
107

As demonstrated in the last chapter, it is feasible today to let casual users with no
programming skills extract data from the text-centric Web for reuse. Such capabil-
ity is already useful for any single web site that does not offer the features that a
casual user needs. More empowering to casual users is the ability to combine data
from several sites to get values that no single site can offer by itself.

Like conventional data extraction tools, conventional data integration tools
have also been built for a different audience than casual users. For a typical conven-
tional data integration task, such as merging huge databases of two institutional li-
braries together to serve the combined data through a new web site, several experts
and programmers are involved to handle different aspects of the task, including
aligning the schemas, cleaning up the data, and then building the web site. Each
tool employed is specialized for one stage of the process and designed to handle
large, complex data sets. In contrast, a casual user might just want to merge two
lists of a few dozens of addresses from two web sites together to plot them on a
common map. There is much less data and the data is much simpler. Power tools
used by experts are too advanced for casual users.

Compared to experts, casual users lack both data modeling skills and program-
ming skills. However, for small, simple data sets, neither skill set may be crucial.

First, when the data set is small, schemas—useful for efficiently reasoning •
about a massive quantity of data in the abstract—are not as useful and can intro-
duce overhead cognitive costs. Instead of having to learn about theoretical concepts
like schemas, casual users can manipulate data instances directly. Visual semantics
are often enough: if the data “looks right” in the user interface, it most probably
has been edited correctly and there is no need to verify the data model.

IntegratIng Data5.

5. IntegratIng Data

108

Second, instead of using programming to process data, casual users can just •
use direct manipulation techniques. For example, two fields can be aligned by drag-
ging and dropping one onto the other.

These ideas have been built into Potluck, a tool that lets casual users—non-
programmers—integrate data all by themselves. This chapter will next describe a
hypothetical usage scenario for Potluck. Using various challenges in that scenario
as motivations, the user interface of Potluck will be explained. Then Potluck’s im-
plementation will be detailed. Finally, an evaluation of Potluck is reported.

Scenario5.1

Before describing the user interface of Potluck, this section motivate it with a sce-
nario that illustrates various idiosyncrasies of data integration. Let us be optimistic
that within a decade, the Semantic Web will be prevalent and RDF data will be
everywhere. Even in this future world, users will still face problems integrating data
from different sources and tools such as Potluck are still needed.

In 2017, a historian named Henry is documenting the first cases of a rare ge-
netic disease called GD726. These first cases occurred in the Valentine family in the
1820s. He wants to include in his final report a genealogical tree of the Valentine
family, annotated with the disease’s infliction, as well as a comprehensive table of
the Valentines’ data in an appendix.

Like most historians, Henry is not a programmer but he is experienced in
collecting and managing data in his professional work. The proliferation of RDF
means that Henry does not need programming skills to scrape HTML himself: all
the information needed for his research has been converted into RDF by various
independent organizations and individuals, both professionals and enthusiasts.
Henry thinks it would be trivial to simply pool the RDF together and call it done.

Henry tracks down various birth certificate issuing offices and death certifi-
cate issuing offices where the Valentines lived for their RDF data. He notes that
some offices use dc:date in their data to mean “birth date,” some to mean “death
date,” and some “certificate issuing date.” It would be disastrous to consider all the
dc:dates the same even if the same predicate URI is used.

Henry also tracks down hospital records, which contain hospital:tod (short
for “time of death”). Hence, hospital:tod is equivalent to some of the dc:dates.
It would be hard to match hospital:tod with dc:date based on string analysis
alone, yet match for some of the cases only.

The records all have geographical location names, but these names are not
fully qualified. Those responsible for digitizing them thought that since all loca-
tions were within their country, there was no need to include the country name.
As a consequence, Henry needs to append the country name to the many location
names in order to map them.

5. IntegratIng Data

109

People’s names are encoded in two different forms: “first-name last-name” in
some data sets and “last-name, first-name” in others. Nick names are also present
(e.g., “Bill” instead of “William”, and “Vicky” instead of “Victoria”).

The hospital records also pose problems. While most of their admittance dates
are in ISO 8601 format, a few are of the kind “Easter Day 1824.” Such sloppiness
has been observed in industrial and institutional databases, and should be expected
on the Semantic Web.

Despite all these problems, there is one good thing about the data: Henry can
reliably get the mother and father of each Valentine through the gen:mother and
gen:father predicates, which seem to be very widely adopted. This helps Henry
construct a genealogical tree visualization.

However, as males and females both have equal chance of passing on GD726,
Henry wants to treat gen:mother and gen:father the same while tracing the
disease through the family. Unfortunately, adding an owl:sameAs equivalence be-
tween those two predicates will break his genealogical tree.

While all parties involved in this scenario acted logically and responsibly, Hen-
ry still ends up with a mess of RDF. To fix up the data, Henry must be able to:

Merge • dc:dates into several groups (the birth dates and the death dates) even
though they all use the same predicate URI. This requires distinguishing the
fields by their origins rather than just by their URIs.
Merge • gen:mother and gen:father together in some situations while keep-
ing them separate in other situations. This precludes the simple approach
of adding owl:sameAs statements in the data model to implement equiva-
lences.
Edit the data efficiently to unify its syntax.•
Fix up the data iteratively as he learns more and more about the data.•

These are the tasks that must be supported by such a tool as Potluck in order for a
casual user such as Henry to be able to integrate data all by himself.

User Interface5.2

This section describes Potluck’s user interface, showing how it addresses the prob-
lems in the scenario above. The reader is encouraged to view this screencast to
understand Potluck’s interactivity:

http://people.csail.mit.edu/dfhuynh/research/media/iswc2007/.

Figure 5.1 shows the starting screen of Potluck where the user can paste in
several URLs and click Mix Data. This results in Figure 5.2, which lists data records
from the original web pages. The records are interleaved by origins —the pages
from which they have been extracted—to ensure that some records of each data
set are always visible.

Fields are rendered as field tags: , , and . Field tags are color-
coded to indicate their origins: blue from one source and pink from another in

5. IntegratIng Data

110

Figure 5.2. Three core fields, label, type, and origin, are automatically assigned
to all records and their tags are colored gray. Fields from different origins having
the same name are considered different. For example, while means office
phone, might mean secretary’s phone. Or more dangerously, dc:date in the
scenario (in section 2) has several distinct meanings. These semantic differences,
subtle or significant, might or might not be important to one particular user at
one particular moment in time. Keeping the fields apart rather than automatically
merging them together allows the user to make the decision whether or not to
merge.

Figure 5.1. The starting screen of Potluck. Clicking Mix Data yields the mixed
data in a screen like Figure 2.

5. IntegratIng Data

111

Figure 5.2. Potluck’s user interface shows data that has just been mixed together
but not yet processed by the user. Fields are rendered as draggable “field tags,”
color-coded to indicate their origins. There are two drop target areas for creating
columns and facets.

5. IntegratIng Data

112

Creating columns and facets5.2.1

A field tag can be dragged and dropped onto the gray column to the left (Figure
5.2) to create a new column listing that field, or onto the gray box to the right to
create a facet for filtering by that field. Figure 5.3 shows a newly created column.
A column or facet can be moved by dragging its field tag and dropping the tag
between other columns or facets. Deleting a column or facet (by clicking its)
removes the column or facet from the display but does not delete the correspond-
ing field’s data.

Figure 5.3. Potluck renders a new column to the left when is dropped into
the New Column drop target. Since the second record is not from the same origin
as the dropped field, its cell in that column shows .

5. IntegratIng Data

113

Merging fields5.2.2

A field tag can be dropped onto an existing column or facet in order to make that
column or facet contain data for both the original field and the newly dropped
field. Such an operation creates a merged field, whose field tag is rendered as a visual
juxtaposition of the original tags, taking on a pill-shaped form . Figure
5.4 shows several columns and facets of merged fields. Merged field tags can be
dragged and dropped just like elemental field tags can in order to create new col-
umns and facets, or to merge into other existing columns and facets.

Creating a merged field does not disturb the elemental fields. Thus, in the sce-
nario, it would be easy to have gen:mother and gen:father merged together for
one purpose while keeping them separate for another purpose, all at the same time.

Figure 5.4. A screen shot of Potluck showing several columns and facets of
merged fields. The records’ details have been collapsed to make space for the
columns.

5. IntegratIng Data

114

Furthermore, the merging operation is not transitive, so that, say, merging fields
mother and father together (to mean parent) and then mother and grandmother
together (to mean female ancestor) does not force all three fields to be merged
into mother/father/grandmother.

Simultaneous editing5.2.3

The edit link next to each field value opens up the Simultaneous Editing dialog box
where the values of that field can be edited en masse (Figure 5.5). The concept of
simultaneous editing originated from LAPIS [58], a text editor that displays several
keyboard cursors simultaneously on a text document, generalizes the user’s editing
actions at one cursor, and applies them to the text at the rest of the cursors. Based
on the user’s mouse clicks, LAPIS guesses how to divide the text document into re-
cords (often into lines or paragraphs) and where the cursors should be placed within
those records (e.g., after the second word of the third sentence in each paragraph).
Whereas LAPIS has to guess what a record is for the purpose of simultaneous edit-
ing, Potluck already has the field values conveniently separate. Potluck groups field
values into columns by structural similarity, e.g., the phone numbers in the second
column all have area code 212. These columns serve to visually separate out values
of different forms, call out outliers (such as “Easter Day 1824” in the scenario), and
let the user edit different forms differently. The user can click on any field value to
give it keyboard focus, and editing changes made to it are applied to other values in
the same column in a similar fashion. The multiple cursors in Figure 5.5 give visual
feedback of the simultaneous editing operations in progress.

If a value appears in several records it is shown in only one entry in the dialog
box. In the scenario, if the nickname “Bill” appears in three records, the user can

Figure 5.5. Potluck’s Simultaneous Editing dialog box lets the user change sev-
eral similar values simultaneously by editing any one of them. Multiple keyboard
cursors are shown and any editing change to the focused value is immediately
reflected in the other values.

primary cursor

secondary
cursors

5. IntegratIng Data

115

click on its single entry in the dialog box, set the checkbox Edit this value separately
from the others, and change it to “William” to correct all three records.

Simultaneous editing is useful for correcting inconsistencies between data sets
that occur many times, such as prefixing area codes to phone numbers and wrap-
ping existing area codes in parentheses. It is also useful for reformatting a field, such
as changing “first-name last-name” into “last-name, first-name”, and for making
a new field out of an existing field, such as extracting building numbers (32) from
within office numbers (32-582).

Faceted browsing5.2.4

Faceted browsing [76] is a browsing paradigm in which a set of records can be
filtered progressively along several dimensions in any arbitrary order. For example,
a set of recipes can be filtered by picking an ingredient first, a cooking method
second, and a cuisine finally, or by picking a cuisine first, then an ingredient, and a
cooking method finally depending on which order suits the user best. Because the
data Potluck handles is often multidimensional, faceted browsing is useful in Potluck
as it is designed for exploring multidimensional data in flexible, user-controllable
ways. Exploration is needed for identifying and selecting out just the subset of data
that is useful as well as for isolating on records that need cleaning up. All faceted
browsers so far work on single data sets. Potluck extends faceted browsing for the
data integration task in which data arrives from many sources.

If within a facet there are records for which the corresponding field is missing,
the facet explicitly shows a choice for filtering to those records (Figure 5.6). This
visual element, not present in conventional faceted browsing interfaces, also serves

Figure 5.6. If inside a facet there are records
for which the corresponding field is missing, the
facet shows as a choice so that the
user can get to those records.

Figure 5.7. The origin facet does not remove
choices for which there are no records. More-
over, it pops up messages to call the user’s atten-
tion to those filtered out origins.

5. IntegratIng Data

116

to remind the user that, if that field is an elemental field instead of a merged field,
the field is not present for records in other data sets.

While working with multiple data sets at the same time, it can be easy to forget
that an elemental field from one data set does not exist in the others. Whenever
a facet choice causes all records from an origin to be filtered out completely, that
origin remains in the origin facet and a message is popped up drawing the user’s
attention to it (Figure 5.7).

Visualizations5.2.5

Potluck currently provides two visualizations: a tabular view and a map view. Figure
5.8 shows the map view in which any field containing street addresses or latitude/
longitude pairs can be dropped onto the map view to plot the records. The map
markers can also be color-coded using drag and drop. Faceted browsing is sup-
ported concurrently so that the user can construct a map while browsing through
the data at the same time.

Miscellany5.2.6

Potluck provides drop down menus on left clicks as alternatives to drag and drop
in order to increase the likelihood that the user succeeds at finding some way to ac-
complish a task. The browser’s Back and Forward buttons can be used to redo and
undo user actions. Like contemporary highly interactive web interfaces, Potluck
also shows the most recently done or undone action and provides a link to undo
or redo it.

Implementation5.3

Potluck consists of two components: a server-side component implemented as a
Java servlet, responsible for retrieving the data within the Exhibit-embedding web
pages to mix; and a client-side component implemented in Javascript on top of the
Exhibit API, responsible for all the user interface interactivity.

Merged fields are implemented as query unions: when the values of a merged
field are requested, the values of each elemental field in that merged field are re-
turned in a single result set. No equivalence is added into the data model so that
merging operations will not be transitive and so that the original elemental fields
can still be used in isolation even after they have been merged.

Simultaneous editing is implemented in Javascript. Each field value is parsed
into a sequence of features. Features are runs of digits, of letters, or of white spac-
es, or individual punctuation marks and symbols. For example, “733-3647” is bro-
ken down into three features: the run of digits “733”, the symbol “-”, and the run

5. IntegratIng Data

117

of digits “3647”. Field values are then clustered into columns by greedily aligning
these sequences of features.

As the user moves the keyboard cursor, makes selections, and edits the text of
one value, the cursor positions are generalized to be relative to the features of the
field value being edited (e.g., “second character from the beginning of the third last
feature”), and then those generalized cursor positions are turned into absolute cur-
sor positions of each of the other field values in the same cluster and used to apply
the edit. Secondary cursors are rendered using colored elements.

As the clipboard Cut and Paste operations cannot be reliably detected, cut-
and-paste must be supported in simultaneous editing using a trick. When some text
is inserted, if that same piece of text has previously been deleted in one edit action,
it is assumed that what has taken place is a cut-and-paste operation. Note that this
trick works only for cut-and-paste, not copy-and-paste.

Figure 5.8. Potluck’s map view allows plotting and color-coding records by
dropping field tags into drop target areas. Faceted browsing is also offered during
map construction.

5. IntegratIng Data

118

Evaluation5.4

A user study on Potluck has been conducted to ascertain whether people could
learn how to use Potluck as well as to discover usability problems. Another purpose
was to observe how people use Potluck in an open-ended task using their own
judgement about which fields to merge and edit, and how to display them, so as to
determine if casual users could actually perform data integration themselves.

Design and Procedure5.4.1

This study consists of two tasks: a structured task during which the subjects per-
formed simple steps to familiarize themselves with Potluck, and an unstructured
task during which the subjects performed an open ended task based on the skills
they had just acquired.

In Task #1, subjects browsed two web pages containing information about
92 people in a lab and 33 people in another lab, and answered questions about
these people in ways that required the pages’ faceted browsing features (e.g., “how
many people are in the Gates tower?”). This warm-up exercise let the subjects
learn about the data and about faceted browsing. Then the subjects were asked to
use Potluck to mix the data in those web pages and to achieve the following goals
(quoted almost verbatim from the study’s instructions):

create a column listing the buildings where people work and make sure the col-•
umn is filled in with information for people from both labs;
create a column listing people’s phone numbers and edit them to have the form •
(xxx) xxx-xxxx, using 617 for phone numbers without area code;
create a column listing people’s job titles;•
create a facet of people’s job titles, use it to filter for people in directing positions •
(directors and co-directors), and determine how many such people there are in
each lab; and
create a column of people’s last names and sort it in ascending order.•

These instructions were not worded in low-level details (e.g., click this button) so to
allow the subjects the opportunities to learn how to use Potluck’s user interface by
themselves and to allow us the chance to discover usability problems.

In Task #2, the subjects were asked to use Potluck to mix data from two Ex-
hibit-powered web pages of 40 + 55 publications and then mock up a single web
page where hypothetical visitors could conveniently sort and filter through all of
those publications as if the data came from a single source. The subjects were left to
their own discretion to decide which columns and facets to create, although some
examples were given in case the subjects were not familiar with the domain.

5. IntegratIng Data

119

Participants and Apparatus5.4.2

Six subjects (2 male, 4 female) from a university community were recruited by
sending an e-mail message to a mailing list and posting paper ads around our col-
lege campus. Four were younger than 30, and two older than 30. They were two
students (mechanical engineering and computer science), two researchers (applied
math and brain and cognitive science), a lawyer, and an applied math consultant.

Five subjects (1 male, 4 female) were also recruited from a local campus’ librar-
ies, who worked with data in their daily job. Two were in their 20s, one 30s, and
two 40s. There was a desire to observe if librarians, who have more experience
working with data, would use Potluck differently.

There were a total of 11 subjects, referred to as G1 to G6 from the general
university population and L1 to L5 from the libraries. All browsed the Web at least
a few times a day and used Firefox as one of their primary browsers.

Subjects received $10 each for participating in a 30 – 45 minute study session.
All sessions were conducted by one investigator on a single computer (Pentium 4
2.53GHz, 1.00GB) with an 18” LCD flat panel at 1600×1200 resolution in 32-bit
color and a Dell two-button mouse with wheel, running Microsoft Windows XP.
The study facilitator observed the subjects and took written notes.

Results5.4.3

All subjects were able to learn Potluck’s user interface with little guidance and to
complete the user study’s tasks within 45 minutes. We now report the results in
more details and point out usability issues to address in the future.

Columns5.4.3.1

Nine subjects out of 11 used only drag and drop to create columns. This indicates
that the relevant visual cues were sufficiently strong. One of the other two subjects,
G5, used the Create Column menu command at first but adopted drag and drop
later. L1 used only the menu command.

G5 and L5 had difficulty understanding that dragging a field tag to create a
column automatically filled up the whole column with data wherever the field was
available. They continued to drag the same field tag out again and again for each
row, paying no attention to the data already shown in the column. The drag feed-
back can be improved to better indicate that the whole field is being dragged, such
as showing ghosted images of several field values near the mouse pointer.

All except one subject merged columns using drag and drop; G2 used the
corresponding menu command. G3 and G4 expected the phone fields from both
sources in Task #1 to be merged automatically. Potluck can be made to suggest
such merging if the field names match precisely.

Most subjects merged position and title together into one column, but one
subject also included group to more fully qualify position. This was because most
title values were more specific than most position values (e.g., “Codirector of
Marketing” vs. “professor”). This operation was actually not what the subject in-

5. IntegratIng Data

120

tended (as he verbalized): the operation performed a set union of two fields instead
of a string concatenation. But as Potluck rendered the group value after the posi-
tion value for each record (e.g., “professor, computer architecture”), the visual out-
come looked right and the subject was contented. However, sorting on this merged
field would produce random orders and a facet created out of this merged field
would list the group and position values separately, not paired together. Potluck
should support string concatenation and suggest it as an alternative to merging
whenever the two fields involved come from the same source. Note that in the
scenario in section 2, concatenation is probably not the desired choice when the
gen:mother field is dropped onto the gen:father field even though both come
from the same source. This is why heuristics should only be used to make sugges-
tions, not to automate.

Facets5.4.3.2

All subjects used drag and drop to create facets. Two subjects initially created fac-
ets using the corresponding menu command, but they discovered the drag and
drop alternative and did not revert to the menu. Merging facets was done solely
using drag and drop. Note that the field tags on facets do not offer any menu (an
oversight in our implementation); only field tags in the details column and in the
column headers support menus.

Some subjects tended to drag already merged field tags from columns to cre-
ate facets while the others dragged elemental field tags from the Details column to
create merged facets. The latter behavior forced the user to re-merge fields she has
already merged; this is both inefficient and error-prone as some subjects did forget
to re-merge fields. Potluck should have automatically suggested or defaulted to the
merged field whenever an elemental field that has been merged is used.

G4 did not initially merge facets in Task #1 to filter for people in directing po-
sitions. Instead, he created two facets, position and title, from the two sources
separately and used to achieve the goal. In either facet, he selected
directing positions as well as so that records in the other source were
not excluded. This required on his part deeper understanding of how faceted
browsing worked. When asked to achieve the goal without using , he
discovered that he could merge facets.

Simultaneous editing5.4.3.3

All subjects were able to edit several phone numbers using the simultaneous edit-
ing feature. G1 anticipated this feature even before clicking edit, asking out loud,
“can I edit them all together?” She later used the feature to delete first names from
people’s full names to get a field of last names. This action properly utilized the
simultaneous editing feature’s power but destroyed data (the first names). Potluck
can be made to alert the user of this loss and offer a convenient way to apply the
edit on a copy of the original field instead.

G4 tried to move the leading “A” from publication titles to the end (e.g., “Tale
of Two Cities, A”) using simultaneous editing (a reasonable goal) but the facilitator
explained that the feature did not support that case. L2 and G6 tried to swap first

5. IntegratIng Data

121

names and last names so that publications could be sorted by their authors’ last
names. L2 selected a last name in the simultaneous editing dialog box and dragged
it to the front of the corresponding first name; unfortunately, a bug prevented this
from working. G6 used keyboard shortcuts for cut-and-paste and succeeded. These
subjects’ actions indicated some intuitiveness in using cut-and-paste and drag-and-
drop for simultaneous editing.

G3 expressed that she did not want to see all phone numbers in the simulta-
neous editing dialog box but only their templates. G5 and L3 edited only the first
group of phone numbers, and L4 edited only the first and third groups, neglecting
the groups that were not scrolled into view. To avoid such oversight, which pieces
of data an edit does and does not affect must be made apparent.

Librarians vs. general subjects5.4.3.4

Among the five librarians, four were catalogers (who characterize physical artifacts
such as books and enter their metadata into databases), and one was a programmer
responsible for integrating large data sets. While the catalogers showed no signifi-
cant difference with the general subjects in their use of Potluck, the programmer,
L1, was clearly an outlier: he created 10 columns and 7 facets in total. He was very
excited about the user interface of Potluck and described his data integration work,
consisting of manual data entry and Perl scripting, to be tedious and painful.

G6, who also needed programming skills to deal with some data for his work,
expressed equal enthusiasm for Potluck. He used simultaneous editing to swap first
name and last name. Thus, while there was no noticeable difference between the
subjects from the general population and the librarians, who purportedly work
with data and metadata on a daily basis, there was a difference between program-
mers and non-programmers in how much they appreciated Potluck. Programmers,
who have encountered difficulties in dealing with data even with their program-
ming skills, appreciated Potluck more. Non-programmers accomplished the tasks
in the study equally well, but were not equally excited perhaps because there was
not enough reusable data on the Web for them to feel the need to integrate data
themselves. However, when there will be more reusable data in the future, Potluck
will level the playing field for non-programmers, making them as effective as pro-
grammers for the task of integrating data.

Summary5.5

This chapter presented several techniques embodied in a tool called Potluck for
letting for casual users—those without programming skills and data modeling ex-
pertise—integrate data by themselves and obtain usefulness from the integrated
data. Potluck is novel in its use of drag and drop for merging fields, its integration
and extension of the faceted browsing paradigm for focusing on subsets of data to
align, and its application of the simultaneous editing technique for cleaning up data
syntactically. Potluck lets the user construct rich visualizations of data in-place as

5. IntegratIng Data

122

the user aligns and cleans up the data. This iterative process of integrating the data
while constructing useful visualizations is desirable when the user is unfamiliar with
the data at the beginning—a common case—and wishes to get immediate value
out of the data without having to spend the overhead of completely and perfectly
integrating the data first. A user study on Potluck indicated that it was usable and
learnable, and even solicited excitement from programmers who had experienced
great difficulties in integrating data even with their programming skills.

