore.com Hand creams (lotions) 15 x 6 87
14. antiques.listings.ebay.com Globes (maps, atlases, globes) 50 x 9 444
15. essentialapparel.com Women’s sportswear 10 x 6 55
16. froogle.google.com Search for “rebel xt” 10 x 10+ >100
17. newegg.com Notebooks/laptops, $1500–$2000 20 x 3 42
18. nextag.com Hotels in Boston, 3* 15 x 4 58
19. nordstrom.com Women’s wallets & accessories 21 x 4 74
20. officedepot.com Fully adjustable chairs 10 x 6 55
21. overstock.com Coins & stamps (collectibles) 24 x 3 58
22. radioshack.com All MP3 players & ipods 10 x 5 50

23. rochesterclothing.com Casual pants 20 x 3 53
24. shoebuy.com Adidas, womens, 6.5 12 x 3 26
25. shopping.com Stainless steel rings < $50 30 x 8 236
26. smartbargains.com Ties (men’s apparel) 16 x 2 28
27. target.com Clearance “table” 20 x 14 276

28. tigerdirect.com Digital photo printers 10 x 4 38
29. walmart.com Houseware, $20–$50 20 x 4 76
30. shopping.yahoo.com PDA cell phones 15 x 15 222

3378

Table 4.3. Thirty popular retailer web sites were used to test Sifter’s web data extraction algorithm. A
search or browse operation was performed on each site and the number of result items per page and the
number of result pages were noted. Whether the first search result page contained a table of content of
links to subsequent result pages (as opposed to “Next” links) was also recorded as it affected the algorithm.

4. Extracting Data

103

Pages Detected? - Correctable By Users?
Items Detected? - Correctable By Users? Total Original #Items

Has Page TOC? Total #Items Extracted - Perfect extraction?
Web Site Useful Fields

1. acehardware.com 44 44 price
2. adesso.us 26 16
3. alibris.com 96 96 author, old price, new price, quick buy

price, signed copies?
4. amazon.com 48 48 author, type, date, total # items, buy

new original price, buy new current
price, used & new price, shipping info

5. ashford.com 59 59 price, percent saving
6. bargainoutfitters.com 290 290 price
7. bestbuy.com 111 0
8. buy.com 72 72 artist, price, saving
9. cameraworld.com 95 95 price

10. reviews.cnet.com 93 93 price
11. compusa.com 287 287 brand
12. dealtime.com 179 179 # store reviews
13. drugstore.com 87 15 price, size
14. antiques.listings.ebay.com 444 444 # bids, price
15. essentialapparel.com 55 110 old price, current price
16. froogle.google.com >100 100 mininum price
17. newegg.com 42 20 shipping fee, # reviews
18. nextag.com 58 55 city, zip code, price 1, price 2
19. nordstrom.com 74 74 price
20. officedepot.com 55 0
21. overstock.com 58 24
22. radioshack.com 50 50 has ratings?, out of stock/in store/on-

line, 1-2 or 2-3 days shipping
23. rochesterclothing.com 53 52 price
24. shoebuy.com 26 26 on sale?, price, % off, original price
25. shopping.com 236 0
26. smartbargains.com 28 28 retail value, our price, % saving, # left
27. target.com 276 276 list price, our price, save amount, save

percent, shipping info
28. tigerdirect.com 38 38 price, in stock or shipping info, brand
29. walmart.com 76 76

30. shopping.yahoo.com 222 210 exact price
77%, 90% 43%, 77% 3378 2820

Table 4.4. The results of testing Sifter’s web data extraction algorithm. Whenever the algorithm failed,
user intervention was attempted and the intervention’s success was recorded. User intervention brought
the overall success of locating items to 90% and of locating subsequent pages to 77%. The success rate for
recovering whole collections was 19/30 = 63%.

4. Extracting Data

104

All subjects had used the Web for more than just shopping. They had searched
for some combinations of the following types of information: news; images; con-
tact information of people and organizations; maps and driving directions; hobbies
(e.g., recipes, chess); reviews (on restaurants, movies, books, products); tutorials (e.g.,
languages, logics); and professional research (e.g., publications, scientific data).

Apparatus4.3.2.3

Subjects received $10 each for participating in a 30 – 45 minute study session.
All sessions were conducted by one investigator on a single computer (Pentium 4
2.53GHz, 1.00GB) with an 18" LCD flat panel at 1600×1200 resolution in 32-bit
color and a Microsoft Wireless IntelliMouse Explorer 2.0 (with mousewheel), run-
ning Microsoft Windows XP. UI events were recorded in a timestamped log and the
investigator observed the subjects and took written notes.

Results4.3.2.4

All subjects completed the parts of Task #1 involving Sifter. Only 5 out of 8 com-
pleted the parts involving using the Amazon web site without Sifter. The other sub-
jects could not learn how to use Amazon to perform sophisticated queries within
5 minutes. Among the 5 subjects who succeeded, only one made use of Amazon’s
Advanced Search feature. The other 4, despite their previous experience with the
Amazon web site, could only sort the items by one criterion and manually scan the
list for items satisfying the other criteria. This indicates that advanced browsing
features implemented by the web browser in a unified manner across web sites may
be more discoverable, learnable, and usable than those same advanced features of-
ficially supported by individual web sites but have been suppressed in favor of more
commonly used functionality.

Seven subjects completed Task #2 and one refused to finish Task #2 as he said
he had no knowledge of Prada and Gucci products and thus could not judge their
sales. For the first part of Task #2, 6 out of the 7 subjects used Sifter to look at the
distribution of the percent saving. One subject could not understand how Sifter
would help her judge the sale.

Table 4.2 shows encouraging evidence that the subjects found Sifter powerful
yet easy to learn and use. However, the extraction process was thought to be slow.
Data extraction speed depends on network performance and web server respon-
siveness, but on average, each test collection of 50 or so items took 30 seconds to
extract.

Although there was no show-stopper problem with the user interface, some
users were taken aback by the verification step (when the system announced its
estimate of the items to be extracted and asked for confirmation). As they saw no
other choice except clicking “Continue,” they did so just to see what would happen
next, in hope but not certain that that route would ultimately allow them to sort
and filter. This behavior was not a surprise as web site augmentation was a new
experience and the necessity for extracting data before augmentation could take
place was poorly understood, if understood at all. To fix this problem, the accuracy
of the algorithms must be boosted, subsequent pages must be pre-loaded and pro-

4. Extracting Data

105

cessed even before the user clicks “Filter/Sort Items,” and the user must be allowed
to make corrections from the augmentation UI.

Sorting operations took very little time and the re-shuffling of items inside the
web page was too fast and subtle to shift the user’s attention from the Sifter pane
where she just invoked a sorting command to the web page. The user often had
to double-check the resulting list of items herself. To fix this, we can slow down or
animate the changes in the web page. Filtering operations produced more drastic
changes and did not suffer from the same problem.

One subject opened too many browsing control boxes and became confused
as to which field each box corresponded to. He was not able to notice the synchro-
nized highlighting of browsing control boxes and field asterisks. To fix this, we can
color-code the asterisks and the browsing control boxes as well as use a variety of
shapes rather than just asterisks.

Asked to filter for only items published in 2005, some subjects had to manu-
ally find one sample item published in 2005 in order to click on the asterisk next
to its publishing date. Other subjects simply clicked on the asterisk next to any
publishing date. If we are able to derive meaningful field names, this problem will
be resolved.

Five of the 8 subjects interacted with the faded areas of the web pages when
they needed to use the web sites’ functionality (e.g., performing a search for “john
grisham”). The other three subjects either refreshed the web pages or retyped their
URLs. In the future, Sifter’s UI can be changed to let users feel more comfort-
able making use of the original web sites’ features, knowing the difference between
those original features and the added functionality.

strongly
disagree 1 ©ìÊ�©�©�� 9 strongly

agree 1. Sifter is hard to learn how to use.

1 ÊÊ©©�©�©� 9 2. Sifter is tedious to use.

1 ÊÊì�©���� 9 3. The filtering and sorting features in Sifter are slow.

1 ©Ê©©©Ê��� 9 4. Sifter shows redundant information (easily found on the Web sites).

1 ©�©��ìÊ©� 9 5. After clicking “Continue,” I need to wait for a long time before I can use Sifter.

1 ����©�ìÊÊ 9 6. Sifter is simple to use.

1 ���©�©©ìÊ 9 7. Sifter is powerful (providing advanced features).

1 �����ÊÊ©ì 9 8. Sifter displays interesting information.

1 �����©ÊÊì 9 9. Sifter displays useful information.

1 ��©�ÊÊ©©© 9 10. Sifter is enjoyable to use.

1 �����ÊÊÊÊ 9 11. Sifter adds value to the Web sites in this user study.
strongly
disagree 1 ����©©©Êì 9 strongly

agree 12. I believe Sifter will add value to some other Web sites I have used.

Table 4.2. Results from the exit survey of the formative evaluation show en-
couraging evidence that the Sifter pane is usable (#1, #2, #6) and useful (#8, #9,
#11, #12) even when it is considered to offer advanced functionality (#7) .

4. Extracting Data

106

One subject—the only one who used Amazon’s Advanced Search feature—
asked when she would be able to use Sifter in her own browser. She mentioned that
there were a number of sites she used frequently which did not offer the browsing
functionality that she needed. Another subject said that although he never had to
perform the kinds of task in this study on the Web, he had to perform similar tasks
in spreadsheets.

Summary4.4

This chapter puts forth ideas in which presentational elements of web pages can
be retained and used in web data extraction toward saving users from the tedious
field labeling task as well as enhancing the usage of the extracted data. Advanced
browsing features can be added right inside the original pages, preserving visual
context and leveraging custom presentational designs on the original pages rather
than downgrading to a generic presentation template.

