
17

IntroductIon1.

When we encounter data on the Web, most of the time it can only be read on the
original page, at the original site, and in its original form. For example, if a few
dozen names and addresses are found in a list on a web page, then it is very difficult
to plot these addresses all on a map (to visually compare their relative distances to
some location) or even just to store their contact information into one’s address
book. The publisher of that site has decided to present the names and addresses in
a list and there is nothing the site’s users can do to use that data differently without
incurring a great deal of time and effort.

Similarly, it is difficult to publish data to the Web beyond making the data ac-
cessible as a spreadsheet or a text file, or encoding the data in hand-written HTML
that offers no advanced browsing features or rich visualizations. Consider the
home-made site in Figure 1.1 that show breakfast cereal characters. The publisher
of that site, Topher, has organized the characters by brand. If Topher decided to
let his users browse the characters by year of introduction to market—a reasonable
choice, then he would have to completely reorganize his web site. In contrast, the
commercial site in the same figure offers several ways of browsing for cameras, and
in order to offer more ways, the site can just formulate more queries to its existing
database. To catch up with commercial sites, Topher would have to acquire many
skills: setting up a database, designing a data schema, designing the user interface,
implementing the user interface, implementing the application logic, and testing
the resulting three-tier web application on many browsers.

My thesis demonstrates that tools can be built to let casual users—those with-
out programming skills—interact with today’s Web in more data-centric ways, to
effortlessly retrieve and reuse data from the Web as well as publish data into the
Web in a browsable and reusable form. These tools can be built and used today
without needing the Web to become more data-centric first by itself.

1. IntroductIon

18

A home-made web site
offers only one way to
browse the data, and it
would be extremely hard
for the publisher to offer
other ways, as that requires
complete reorganization of
the web site.

A commercial web site
offers many ways to
browse the data, and
more ways can be added
just by formulating new
queries to the database.

Figure 1.1. Using just HTML, a small publisher cannot match the advanced
browsing features and rich visualizations offered by commercial and institutional
sites, or compete with the flexibility and speed at which such features can be
implemented by those sites.

1. IntroductIon

19

The Case for Data-Centric 1.1
Interactions

Being able to reuse data on the Web creates new opportunities:
The same data can show different insights when it is presented differently. •

Plotting the US presidents on a time line color-coded by their political parties shows
the interleaving pattern of Democrats and Republicans coming into power, where-
as plotting the presidents on a map by their birth places reveals that all except one
were born in eastern United States. Listing the presidents in a table sorted by their
surnames highlights two Adams and two Bushes. If a web site provides only one
of these presentations and no means to retrieve and reuse its data so that it can be
visualized differently, its audience has been denied some of these insights.

Several sources of data can provide more insights when combined than they •
can individually. Plotting wars, economic performance, artistic movements, scien-
tific discoveries, etc., alongside the presidents’ terms on a time line can reveal each
president’s and each political party’s effects on the country. Plotting cholera cases
and water pumps on the same map did bring insight to John Snow, suggesting obvi-
ous actions that would stop the cholera epidemic in London in 1854 [71]. As long
as it remains hard to combine data from several sources, such insights can easily
be missed.

One important source of data is a user’s own information. Seeing several po-•
tential houses to buy on a map is useful, but seeing on that same map where one’s
friends and relatives live and where one’s workplace is located can be even more
useful in making a house purchasing decision. As often a user’s own information is
private and cannot be made known to any web site, the data on web sites (which
the user is already allowed to see) must leave those sites and come to the user’s com-
puter where it can be combined with the user’s own information.

These opportunities make the case for getting data on the Web into a form
conducive to reuse for casual users’ benefits. Once reusing data is just as easy as us-
ing data, there will not be a need to distinguish the two cases. In that future, casual
users will always have at hand whatever functionality is appropriate to apply on
whatever data encountered wherever on the Web. Such an experience with the
Web can be said to be more data-centric than text-centric.

Not only should casual users be able to easily reuse data from the Web, they
should also be able to easily publish data into the Web in ways that satisfy their
publishing requirements. For example, if a casual user with no programming ex-
perience has gathered all the data about her genealogy and wishes to share that
data for her living relatives’ enjoyment, she should be able to publish a web site
presenting that data. If her family is dispersed geographically, a map would be
an appropriate visualization. A timeline can superimpose the lives of her ances-
tors against a historical backdrop with certain events that she deems important.
A thumbnail view shows everyone’s portrait together and highlights facial feature
resemblance. Grouping or filtering by artistic abilities might reveal which side of

1. IntroductIon

20

her family is more artistic than the other. If many of her kindred have had military
careers, browsing and sorting by their military ranks and plotting the military bases
where they have served might appeal to her. How the data is displayed and browsed
should be left entirely to her—the data owner’s—discretion. Just as she can struc-
ture and lay out a text document however she wishes using HTML, she should also be
able to present her data however she likes.

But that is easier said than done. Even to support as basic a feature as sorting a
few hundred people by name immediately requires database setup, schema design,
and server-side programming—skills that a casual user does not possess and would
take years to acquire. Whereas it was easy to become a first-class citizen of the early
Web by authoring HTML in a text editor, it is no longer easy on today’s Web to pos-
sess the same publishing power as large companies who have teams of engineers
dedicated to building three-tier web applications.

That it is difficult to publish data into the Web and reuse data from the Web is
not surprising. The Web was designed for publishing hypertext —text—rather than
data. Web standards (HTML) were specified for publishing text, and web browsers
were built for viewing text. Thus we find the majority of web content to be text
documents written in natural human languages, unfavorable to data-centric inter-
actions.

This text-centric Web is showing its limits as the demand for data-centric inter-
actions rises. In response, the Semantic Web project [31, 41] holds out the vision
of a future Web wherein most if not all data encountered on the Web is described
in a standard data model and data-centric interactions can be easily supported.
Getting the Web to such a state is a grand challenge, and the slow adoption of
semantic web technologies keeps that vision elusive even after a decade of the ef-
fort’s existence.

In this thesis, I demonstrate that existing tools designed for experts to publish
data to the Web and extract and reuse data from the Web can be adapted for casual
users by taking into consideration the casual users’ needs and abilities. These tools
allow them to interact with today’s Web in data-centric ways without having to wait
for the coming of the Semantic Web.

1. IntroductIon

21

Approach1.2

My research approach to providing data-centric interactions on today’s Web to ca-
sual users—those without programming skills—can be divided into three aspects:

publishing data into the text-centric Web and providing data-centric features •
on that data;
extracting data from the text-centric Web so that missing data-centric fea-•
tures can be applied; and
integrating data from several sources to gain value that no single source alone •
can offer.

Assumptions and Limitations1.2.1

To scope the research in these three aspects, I have made two assumptions:
Casual users most often deal with small data sets, each containing at most about a thousand •

records. That is, when a casual user publishes data to the Web, her data most prob-
ably consists of no more than a thousand records. When she extracts data from
existing web sites, she only extracts from similarly limited data sets. And when she
combines data from several sources, she only combines a few sources and each
source contains a small data set to begin with. This size limit does not tremendously
reduce the benefits of data-centric interactions. For instance, finding the winner
in a race among as few as 20 runners is most efficiently and effortlessly done by
sorting them by their timings rather than visually scanning over a list of unordered
timings. We can also look to the fact that commercial spreadsheet programs have
kept their limit of 65,536 rows for over two decades as evidence that up to some
size, scale is not relevant to casual users.

Casual users most often deal with simple data made up of records consisting of property/•
value pairs and binary relationships rather than complex class hierarchies with n-ary relationships.
The popularity of commercial spreadsheet programs is evidence that simple tabu-
lar data models can carry the usefulness of data-centric interactions a long way for
casual users. For instance, being able to align the “home address” field in one table
of records with the “residential address” field in another table of records is already
useful, such as for plotting all records together on a single map.

In making these assumptions, I have clearly imposed some limitations on my
research results. My research contributions may not immediately apply on large,
complex data sets, which I argue are rarely encountered by casual users.

1. IntroductIon

22

Publishing Data1.2.2

A typical web application consists of three layers: data, presentation, and applica-
tion logic that connects them. This separation of data from presentation has two
advantages.

First, it allows mixing and matching data with presentation. The same pre-•
sentation template can be applied to many different data records, making the pro-
cess of presenting data very efficient. The same data can be shown in different
presentations—say, as a list in one case and on a map in another, increasing the
richness of the user interface.

Second, the separation of data from presentation makes it easier to build •
tools specialized for dealing with either data or presentation rather than both at
once. Databases and query languages are designed for manipulating data en-masse
while WYSIWYG editors and templating languages are tailored toward specifying
visual layouts and styles. It would be much harder to design a piece of software and
a standard for manipulating both data and presentation together.

This principle of separating data from presentation has been built into tools
and frameworks designed for large publishers—online retailers and institutions—
who were the first to run into the need for publishing large data sets and offering
advanced features. Built to meet the needs of these large publishers, such as to ac-
commodate complex site structures, to allow for heavily customized looks and feels,
and to handle secured online transactions, these technologies are far too complex
for casual users to adopt. However, the benefits of separating data from presenta-
tion embodied in these technologies are applicable to casual users. Unfortunately,
such users have so far only been offered HTML as the generic web publishing tech-
nology, and in HTML, data and presentation are mixed together.

To let casual users benefit from the separation of data from presentation, the
costs of authoring data, authoring presentation, and connecting them up must be
lowered.

The cost of authoring presentation can be lowered in two ways by assuming
that the presentation needs of casual users are not so complex:

First, a variety of common features such as sorting, grouping, searching, fil-•
tering, map visualization, timeline visualization, etc. can be provided out-of-the-
box so that the user does not need to re-implement them herself. (As her presenta-
tion needs get more sophisticated, she can plug in more and more third parties’
extensions.)

Second, customization to the presentation can be specified in an • HTML-
based syntax right inside the HTML code used to layout the web page. This is so
that the publisher can work on every part of the page’s presentation inside a single
file in a single syntax. (As the publisher’s needs to customize the presentation get
more sophisticated, the HTML-based syntax will no longer satisfy her.)

1. IntroductIon

23

The cost of authoring data can be lowered in two ways by assuming that casual
users publish only small data sets:

First, if a publisher is already editing her data in some particular format and •
some particular editor convenient to her, she should not need to load that data into
a database and then maintain the data through the unfamiliar and inconvenient
user interface of the database. She should be able to keep managing her data how-
ever she likes, and the data only gets loaded into the database when it needs to be
rendered. This is realizable if the data is small and loading it into the database is
quick. (As the data gets larger, there is a point when the data should already be
loaded into a database to ensure a responsive web site.)

Second, data schemas can be made optional if their benefits do not justify •
their costs. While schemas are advantageous on large data sets for database opti-
mizations and for managing data at a higher level of abstraction, their benefits on
small data sets are much less apparent. (As the data gets larger or more complex,
there is a point when schema abstractions benefit both the publisher as well as the
publishing engine.)

Finally, all the costs of setting up software (database, web server, and appli-
cation server) can be eliminated if the software is packaged as a Web API to be
included into a web page on-the-fly. Such a Web API can also easily allow for exten-
sions, which accommodate the increasing sophistication in a casual user’s publish-
ing needs.

I have built a lightweight publishing framework called Exhibit based on these
ideas. To publish an exhibit—a web page powered by Exhibit—a publisher uses any
text editor to lay out her web page in an HTML file (Figure 1.2) and to enter her
data into one or more JSON files (Figure 1.3). The end result is a richly interactive
web page such as the one shown in Figure 1.4. If the publisher already has data in
some other format, then she can continue to maintain it in that format. Currently,
Exhibit can import Bibtex, Excel files, live Google Spreadsheets feeds, RDF/XML,
and N3.

When a casual user publishes to the Web using Exhibit, she herself benefits
from the separation of data from presentation. Moreover, anyone who visits her
web site can easily extract her data for reuse because her data is already in struc-
tured form and as publicly accessible as her HTML code. Exhibit kills two birds
with one stone: addressing the data publishing need as well as making available in
reusable form data that would otherwise be encoded in text-centric HTML.

1. IntroductIon

24

Figure 1.2. An HTML-based syntax is used for configuring the user interface of
an Exhibit-powered web page.

<html>
<head>
 <title>Presidents</title>

 <link type="application/json" rel="exhibit/data" href="presidents.json" />

 <script src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js"></script>
 <script src="http://static.simile.mit.edu/exhibit/extensions-2.0/
 map/map-extension.js?gmapkey=..."></script>
</head>
<body>

 <div ex:role="lens" ex:itemTypes="President">

 <a ex:href-content=".url">
 <div>
 Birth: ,

 </div>
 <div ex:if-exists=".death">
 Death: ,

 </div>
 </div>

 <table width="100%">
 <tr valign="top">

 <td width="25%">
 <div ex:role="facet" ex:facetClass="TextSearch"></div>
 <div ex:role="facet" ex:expression=".religion" ex:label="Religions"></div>
 ...
 </td>

 <td ex:role="viewPanel">
 ...
 <div ex:role="view"
 ex:viewClass="Map"
 ex:label="Birth Places"
 ex:latlng=".birthLatLng"
 ex:icon=".imageURL"
 ex:iconScale="0.7"
 ex:shapeWidth="60"
 ex:shapeHeight="60">
 </div>
 ...
 </td>
 </tr>
 </table>

</body>
</html>

Exhibit API and extensions

One or more links to data

lens template specifying
how to render each
president

text search and filters (facets)

view whose settings
are configured in
HTML-based syntax

1. IntroductIon

25

{
 "items": [
 { "label": "George Washington",
 "type": "President",
 "birth": "1732-02-22",
 "birthPlace": "Westmoreland Country, Virginia, USA",
 ...
 },
 // ... more presidents
],
 "properties": {
 "birth": { "valueType": "date" },
 // ... more properties
 },
 "types": {
 "President": { "pluralLabel": "Presidents" },
 // ... more types
 }
}

Figure 1.3. Exhibit provides by default a simple JSON syntax for specifying data,
but it has an extensible importer architecture for importing other formats includ-
ing Excel, Bibtex, RDF/XML, N3, and live Google Spreadsheet feeds.

Figure 1.4. A web page powered by Exhibit provides text search and filtering
features as well as rich visualizations such as maps and timelines.

1. IntroductIon

26

Extracting Data1.2.3

Just like conventional publishing technologies, conventional web data extraction
technologies are unsuitable for casual users as they also have been designed for
large data sets and complex use cases. If a casual user encounters a few dozen
street addresses on a site that offers no map feature, she will not spend much effort
to learn these advanced technologies to scrape the data and then build a “Web 2.0
mash-up” site just to map those few dozen addresses.

Web data extraction has been mostly employed by web sites that scrape other
web sites for data, aggregate the data, and then offer new services on that data.
It makes sense that the scraping be tailored to each source web site to ensure the
quality of the result, and that the scraping then be automated to keep the data up-
to-date in an efficient manner. As the data is offered again in completely new web
sites, there is no need to retain the presentation elements of the original sites.

Although casual users also make use of web data extraction technologies for
repurposing data on the Web, their requirements differ from those of large data
aggregation sites. The typical task of, say, an online flight reservation site is to ac-
cumulate as complete and up-to-date as possible flight information from several
airlines, amounting to thousands of records. In contrast, a casual user might just
want to pull out street addresses of a few dozen of private schools from their school
board web site, plot them on a map, make a one-time printout, and not bother to
update the map ever again. That is, the user deals with a lot less data, cares only
for a few fields (e.g., street address) rather than all fields, and does not need to keep
the extracted data up-to-date since she only needs the printout once. Thus, casual
users might put less demand on web data extraction algorithms with respect to scal-
ability, accuracy, and automation.

In other aspects, however, casual users might have more demands than large
sites. Skills and resources that a data aggregation site has at hand to repurpose
scraped data into a new three-tier web application are not available to casual users:
no casual user can be expected to set up, design, and maintain a database, to design
and implement a rich user interface, and to connect them with application logic,
especially just to plot a few dozen street addresses on a map. Thus, web data extraction tools
built for casual users must offer as complete an experience as possible. Instead of
simply returning raw data, they must behave like web applications themselves, of-
fering appropriate presentations and features that casual users need to accomplish
their tasks. That is, it is more about adding in missing features rather than taking
out data.

To offer a complete web application-like experience over extracted data, all
three layers of a typical web application must be automated as much as possible.

First, the user interface can be “designed” with zero user intervention just by •
reusing as much as possible the presentation elements already in the original web
site. In particular, when a data record is extracted from a part of an original web
page, that fragment of the web page is also extracted so that in order to show that
data record later on, we can simply show the fragment again. The rest of the web

1. IntroductIon

27

page, which does not contain data to extract, can also be kept as-is so to preserve
the original visual context. This is novel since existing web data extraction algo-
rithms throw away original presentation elements (because they are not needed for
the purposes of large data aggregation sites).

Second, in the application logic layer, some set of commonly needed features •
such as sorting and filtering can be provided out-of-the-box so that there is no need
for a casual user to implement them.

Finally, the extracted data can be loaded immediately into a database with-•
out any user intervention if the extracted data can be used as-is without further
processing by the other layers. The biggest roadblock to using the extracted data
as-is seems to be the need to label fields because field labels are used in convention-
al user interfaces to provide affordance for features like sorting and filtering (e.g.,
“sort by publication date”). Unfortunately, field labels can be hard to recover from

An asterisk is inserted after each field value.
Clicking on an asterisk adds sorting and filtering
controls for that field.

Figure 1.5. By keeping presentation elements from the original web site, Sifter
can apply direct manipulation techniques on the extracted data fields to support
sorting and filtering without requiring the user to label the fields.

1. IntroductIon

28

web pages. For example, in Figure 1.5, nowhere on the web page says that “Mar 7,
2006” is the “publication date” of “False Impression.” However, direct manipula-
tion techniques can be applied to avoid the need for field labels altogether. If the
user can interact directly with the text “Mar 7, 2006” to invoke sorting and filtering
operations, it does not matter if “Mar 7, 2006” is the publication date of the book
or the birth date of the author. It is just a date field and it can be sorted and filtered
mechanically without any regard for its actual semantics.

I have built these ideas into a browser extension called Sifter (Figure 1.5) that
can augment a web site in-place with filtering and sorting functionality while requir-
ing from the user as few as two clicks. The added features work inside the site’s own
pages, preserving the site’s presentational style, as if the site itself has implemented
the features.

Integrating Data1.2.4

Data integration tools have also been built for a different audience than casual us-
ers. For a typical conventional data integration task, such as merging huge databas-
es of two institutional libraries together to serve the combined data through a new
web site, several experts and programmers are involved to handle different aspects
of the task, including aligning the schemas, cleaning up the data, and then build-
ing the web site. Each tool employed is specialized for one stage of the process and
designed to handle large, complex data sets. In contrast, a casual user might just
want to merge two lists of a few dozens of addresses from two web sites together to
plot them on a common map. There is much less data and the data is much simpler.
Power tools used by experts are too advanced for casual users.

Whereas a team of experts and programmers can work most efficiently by di-
viding a data integration task into stages and letting each team member specialize
on one stage, each casual user only has herself to deal with her own data integra-
tion task. She needs not a set of highly specialized tools like those for experts but a
single tool that lets her work on the whole task. Furthermore, unlike experts expe-
rienced in dividing a clearly defined task cleanly into stages, the casual user might
have to deal with different aspects of the task in an interleaving manner, switching
from cleaning up data to constructing presentation and back again, as she gains
more and more understanding of what she needs, of what the data is like, and of
how to handle the task.

Compared to experts, casual users lack both data modeling skills and program-
ming skills. However, for small, simple data sets, neither skill set may be crucial.
First, when the data set is small, schemas—useful for efficiently reasoning about
a massive quantity of data in the abstract—are not as useful and can introduce
overhead cognitive costs. Instead of having to learn about theoretical concepts like
schemas, casual users can manipulate data instances directly. Second, instead of
using programming to process data, casual users can just use direct manipulation

1. IntroductIon

29

techniques. For example, two fields can be aligned by dragging and dropping one
onto the other.

I have demonstrated these ideas in a tool called Potluck that lets casual users
pool together data from several sources, supports drag and drop for merging fields,
integrates and extends the faceted browsing paradigm for focusing on subsets of
data to align (Figure 1.6), and applies simultaneous editing [58] for cleaning up
data syntactically (Figure 1.7). Potluck also lets the user construct rich visualizations
of data in-place as the user aligns and cleans up the data. This iterative process of
integrating the data while constructing useful visualizations is desirable when the
user is unfamiliar with the data at the beginning—a common case—and wishes
to get immediate value out of the data without having to spend the overhead of
completely and perfectly integrating the data first.

Figure 1.6. Potluck supports drag and drop for merging fields and construct-
ing visualizations. Faceted browsing is available at the same time to help the user
isolate subsets of interest or subsets that need further cleaning or alignment.

1. IntroductIon

30

Implications for 1.3
Semantic Web Research

In many ways my thesis aligns with the goal of the Semantic Web project [31, 41]:
both aim for a data-centric Web. The philosophies in my research approaches can
bring insights to the Semantic Web research community:

Before making data meaningful to machines, make it meaningful to people.• In its early
days, the Semantic Web research community focused most of its efforts on issues in
data modeling, artificial intelligence and agent automation, neglecting to build user
interfaces for humans to use semantic web data. Even today, the latest semantic
web browsers show raw URIs that make no sense to casual users. In contrast, my
research starts out by examining the needs and characteristics of casual users so to
build data-centric interfaces that make sense to them.

In addition to building a data-centric Web that benefits humanity decades into the future, •
build data-centric technologies that benefit some individuals right now. Addressing real needs
of people right now motivates the creation of that future data-centric Web and
helps identify real needs in that future. If nothing else, this strategy allocates re-
sources to research on data-centric user interfaces, which are severely lacking in
Semantic Web research.

Before making data reusable, make it useful.• Whereas the Semantic Web research-
ers encourage people to publish data for the sake of future reuse by other people,
my Exhibit framework encourages people to publish data just because publishing
data separate from presentation makes the publishing process efficient and the re-
sults richly interactive. Immediate, concrete, personal usefulness drives adoption
more than prospective, uncertain benefits to someone else.

While focusing on data, don’t forget presentation.• Exhibit uses rich presentation
(map, timeline, etc.) as the motivation for publishing data. Sifter keeps existing
presentation elements from original web pages to preserve visual context as well as
support direct manipulation on the scraped data, saving casual users from labeling

Figure 1.7. Potluck applies the simultaneous editing technique to let the user
clean up data syntactically in an efficient manner.

1. IntroductIon

31

fields. Potluck lets casual users use the presentation they are constructing to guide
their data integration process: if the aligned data “looks right” in the user interface,
it should be right in the data model.

Even while aiming for semantics, take care of syntax.• Exhibit’s HTML-based presen-
tation configuration syntax and its ability to import many data formats lower the
barrier to its adoption. Sifter’s ability to recognize dates and numbers makes its
sorting and filtering features more useful. Potluck’s simultaneous editing feature lets
casual users efficiently fix up data syntactically.

Contributions1.4

My thesis statement is:

Data-centric interactions with today’s Web are useful to and feasible for
casual users, and usable tools can be built to support such interactions by
gearing for small, simple data sets and common casual needs.

This thesis makes the following contributions:

First, this thesis combines a simple graph-based data model with simple •
extensions of the HTML syntax in order to let casual users—those without
programming skills—publish web pages offering advanced browsing features
and rich visualizations.
Second, this thesis shows that the cost of using web data extraction technolo-•
gies can be lowered for casual users by retaining presentation elements from
the original web pages. These elements preserve visual context and visual
semantics so that direct manipulation techniques can be applied to augment
the original pages with more features without requiring users to label fields
in the extracted data.
Third, this thesis proposes that for simple data sets, direct manipulation tech-•
niques can be used to let casual users integrate data and construct rich visu-
alizations from it without any need for programming.
Finally, by letting casual users publish data to the Web in browsable form, •
extract and reuse data from the Web, and integrate data from several sources
without any need for programming, this thesis demonstrates that data-cen-
tric interactions can be offered to casual users on today’s Web without having
to wait for a semantic web.

1. IntroductIon

32

Thesis Outline1.5

Following this introduction, chapter 2 surveys related work. Then, the main body
of this dissertation delves into the three areas identified in the approach:

Chapter 3 details the experiences of using Exhibit to publish as well as using •
Exhibit’s features on Exhibit-based sites. The chapter also outlines Exhibit’s archi-
tecture and analyzes its actual use.

Chapter 4 describes how Sifter delivers web data extraction technologies •
into the hands of users with no programming experience. Sifter was tested on real
web sites and real users, and the results indicated that people could use Sifter to
augment existing web sites and then perform sophisticated queries and high-level
analyses on sizable data collections.

Chapter 5 motivates Potluck with a data integration scenario and then ex-•
plains how Potluck’s user interface design meets the needs in that scenario. The
chapter also details Potluck’s implementation as well as reports the results of a user
study that identified usability successes and problems.

Finally, chapter 6 reviews the contributions of this dissertation and outlines
future directions for this research.

