3. PUBLISHING DATA

When it came into existence, the Web was hailed for giving individuals the same
publishing power as large publishers. But over time, large publishers learned to ex-
ploit the structure in their data, leveraging databases and server-side technologies to
provide rich browsing and visualization features. People have come to expect from
professional sites features like searching, sorting, filtering, comparison, maps, etc.
Individual small publishers fall behind once more: neither old-fashioned static pag-
es nor domain-specific publishing frameworks (e.g., web photo album generators)
and services (e.g., Flickr) supporting limited customization can match full-fledged
database-backed web applications that cost thousands of dollars. Fortunately, ideas
embodied in tools that have made publishing so efficient for large publishers can
also help small publishers as long as the needs and abilities of small publishers are
taken into consideration. This chapter explains how.

A typical application consists of three layers: data, presentation, and applica-
tion logic in between. Separating data from presentation allows mixing and match-
ing data with presentation so that the same data can be shown in different ways. It
is also easier to build tools specialized for dealing with either data (e.g., databases)
or presentation (e.g., form editors) separately.

This principle of separating data from presentation has been built into tech-
nologies that target large publishers. Designed for scalability and flexibility, these
technologies are far too complex for casual users to adopt. Such users have so far
only been offered HTML as the generic web publishing technology, and in HTML,
data and presentation are mixed together.

To let casual users benefit from the separation of data from presentation, the
costs of authoring data, authoring presentation, and connecting them up must be
lowered.

47

3. PUBLISHING DATA

48

The cost of authoring presentation can be lowered in two ways by assuming
that the presentation needs of casual users are not so complex:

* First, a variety of common features such as sorting, grouping, searching, fil-
tering, map visualization, timeline visualization, etc. can be provided out-of-the-
box so that each casual user need not re-implement them herself. (As her presenta-
tion needs get more sophisticated and unique, she will eventually need to program
her own features.)

* Second, customization to the presentation can be specified in an HTML-
based syntax right inside the HTML code used to layout the web page. This is so
that the publisher can work on every part of the page’s presentation inside a single
file in a single syntax. (As the publisher’s needs to customize the presentation get
more sophisticated, the HTML-based syntax will no longer satisfy her.)

The cost of authoring data can be lowered in two ways by assuming that casual
users publish only small data sets:

* First, if’ a publisher is already editing her data in some particular format and
some particular editor convenient to her, she should not need to load that data into
a database and then maintain the data through the unfamiliar and inconvenient
user interface of the database. She should be able to keep managing her data how-
ever she likes, and the data only gets loaded into the database when it needs to be
rendered. This is realizable if the data is small and loading it into the database is
quick. (As the data gets larger, there is a point when the data should already be
loaded into a database to ensure a responsive web site.)

* Second, data schemas can be made optional if their benefits do not justify
their costs. While schemas are advantageous on large data sets for database opti-
mizations and for managing data at a higher level of abstraction, their benefits on
small data sets are much less apparent. (As the data gets larger or more complex,
there is a point when schema abstractions benefit both the publisher as well as the
publishing engine.)

Finally, all the costs of setting up software (database, web server, and appli-
cation server) can be eliminated if the software is packaged as a Web API to be
included into a web page on-the-fly. Such a Web API can also easily allow for exten-
sions, which accommodate the increasing sophistication in a casual user’s publish-
ing needs.

These ideas have been built into the Exhibit lightweight data publishing frame-
work, packaged as a Web APL This chapter will discuss the design of Exhibit’s
user and publisher interfaces in section 1, its data model in section 2, and its user
interface model in section 3. Section 4 briefly describes Exhibit’s implementation.
Finally, section 5 reports real-world usage of Exhibit and discusses its impact.

3.1 Interface Design

As Exhibit is a publishing framework, it has two interfaces: one facing publishers
and one facing users of the published information. A web page published using
Exhibit will be referred to as an exfzbit in lowercase.

3.1.1 User Interface

An exhibit looks just like any other web page, except that it has advanced features
mostly seen on commercial and institutional sites. Figure 3.1 and Figure 3.2 show
two exhibits covering different types of information. Each is styled differently, but
there are several common elements, as described below.

Exhibit’s user interface consists mainly of views and facets, whose locations on
the page are controlled by the publisher. The exhibit in Figure 3.1 is configured
by the publisher to support two different views of the same data: THUMBNAILS and
TIMELINE. THUMBNAILLS is currently selected by the user and it is showing. The exhibit
in Figure 3.2 is configured to support six views, and the BIRTH PLACES view is cur-
rently showing. Each kind of view—map, timeline, table, thumbnail, tile, scatter
plot, bar chart, etc.—supports its own configuration settings. The Google Maps
[11] map in the BIRTH PLACES view is configured to embed the presidents’ portraits
in the map marker, and the TERMS timeline view is configured to color-code the
presidents’ terms by their political parties. Although these settings are specified by
the publisher, some can be changed dynamically by the user (e.g., sorting order in
Figure 3.1). Exhibit’s user interface can be extended by third-parties’ views if the
publisher chooses to include them.

Items can be presented differently in different views. Where there is little space
to render sufficient details in-place (e.g., on a map), markers or links provide af-
fordance for popping up bubbles containing each item’s details (e.g., map bubble
in Figure 3.2). The rendition of each item contains a link for bookmarking it indi-
vidually. Invoking this link later will load the exhibit and pop up a rendition of the
bookmarked item automatically.

The facets (left in Figure 3.1 and right in IFigure 3.2) let users filter the cur-
rently displayed items. This is a conventional dynamic query interface with preview

counts.

3. PUBLISHING DATA

49

3. PUBLISHING DATA

8686

Topher's Breakfast Cereal Character Guide {Unselect Nabisco in facet Brands}

=

@ @

i‘ .ht‘lp:,f,f12?.0.0.1:8888;exhibit;site;examples;cereals;cerealY =3 3 <|>[

Bl c- % -

O FHERSS]

BRERKFAST CEREAL

Please refer to Topher's original site for copyright information. We are grateful to

Topher for letting us host this data on our site.

‘m&.&@“@m Here is the Exhibit JSON data file.

Brands
3 General Mills
1 Kellogg's
1 Mabisco
2 Post
4 Quaker Oats
5 Ralston

-

Ll

Post (8)

H gpgrmoool

Decades
11950
9 1960
11970
2 1980

Sugar Bear

THUMBNAILS « TIMELINE

ORREOw
e]

FaTe

21990

Countries
1 Great Britain
1 USA

Forms
! bear
1 beast

Mickey Mouse

@- g
£ - e

Alpha-bits Sailor Jimminy Cricket

<rl

Done

o

EN

Figure 3.1. A web page embedding Exhibit to show information about break-
fast cereal characters [36]. The information can be viewed as thumbnails or on a

timeline and filtered through a faceted browsing interface.

50

3. PUBLISHING DATA

ene SIMILE | Exhibit | Presidents {select Birth Places view} (&)
\'_I' ej O /l‘ .hl‘lp:f,f127.0.0.1:883Bfexh\biljswle}examp\esfpresidenls}presidenls.hlm\ v ‘}‘ a :J Gl ~ ﬂ;’ v
Search:
.
US Presidents
.
R o
Here is the Exhibit JSON data file. Anglican m
Baptist
. : . . . « PH 9
BIRTH PLACES » DEATH PLACES » TERMS » TABLE » DETAILS » PHOTOS h £ Christ
e ey - e Bl
42 Presidents total. ~ Congregationalist
L] Moose, i p .
JKelowma Lothoridge Jaw- 'F::g'”a o Winipeg [Map [satelite | Hybrid | Deism "
Brandon Thunder 3 i
S prawvers Weyburn Deist $
clu.iaf Bl VakdOr s]
Seattien Pogene North = _eeg
Montana Dakota
P:::s‘dnmglon Minnesota e Political Parties
H 0
DSoKum Scotia Democratic
Oregon akota i i
0 \daho LD Democratic-Republican
s Federalist
G Mew Hampshire
Lake City = p No Party
enver
Renos MNevada a Republican
e Utah Colorado)
Sanllo Whig
Francisco! k
Amario [popiligege
. : . Albunerque 2 s’ Died In Office
0s rizona
Angeles? = N Mississippi District of, = no
Phoeni Mexico p istrict of =
Sgr@ ® El Paso B % Alabarm® Columbia
Diego Tucson g Georgia 3]
e o Louisiana falahassess - slacksonville
Antonin® Houston) North Atiantic
\ sOrfando Ocan
Lmdw@.ﬁ Florida
B
Foucreosr | 500 mi : Gulrof NaPISS - gy
|—|—| exico
GO(‘Jsk 500 km Mexico Map data ©2007 TeleAtlas - Terine of Use
~
Transferring data from maps.google.com... o
eo0e SIMILE | Exibit | Prsidents (select Terms view) =} eo0e SIMILE | Exhibi | Presidents {select Photos view) o
<@ @ . f Bz il v]b B (Gl @ [CRREAN [T el 24 #) G- & -
Seareh Searel
US Presid . US Presid .
tigions sions
‘Here is the Exhibit JSON data file. A'-'!‘.i““ m Here s the Exhibit JSON data file. A'lﬂ“‘-“ m
BT PLACES - DEAT FLACKS- NS TABLE - DETALS - PHOTOS . BIKTH PLACES - DEATH PLACES BRI - TABLE - DETALS- PHOTOS =
42 presidents ol (] 42 presidents ot (] o
o Deism ¢ Sorted by: party then by... » @ grouped as sorted B "
Jrimmy Carter Deist S Deist L
o Democratic (14) e
S e Politeal Partes Politeal Partis
4 Ter 51, oublican Democratic
5 ‘Democratic-Republican
- o ,Q,‘ Foderalist
5; 53 oy NoParty
5 N Repubiican
"Andree Jsckson Marin Van James Polk
1
A‘l >
2000 7
- James Buchanan Andrew Johnson ‘Grover Cleveland ‘Woodrow
Wison Y

M pemocratic [l Republican [Other parties

Figure 3.2. A web page embedding Exhibit to show information about U.S.

presidents in 6 ways, including maps, table, thumbnails, and timelines.

51

3. PUBLISHING DATA

52

3.1.2 Publisher Interface

Making an exhibit like Figure 3.1 involves two tasks: creating the data and creating
the presentation. Both are iterated until the desired result is achieved. This section
briefly describes the publishing process, leaving technical details to later sections.

3.1.2.1 Creating the Data

Exhibit supports its own JSON [13] format natively but can automatically import
a variety of formats including Bibtex, Excel, RDF/XML, N3, and Google Spread-
sheets feeds. The data file for those breakfast cereal characters looks something like
that in Figure 3.3. The items’ data is coded as an array of objects containing prop-
erty/value pairs. Values can be strings, numbers, or booleans. If a value is an array,
then the corresponding item is considered to have multiple values for that property.
For instance, according to Figure 3.3, the Trix Rabbit character is released in both
the US and in Canada. The publisher is mostly free to make up the names of the
properties. We will discuss the specifics of the data model subsequently.

Data for a single exhibit needs not reside in a single file. It can be split into
multiple files for convenience. For example, a couple’s recipes exhibit can pool its
daU1ﬁ0nlUNOSeparaUBﬁkSZher—recipes.json2nuihis—recipes.json.

3.1.2.2 Creating the Presentation

The web page itself is just a regular HTML file that can be created locally, iterated
locally until satistaction, and then, if desired, uploaded together with the data files
to the web server. Figure 3.4 shows the initial HTML code needed to start making
the exhibit in Figure 3.1. This code instantiates an Exhibit instance, loads it with
the data file referenced by the first <1ink> element, and specifies where to embed
a view panel, which shows a tile view by default. Also by default, the tile view sorts
all items in the exhibit by labels and displays the top ten items using the default lens.
This lens shows property/value pairs for each item. Reasonable defaults are hard-
wired into Exhibit to give the publisher some result with minimal initial work.

{
items: [
{ type: 'Character’',
label: 'Trix Rabbit',
brand: 'General Mills',
decade: 1960,
country: ['USA', 'Canada'],
thumbnail: 'images/trix-rabbit-thumb.png',
image: 'images/trix-rabbit.png',
text: 'First appearing on ...'
)l
// ... more characters ...
]
}

Figure 3.3. An Exhibit JSON data file showing data for one breakfast cereal
character, which is encoded as property/value pairs.

The publisher does not even need to write this initial HTML code from scratch:
it is trivial to copy this code from existing exhibits or from online tutorials. This is
how HTML pages are often made—by copying existing pages, removing unwanted
parts, and incrementally improving until satisfaction. The declarative syntax of
HTML, the forgiving nature of web browsers and their reasonable defaults, and the
quick HTML edit/test cycle make HTML publishing easy and instantly gratifying
Exhibit has been designed to afford the same behavior.

Figure 3.5 shows the final HTML code needed to render the exhibit in Figure
3.1 (logo graphics and copyright message omitted). The additional code, in black,
configures the facets, the two views, and a lens template in the THUMBNAILS view.
(Lens templates will be discussed in the User Interface Model section.)

Making the presentation look better can also involve filling in and fixing up the
data schema. Figure 3.6 shows how the plural label for the type Character is de-
clared so that plural labels in the UI, e.g., 12 Characters, can be generated properly.
The decade property values are declared to be dates instead of strings so that they
can be sorted as dates.

To change the schema, e.g, renaming a property, the publisher can simply
invoke the text editor’s Replace All command. Or if the data is imported from a
spreadsheet, she can just rename the corresponding column header label. Saving
old versions of the data involves making copies of the data files. Changing schema
and keeping versions of the data might not be as simple if databases were used.

Thus, just by editing one or two text files in any text editor, and perhaps editing
data in a spreadsheet, a casual user with only basic knowledge of HTML and no
programming skills can create a richly interactive web page with sorting, searching,
filtering, maps, timelines, etc.—features that would otherwise take a whole team of
web engineers months to implement.

<html>
<head>
<title>Topher’s Breakfast Cereal Character Guide</title>
<link type="text/javascript"
rel="exhibit/data" href="cereal-characters.js" />
<script type="text/javascript"
src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js">
</script>
</head>
<body>
<div ex:role="viewPanel"></div>
</body>
</html>

Figure 3.4. To create the web page in Figure 3.1, the author starts with this
boiler plate HTML code, which displays the characters in cereal-characters.js
through the default lens that lists property/value pairs.

3. PUBLISHING DATA

53

3. PUBLISHING DATA

o JdoUubd WNBKH

BB BB WWWWWWWWWWMNMNMMNMNMNMNMNMMNNREPRPREPRPRPRPRRERRBE
OB WNMNRPROVONOOUUBWNRFOOVWONJOONUUBWDNMRPROOVOIONU_MWNKREOV

<html> One or more links to data
<head>

<title>Topher’s Breakfast Cereal Character Guide</title>

<link type="application/json" rel="exhibit/data" href="cereal-characters.json" />

<script src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js"></script>

<script src="http://static.simile.mit.edu/exhibit/extensions-2.0/
time/time-extension.js"></script>

<style>
.itemThumbnail {
width: 120px; Exhibit APl and extensions
} \
</style> custom styles
</head>
<body> facets

<table width="100%">
<tr valign="top">
<td width="20%">
<div ex:role="facet" ex:expression=".brand" ex:facetLabel="Brands"></div>
<div ex:role="facet" ex:expression=".decade" ex:facetLabel="Decades"></div>
<div ex:role="facet" ex:expression=".country" ex:facetLabel="Countries"></div>
<div ex:role="facet" ex:expression=".form" ex:facetLabel="Forms"></div>
</ta>
<td>
<div ex:role="viewPanel">

<div ex:role="view" ex:viewClass="Thumbnail"
ex:possibleOrders=".brand, .decade, .form, .country">

<div ex:role="lens" class="itemThumbnail">

<div ex:content="value"></div>

</div>
</div> lens templates
specifying
<div ex:role="view" how to render
ex:viewClass="Timeline" each
ex:start=".year" data item
ex:colorKey=".topic">
</div>
</div>
</td>
</tr>
</table>
</body> views
</html>

54

Figure 3.5. The publisher starts with the code in gray (from Figure 3.4), in-

cludes more and more of the code in black, and tweaks until the desired result
(Iigure 3.1) is achieved (logo graphics and copyright omitted). Tweaking involves
following online documentation or just copying code from other existing exhibits.

types: {
‘Character’: { plurallabel: ‘Characters’ }
b,

properties: {

‘url’ : { valueType: "url" },
‘decade’ : { valueType: "date" }
}
items: [
// ... items ...

1

Figure 3.6. Schema information can be added to the JSON file to improve
Exhibit’s user interface.

3.2 Data Model

An Exhibit data model is a directed graph in which the nodes are either items or
native values such as numbers, strings, and booleans, and the arrows are properties
(Figure 3.7). Each property has a property value type which specifies the types—
numbers, strings, booleans, items, etc.—of the nodes at the pointed ends of the
arrows. In the simplest case where there is no relationship between items (no blue
curved arrows in Iigure 3.7), then the data model degenerates into a flat list of
items with native-valued properties. A casual user would normally start with such
a conceptually simple list of items and then when the need actually arises, link the
items up to form a graph.

3.2.1 Items

Each item has one or more properties, one of which is the mandatory 1abel prop-
erty, which is a string naming that item in a human-friendly manner (friendliness is
subject to the publisher’s discretion). This label is used to render the item whenever
a concise, textual description of that item is needed.

Every item is also mandated to have an id property, which identifies that item
uniquely within the containing exhibit. If no id property value is specified explic-
itly when the item is being loaded into the database of the exhibit, the item’s 1abel
property value is used as its id. Other items in the same exhibit can relate to this
item simply by having property values equal to the item’s id.

The third mandated property is uri, which is the URI used to name the item
when it is exported to any RDF [28] serialization format. (The uri property helps
make exhibits’ data readily available to semantic web applications.) If no uri prop-
erty value is specified when the item is being loaded, the URILis generated automati-
cally by appending its id property value to the URL of the containing exhibit.

The last mandated property is type. An item’s type property value is just a
string, such as “President” and “Publication”. If not explicitly specified, the item’s

3. PUBLISHING DATA

35

3. PUBLISHING DATA

56

type defaults to “Item”. Types are introduced to divide the set of items within a
single exhibit into several subsets of conceptually different items, such as “Publica-
tion” vs. “Author”, or “Patient” vs. “Hospital Record”. If the data within an exhibit
were to be stored in a relational database, there would logically be one relational
table for each type.

Although there are four mandated properties, a publisher is only burdened to
make up one—the label property—for each item. Note that in Figure 3.3, the
item has neither id nor uri property value; both values will be generated. An id
property value must be specified explicitly if another item with the same label has
already been loaded into the database. A uri property value must be specified
explicitly if the publisher intends the item to refer to some Web resource with an
existing URIL. For example, in an exhibit that compares several web sites’ traffic on
a bar chart, each item corresponds to one web site and the item’s uri should logi-
cally be the web site’s URL.

David Huynh ‘

%
o

dihuynh@mit.edu |

Grad Student ‘

David Karger

karger@mit.edu ‘

‘ Faculty ‘

Rob Miller |

rcm@mit.edu ‘

Faculty ‘

Eric Miller |

em@zepheira.com ‘

Researcher

Figure 3.7. An Exhibit data model is a graph in which the nodes are items
(circles) or native values (rectangles) and the arrows are properties.

3.2.2 Types

The information on types is schematic information. Each type has three mandated
schematic properties: label, id, and uri. Note that when the type property of
an item is specified, that type property value is the type’s id, not the type’s 1abel
(Figure 3.8). Whereas usually an item’s label is specified and its id is generated
from its 1abel, a type’s id must be specified first (by assigning some item that type
property value) and then the type’s 1abel is taken to be the same as its id, unless
overridden. Whereas for items, ids are primarily used to distinguish those with the
same label, for types, ids are used as short-hand notations. For example, in Figure
3.8, the types’ ids save the publisher a lot of typing while the types’ 1abels are easy
to comprehend for viewers.

Beside id, uri, and label, a type can have other schematic properties that
help in the localization of the user interface. For instance, when a type has a plu-
rallLabel, that schematic property value is used in English-speaking locales to
generate user interface text for labeling several things of that type, e.g., 9 People
instead of 9 Person.

There 1s no need for the publisher to explicitly declare every type in the types
section. A type is added to the system whenever an item of that type is added. This
lets the publisher focus on the items—the main point of her exhibit—and only add
information on types and properties when they make the user interface better.

items: [

...
type: "RCAct",
\
|

),...)

atype’sid
]l
types: {
"RCAct" : {
label: "Ribosomal Chaperone Activity",
plurallabel: "Ribosomal Chaperone Activities",
uri: "http://www.geneontology.org/go#G0O:0000005"
)l
"RMR" : {
label: "Regulation of Mitotic Recombination",
plurallabel: "Regulations of Mitotic Recombination",
uri: "http://www.geneontology.org/go#G0O:0000019"

Figure 3.8. The types section in the JSON file specifies schematic properties of
types, such as their 1abels and uris.

3. PUBLISHING DATA

57

3. PUBLISHING DATA

58

3.2.3 Properties

Schematic information can also be given on properties. Properties have the same
three mandated schematic properties as types (Label, id, and uri) plus two more:
reverseLabel and valueType. Together with label, reverseLabel lets a prop-
erty be described in both directions (e.g, child of in one direction and parent of in
the other).

A property’s valueType hints at the nature of that property’s values—whether
they are numbers, or booleans, or strings, or items’ ids, etc. There is a fixed set of
value types, currently including: text, number, date, boolean, url, and item. All
values of type item are locally unique ids of items in the same exhibit. Figure 3.6
shows how property value types are declared in data files.

Note that such declaration of value types are hints only. Exhibit will try to
coerce property values into whatever types that are most appropriate for each par-
ticular use. For example, when a property foo with value type text is used to
specify the starting dates of items on a timeline view, then all £oo property values
are automatically parsed into dates to render the timeline.

This design choice of tying value types to properties, rather than requiring
type declaration on each value, facilitates incremental improvements to the data.
Tor instance, brand property values in Iigure 3.3 are initially, by default, of type
text. This might satisfy the publisher until she wants to record details about the
brands, at which time she can simply specify the value type for brand to be item
and add the data for the brands (Figure 3.9).

3.2.4 Expressions

Exhibit provides an expression language that makes it convenient to access its
graph-based data model.

Consider an exhibit whose data model is illustrated in Figure 3.10. The ex-
hibit contains information on some publications, their authors, the schools where
the authors teach, the countries where the schools are located, and perhaps more.
Evaluating the expression .written-by on some publications yields their authors;
evaluating .written-by.teaches-at yields the schools where the publications’
authors teach; and so forth. The hop operator . traverses the graph along a given
property. To traverse against a given property, the hop operator ! is used. Thus,
evaluating !teaches-at!written-by on some schools returns publications writ-
ten by authors at those schools. The two kinds of hop operator can be mixed:
evaluating .written-by.teaches-at!teaches-at!written-by on some publi-
cations returns all publications written by all authors teaching at the same schools
as the authors of the original publications.

A sequence of alternating hop operators and property ids, such as .written-
by.teaches-at, is called a path. Evaluating a path yields a collection of values
(with or without duplicates). Why duplicate values are allowed will become clear
subsequently.

3. PUBLISHING DATA

{
properties: {
'brand': {
valueType: 'item'
}
},
items: [
{ type: 'Character’,
label: 'Trix Rabbit',
brand: 'General Mills',
decade: 1960,
country: ['USA', 'Canada'],
thumbnail: 'images/trix-rabbit.png',
text: 'First appearing on !
},
/ ... more characters
{ type: 'Brand’,
label: 'General Mills',
headQuarter: 'Minnesota’',
founded: 1856
},
// ... more brands
1
}

Figure 3.9. Elaboration of brand property values by specifying the value type
for the property brand and adding Brand items.

Figure 3.10. In this sample Exhibit data model, evaluating the expression
.written-by.teaches-at.located-in on publications yields the countries in which the
schools where the publications’ authors teach are located.

39

3. PUBLISHING DATA

60

In addition to paths, Exhibit expressions can also contain native values like
strings and numbers, and functions, operators and constructs. For example, concat (.
last-name, ', ', .first-name) computes a full name out of a last name and a
first name, and count (.parent-of) returns the number of children of a person.
Other functions include:

* union (for taking set unions of collections);

* contains (for testing if a collection contains a given element);

* exists (for testing if another expression returns any result, that is, if the

result collection is non-empty);

* add and multiply (for taking summations and products of elements in one

or more collections);

* and, or, and not (for combining boolean values);

* date-range for computing differences between two dates in a particular unit

such as in days or in years;

* distance for computing geographical distance between two latitude/longi-

tude pairs.

It is easy for third parties to implement more functions. Publishers just need to
link the third parties’ Javascript code into their exhibits.

Exhibit’s operators are the standard arithmetic operators (+, -, *, /) and bool-
ean operators (=, <>, ><, <, <=, >, >=).

There are two constructs at the moment:

* if, which evaluates its first argument to a boolean value and based on that,
chooses to evaluate either its second argument or its third argument;

* foreach, which evaluates its first argument into a collection; then for each
element in that set, evaluates the expression that is its second argument on
that element; and finally returns the union of all results.

The reason we need expressions to support duplicates in collections is as fol-
lows. Coonsider an exhibit about students and their assignments. 'To compute a stu-
dent’s average, we divide the sum of the grades of her assignments by the number
of assignments: add (.assignment.grade) /count (.assignment). Say a student
gets 100 for two assignments. If the result of the sub-expression .assignment.
grade is a collection without duplicates, then the student’s average is computed
incorrectly as 100 / 2 = 50. To fix this problem, Exhibit introduces two more hop
operators .@ and '@ that prevent duplicates from being eliminated further down
the evaluation process. Thus, add (.assignment.@grade) /count (.assignment)
would compute the correct average.

The full production rules for Exhibit expression language is provided in Figure
3.11.

3. PUBLISHING DATA

3.2.5 Data Import/Export

While the Exhibit JSON format is relatively readable and writeable, it might not be
the format of choice for some publishers. They might already have their data in an-
other format (e.g., BibTex), or they might be used to editing tools that do not export
to Exhibit JSON (e.g., Excel). These publishers can simply annotate the <1ink> ele-
ments referencing their data with the right mime-type (e.g., type="application/
bibtex") and Exhibit will import it automatically. Exhibit’s importer architecture
allows for third parties to plug in their own importers.

Exhibit also has an extensible exporter architecture that can serialize its data
into several formats, ready to be copied off. The natively provided exporters can
generate RDF/XML, Exhibit JSON, Semantic MediaWiki extension wikitext [72],
and Bibtex. The purpose of these exporters is to facilitate and encourage propaga-
tion of reusable data by offering convenience to both users and publishers. For ex-
ample, being able to copy off the Bibtex of some publications that you have found
in an exhibit so that you can cite them is very convenient. You can also copy that

<expression> <sub-expression>

<expression> <expr-op> <sub-expression>
<term>

<sub-expression> <subexpr-op> <term>
<factor>

<term> <term-op> <factor>

<number>

<string>

<construct>

<function-call>

<path>

" (" <expression> ")"

<sub-expression>
<term>

<factor>

<construct> <if-construct>
<foreach-construct>

<default-construct>

<if-construct> "if" " (" <expression> "," <expression> "," <expression> ")"
<foreach-construct> ::= "foreach" " (" <expression> "," <expression> ")"
<default-construct> ::= "default" " (" <expression-list> ")"
<function-call> ::= <identifier> " (" <expression-list>? ")"
<expression-list> = <expression>

| <expression-list> " ," <expression>

<path> <hop-list>
<identifier> <hop-list>
<hop>

<hop-1list> <hop>

<hop-list>

<hop> <hop-op> <property-id>

<expr_°p> - =N I "<>" I "<" I "<= A\l I ">" I " >= "
<subexpr-op> = "+" | ="

<term-op> AL A VA

<hop_°p> si= ALl . ALl I ALl ! ALl I ALl . @" I ALl ! @"

Figure 3.11. Production rules for the Exhibit expression language.

61

3. PUBLISHING DATA

62

data in Exhibit JSON format and incorporate it into your own exhibit to make an
archive of related work.

Exhibit’s default exporters generate an origin property value for each item to
export. This value is the URL that, when invoked, returns to the original exhibit
and pops up the view of that item automatically. This is a lightweight mechanism
for attribution.

3.3 User Interface Model

Exhibit’s user interface consists of several types of component:

e collections;

* widgets: facets, views, and lenses; and

* helpers: coders.
Exhibit also maintains a hierarchy of UI contexts that store inheritable UI settings
such as formatting rules. These components and the formatting rules can all be speci-
fied in HTML. The following subsections define these various UI concepts and de-
scribe how they can be specified in HTML.

3.3.1 Collections

A collection contains a subset of the items currently in the exhibit’s database. Cur-
rently, a collection can be defined to contain items by some particular types, e.g.,
<div ex:role="collection" ex:itemTypes="Man; Woman" id="adults"></div>

<div ex:role="collection" ex:itemTypes="Boy; Girl" id="kids"></div>
<div ex:role="collection" ex:itemTypes="Man; Woman; Boy; Girl"></div>

Each collection has an ID, which can be specified using the HTML id attribute. The
ID of a collection is used to refer to it from other components, as will be discussed
in later subsections. If no id attribute is given, the ID is assumed to be “default”
and the effect of the definition is to redefine the default collection, which comes,
by default, with every exhibit. If not redefined, the default collection contains all
items currently in the exhibit’s database.

What a collection originally contains is called its root set. This root set can be
filtered down to a fillered set by facets attached to the collection, as will be discussed
next.

3.3.2 Facets

A facet 1s a component whose purpose is to filter a collection’s root set down to a
filtered set. Facets can be declared as follows:
<div ex:role="facet"

ex:expression=".ethnicity"
></div>

3. PUBLISHING DATA

<div ex:role="facet"
ex:expression=".profession"
ex:collectionID="adults"
></div>

<div ex:role="facet"
ex:expression=".height * 2.54"
ex:facetLabel="Height (cm)"
ex:collectionID="kids"
ex:facetClass="NumericRange"
ex:interval="10"
></div>

The ex:expression attribute is required and in the simplest case, it specifies the
property by which to filter the collection to which the facet is attached. In the first
example, the facet can be used to filter the attached collection by (people’s) ethnic-
ity; in the second, by professions; and in the third, by heights. The expression does
not have to be a simple property; it can compute more complex values such as seen
in the third example. The ex:collectionID specifies which collection a facet is
attached to; if missing, the default collection is used (as in the first example).

The ex:facetLabel attribute gives a text label to the facet. If missing, and
if the expression is a simple property, Exhibit uses the property’s label; otherwise,
Exhibit shows an error message where the label should be rendered.

The ex:facetClass attribute specifies which class of facet to instantiate.
There are two classes being supported: List and NumericRange (List is the de-
fault class). List facets show each value computed by the expression as a choice for
filtering while NumericRange facets convert each value into a number and group
values into intervals.

3.3.3 Views

A view is a component that renders the filtered set of items in a collection to which
it is attached. As the collection gets filtered by the facets attached to it, the views
attached to that collection update themselves to show the current filtered set.

Views can be specified much like facets. Each kind of view supports its own
settings that are appropriate to it. For example, a tabular view supports settings
pertaining to its columns, e.g.,

<div ex:role="view" ex:viewClass="Tabular"
ex:columns ".label, .imageURL, .party, .age"

ex:columnFormats = "text, image, text, number"
ex:sortColumn = "2"
ex:sortAscending = "true"

></div>

3.3.4 Lenses

An Exhibit lens renders one single item. Lenses are not specified individually per
item, but they are instantiated from a few lens templates, which are specified in HTML.

63

3. PUBLISHING DATA

64

A template is just a fragment of HTML that can be specified in-line, as in Figure
3.12, or in a different file.

Within a lens template, the content attribute of an element specifies what
content to stuff into that element when the template is instantiated for an item. For
example, in Figure 3.12, the <h1> element will be filled with the 1abel property
value of the item.

Attributes that end with -content are assumed to contain Exhibit expressions.
These expressions are resolved into actual values when the lens is instantiated, and
the values are used to assert HTML attributes of the same name but without the ex:
namespace and the -content suffix. For example, the ex:src-content attribute
in Figure 3.12 is replaced with the image property value of the item being ren-
dered, generating the attribute sre="images/trix-rabbit.png" in the generated
HTML clement.

The ex:if-exists attribute of an element determines whether that element
and its children in the template should be included in the presentation of a par-
ticular item. For example, if an item does not have an image property value, the
template in Figure 3.12 will not generate a broken image. The ex:if attribute of
an clement specifies an expression that evaluates to a boolean; if the boolean is
true, the first child element of the element is processed; otherwise, the second child
element 1s processed if it is present. The ex:select attribute of an element speci-
fies an expression that evaluates to some value which is used to select which child
element to process. The child element with the matching ex: case attribute value
is processed. Otherwise, the last child element that does not have any ex:case at-
tribute is processed.

The ex:control attribute specifies which Exhibit-specific control to embed.
There are only two controls supported at the moment: the item-1ink control and
the copy-button control; the first is a permanent link to the item being rendered
and the latter is a drop-down menu button that lets the user copies the item’s data
off in various formats.

3.3.5 UI Contexts and Formatting Rules

Each component has a UI context which gives it access to Ul settings, such as how
dates should be formatted (e.g., “July 4” or “7/4” or “7H4H”). Such formatting
rules can be added to the UI context of a component through the ex: formats at-
tribute on the component’s HIML specification, e.g.,
<div ex:role="view"

ex:viewClass="Timeline"

ex:start=".birth"

ex:formats=

"date { mode: short; show: date } number { decimal-digits: 2 }"
></div>

In this example, whenever dates are rendered inside that timeline view, they are
displayed in short form without time of the day (e.g., “04/07/07” for July 4, 2007).
Whenever numbers are displayed, two decimal digits are shown.

<table ex:role="exhibit-lens" cellspacing="5" style="display: none;">
<tr>
<td>

<div ex:control="copy-button"></div>
</td>
<td>
<hl ex:content=".label"></h1>
<h2>

</h2>
<p ex:content=".text"></p>
<center ex:if-exists=".url">
<a ex:href-content=".url" target="new">More...
</center>
</td>
</tr>
</table>

Figure 3.12. Lens template for showing a breakfast cereal character in a pop-up

bubble as shown in Figure 3.13.

(G)
o Trix Rabbit

| General Mills Trix

First appearing on cereal boxes in
1960, this large white rabbit originally
raced around trying to get some
raspberry red, lemon yellow, and
orange orange Trix corn-puffed cereal
to eat. "Trix. The corn cereal with the
natural taste of fruit". Trix Rabbit was
originally voiced by Delo States.

More...

TERYv d

Count Dracula

BuzzBee

ﬁ m Please refer to Topher's original site for copyright infor

THUMI

2d by: brand; th

Figure 3.13. Bubble showing a breakfast cereal character.

3. PUBLISHING DATA

65

3. PUBLISHING DATA

66

Note that the resemblance in syntax to CSS is intended for familiarity. An
ex: formats specification consists of zero or more rules (cf. CSS rules). Each rule
consists of a selector which specifies what the rule applies to (cf. CSS selectors) and
then zero or more settings inside a pair of braces. In the example, there are two rules
and two selectors, date and number. Those two selectors select the value types to
which the rules apply.

Tor each selector there is a different set of allowable settings. For example, for
datethenianitime—zone,mode,and.template.Fbreach.ﬁiﬁngthereisasetof
acceptable setting values. For example,

* time-zone takes a number or the keyword default;

* mode takes any one of the keywords short, medium, long, and full to spec-

ify how detailed to render dates and times;

* template takes a string that acts as a template for formatting dates and times

in case those four standard modes do not satisfy the publisher’s needs; and

* negative-format (for currency) takes any combination of the flags red,

black, parentheses, no-parentheses, signed, and unsigned K)specﬁy
how negative currency values should be rendered.

As in CSS, URLs in formatting rules are wrapped in url (). Similarly, expres-
sions are wrapped in expression (). For example,

ex:formats=
"item { title: expression(concat(.full-name, ', ', .job-title)) }"

specifies that when a textual description of an item is needed, render the full-
name property value followed by a comma and the job-title property value.
The full production rules for Exhibit’s format language is provided in Figure
3.14.
Other UI settings beside formatting rules can be specified through other attri-
butes, such as ex:bubblewidth for the width in pixels of popup bubbles. Settings
not specified in a view’s HTML specification are inherited from the view’s outer

<rule-list> = <rule>*
<rule> = <selector> ["{" [<setting-list>] "}"]
<selector> = "number" | "date" | "boolean" | "text" | "image" |
"url" | "item" | "currency" | "list"

<setting-list> = <setting> | <setting-list> ";" <setting>
<setting> = <setting-name> ":" <setting-value>
<setting-value> ::= <number>

| <integer>

| <non-negative-integer>

| <string>

| <keyword>

| <url>

| <expression>

| <flags>
<flags> 1 := <keyword>+

Figure 3.14. Production rules for the Exhibit format language.

lexical scope, that is, from the settings specified on components whose HTML speci-
fications lexically contain this view’s HTML specification.

3.3.6 Coders

A coder translates a piece of information to some visual feature, e.g.,

* from the political-party property value “Republican” to the color red,
and from “Democrat” to the color blue;

* from the service property value “Restaurant” to an icon showing a fork and
a knife, and from “Hotel” to an icon showing a bed;

* from the magnitude property value 5 (assumed to be the magnitude of an
carthquake) to the number 40, indicating how large the corresponding map
marker should be;

* from the temperature property value -30 (assumed to be in Celsius) to the
color code #0000aa, a particular shade of blue indicating how cold it is.

For the four examples above, these are the coders’ specifications:
<div ex:role="coder" ex:coderClass="Color" id="political-party-colors">
Republican
Democrat
Any other party
Multiple parties

No party
</div>

<div ex:role="coder" ex:coderClass="Icon" id="service-icons">
Restaurant
Hotel

<span ex:icon="question-mark.png"
ex:case="default">Other service
<span ex:icon="many-question-marks.png"
ex:case="mixed">Multiple services
<span ex:icon="x.png"
ex:case="missing">No service
</div>

<div ex:role="coder"
ex:coderClass="NumericGradient" id="earthquake-magnitudes"
ex:gradientPoints="1, 20; 10, 60"
></div>

<div ex:role="coder" ex:coderClass="ColorGradient" id="temperature-col-
ors"

ex:gradientPoints="-40, #000088; 0, #ffffff; 50, H#££0000"

></div>

The ex:case attribute is used to specify special cases, such as when a single marker
on the map corresponds to several values to translate (e.g., because several politi-
cians belong to different political parties were born in the same city), or when there
is no data to translate (e.g., because there is no temperature recorded for a particu-
lar city). The ex:case="default" attribute value is used to code all remaining
cases (e.g., other political parties beside Democrat and Republican).

3. PUBLISHING DATA

67

3. PUBLISHING DATA

68

To connect a view or a facet to a coder, you need to specify on the view or
facet’s HTML specification which coder to use and what data to feed it. To have a
map view plotting politicians colored by political parties, then we can specify that
map view as follows:

<div ex:role="view" ex:viewClass="Map"
ex:latlng=".latlng"
ex:colorCoder="political-party-colors"

ex:colorKey=".party"
></div>

As another example, to construct a map view of buildings and the services avail-
able in them, write:
<div ex:role="view" ex:viewClass="Map"
ex:latlng=".latlng"
ex:iconCoder="service-icons"

ex:iconKey=".service"
></div>

Several coders could potentially be used in the same view. For example, on a map
plotting natural disasters, an icon coder can indicate whether a disaster is an earth-
quake, a volcano eruption, a tsunami, etc.; a marker size coder can show the mag-
nitudes of those disasters; and a color coder can show the casualties (e.g., more red
means more casualties).

3.4 Implementation

The Exhibit framework is implemented in several Javascript, CSS, and image files.
It is available at a public URL where anyone can reference it from within his or her
HTML pages. Exhibit publishers do not need to download any software, and users
who view exhibits do not need to install any browser extension. This zero cost is the
signature of client-side Web APIs and is largely responsible for the explosion in the
embedding use of Google Maps [11].

Exhibit’s source code is available publicly. Any of its parts can be overridden
by writing more Javascript code and CSS definitions after including Exhibit’s code.
Third parties can implement additional components to supplement Exhibit.

Exhibit’s architecture is illustrated in Figure 3.15. At the bottom is the data
layer consisting of the database, the expression language parser and evaluator, and
importers and exporters. At the top is the user interface layer, which consists of
three sub-layers:

* Ul contexts and localization resources—storage of presentation settings for

the rest of the user interface layer.

* collections and coders—components that do not render to the screen but

determine what data widgets should render and how to render it.

» widgets which perform the actual rendering and support interactions.

3. PUBLISHING DATA

DOM text
| s e [~
|| lenses tile, thumbnail, tabular views list, numeric range facets E
| | —
e - 2
! . 65
HTML [collections coders ‘ \g
configuration g————— —— —— | -—— ——) I
fypjm/—/—————-—— - - - - -—-———-————------—---—-_- - o)
5] m
| Ul contexts localization : :
|
R |
777 g
[>
} expressions exporters 3
| |
| |
HTML. \ database ‘
configuration [‘
| |
| |
\ importers \
| |
data

Figure 3.15. Exhibit’s architecture

There are several points of extensibility. More views, facets, and coders can be
added. More importers, exporters, and functions (to be used in expressions) can be
registered. For example, a new facet class can be added to show a calendar or a
timeline supporting date range selection instead of just listing individual dates.

The localization component encapsulates localized UI resources, including text
strings, images, styles, and even layouts. This is only our early attempt—interna-
tionalizing a framework that generates user interfaces at run-time is very difficult.
We note that even HTML is biased for English. For example, bold and italics, which
have native syntax in HTML, are foreign concepts to most Asian scripts.

69

3. PUBLISHING DATA

70

3.5 Evaluation

Exhibit was evaluated in two ways: by its performance in contemporary popular
browsers and by its actual usage by casual users.

3.5.1 Performance

Four platform/browser configurations were chosen for testing Exhibit version 2.0
as of July 26, 2007:
* MacBook Pro laptop, Mac OSX 10.4.10
2.16 GHz Intel® Core 2 Duo, 2 GB RAM
1. Firefox 2.0.0.5
2. Safari 3.0.2 (522.12)
* Dell Dimension 8200 desktop, Windows XP SP2
2.53 GHz Intel® Pentium® 4 CPU, 1.00 GB RAM
3. Firefox 2.0.0.5
4. Internet Explorer 7.0.5730.11
For Firefox, new profiles were created for testing. For the other browsers, their
caches were cleared.

Exhibit’s performance was measured in two ways: by its load time and by its
interactivity time. The only independent variable was the number of items in the
test exhibit, which varied from 500 to 2,500. The results are shown in Figure 3.16
and Figure 3.17, which will be explained below.

3.5.1.1 Load Time

Load time was divided into two stages:

* Data loading: populating the database with data that has already been re-
ceived at the browser, thus excluding network traffic cost;

* Ul rendering: constructing the initial presentation of the exhibit, which in-
cludes all the costs of computing the facets, querying the database for data to
construct the lenses, and actually generating DOM elements.

There were two variations of UI rendering:
» All items were sorted by label and rendered in a tile view.
» All items were sorted by label but only the first 10 were rendered.

Four platform/browser configurations combined with two variations of Ul
rendering yielded the eight charts shown in Figure 3.16. These charts show that
Ul rendering cost considerably more than data loading, and that by rendering only
the first 10 items, reasonable load time performance (under 5 seconds) could be
achieved in all tested platform/browser configurations for 1,000 item exhibits.

3.5.1.2 Interactivity Time

To test interactivity time, I measured the time it took from clicking on a facet value
with a count of 3 (after the test exhibit has finished loading and rendering) to when

the exhibit has finished rendering the filtered set of items and updating the facets.
There were also two variations of initial Ul rendering as in the load time test, pro-
ducing a total of eight traces in the two plots in Figure 3.17. Rendering all items at
the beginning did affect the filtering time substantially, perhaps because there was a
high cost for removing generated DOM elements. Responsive performance (within
half a second) could be achieved in all platform/browser configurations if only 10
items were rendered initially.

These test results yielded encouraging evidence that reasonable performance
is achievable by Exhibit’s client-side approach. More browser optimizations and
faster hardware will soon make Exhibit scale better. Already we see that the latest
beta version of Safari double the speed of the latest released version of Firefox on
the same platform.

3. PUBLISHING DATA

71

3. PUBLISHING DATA

Firefox 2.0.0.5

Safari 3.0.2 (522.12)

72

seconds

seconds

60
55
50
45
40
35
30
25
20

60
55
50
45
40
35
30
25
20
15
10

— —_— — I | 0

Mac OSX 10.4.10, 2.16 GHz Intel Core 2 Duo, 2 GB 667 DDR2 SDRAM

Rendering All ltems Rendering First 10 ltems

M Data Loading " UI Rendering M Data Loading " UI Rendering
60
55
50
45
40
35
30

seconds

25
20
15
10

— — — | ||
500 1000 1500 2000 2500 500 1000 1500 2000 2500
items items

M Data Loading " UI Rendering M Data Loading " UI Rendering
60

55
50
45
40
35
30

seconds

25
20
15
10

500 1000 1500 2000 2500 500 1000 1500 2000 2500
items items

Figure 3.16. Exhibit’s load-time performance results on four configurations (two
operating systems, two browsers per operating system) with the number of items
as the independent variable. At 1000 items, by rendering only the first 10 items,
the data loading and Ul rendering times combined take shorter than 5 seconds
on all configurations.

3. PUBLISHING DATA

Windows XP SP2, Pentium(R) 4 CPU 2.53GHz, 1.00 GB RAM

Rendering All ltems Rendering First 10 ltems

M Data Loading [UI Rendering M Data Loading [UI Rendering

seconds

seconds

60 60
55 55
50 50
45 45
40 40
!
35 (] =
_g 35 9..
o
30 § 30 :,
25 0w 25 °
o
20 20 s
15 15
10 10
5*j "’ - m
o0- 0 === -
1000 1500 2000 2500 500 1000 1500 2000 2500
items items
M Data Loading ' UI Rendering M Data Loading [UI Rendering
60 60
55 55
50 50 —-—
2
45 45 (0]
2
>
40 40 o
m
35 ")
] 35 %
c =2
30 S 30)
g =
25 W 25 e
N
20 20 =
1 4
5 15 W
o
10 - 10 -
-
0l 0 =
1000 1500 2000 2500 1000 1500 2000 2500
items items

73

3. PUBLISHING DATA

Rendering All Items

3000
2500
w 2000
- - IE7 2
- - Firefox 2 (Win) § 1500
—&— Firefox 2 (Mac) @
—®— Safari 3 =
€ 1000
500
0
500 1000 1500 2000 2500
items
Rendering First 10 Items
3000
2500
w 2000
-m- IE7 2
- Firefox 2 (Win) § eo0
—&— Firefox 2 (Mac) @
—®— Safari 3 =
€ 1000 .
I R S
500 Tt
—
.~ o DG ooe
y N &
. = $ ———¢
500 1000 1500 2000 2500
items

Figure 3.17. The times taken to filter down to 3 items from the same initial
configurations in Figure 3.16. By rendering only the first 10 items initially, the
filtering times on all configurations can be reduced to below one second even for
exhibits containing 2500 items in total.

74

3.5.2 Usage

Eight months after Exhibit 1.0 was released, server logs indicate that more than
800 web pages link to the Exhibit API. Note that deploying Exhibit as a Web API
serves two purposes: letting Exhibit authors do away with downloading and setting
up software as well as allowing us to track actual usage of Exhibit through referrals
in our server logs.

Table 3.1 shows usage of Exhibit at several top level domains. Many of them
are attempts to follow a tutorial for creating exhibits. Some are broken and aban-
doned attempts; some are duplicate versions of the same exhibits; and a few are in
foreign languages which I do not understand.

It is very difficult to categorize the rest as they are very unique and different
from one another, as much as existing web sites are unique. An early attempt to
group them by topics is shown in Table 3.2. Note the many esoteric topics that
form the long tail distribution. Even within a single topic such as “people” there
1s diversity, ranging from university presidents, to army officers, to tavern keepers.
These exhibits can contain as few as three items, to as many as 1,700. A few have
been well designed visually, many have layouts and color themes copied off from
other exhibits, and the rest are bare. Out of those 700 or so pages, 175 make use
of the timeline view and 123 of the map view.

Figures 3.18 — 3.27 show ten exhibits created by real Exhibit authors. Figure
3.18 shows an exhibit that has been created by someone who claimed in an e-mail
message to me not to be a programmer. Even though there is plenty of informa-
tion online about music composers, he still felt compelled to create a “database” of
music cComposers.

Figure 3.19 displays information about historical figures. It is meant to be
classroom materials for grade six. Even though the same materials are available
elsewhere, this teacher wanted to present them to his students in a different way;
perhaps to match the rest of his own curriculum. Similarly, a Charmed TV series
fan put up Iigure 3.20 even an official episode guide exists.

On the other hand, the information shown in Iigure 3.21—information about
someone’s ancestors—will unlikely be published anywhere else, as it is very per-
sonal information. Similarly, the data about sweet products of a small Spanish shop
shown in Figure 3.22 is unique.

Figure 3.23 shows an exhibit of banned books. By making it easier for end us-
ers to publish arbitrary data, Exhibit makes such information, shunned by official
sources, more likely to see the light of day. I'rom this perspective, Exhibit serves as
a tool for empowerment.

Exhibit is also found to be a useful organization tool thanks to its faceted brows-
ing and flexible visualization features: Figure 3.24 shows information about little
league games and practices. Several tabular views are configured to show the same
data differently, perhaps to different groups in the exhibit’s target audience. The
four digit numbering scheme in the events’ labels indicates expected long-term
use.

3. PUBLISHING DATA

75

3. PUBLISHING DATA

76

More interestingly, Exhibit has been found useful even by programmers. The
programmer responsible for implementing a browsing interface for the learning
resources in the Language Learning and Resource Center at MI'T chose Exhibit
over building his own web application and have made several exhibits, including
the one shown in Figure 3.25.

Similarly, a database researcher has found it easier to make an exhibit of his
publications, seen in Figure 3.26, than to build his own database-backed publica-
tion site.

Finally, semantic web researchers have turned to Exhibit as a means to display
their data (Figure 3.27), especially because they have no tool to display their data in
such a usable and useful manner.

3.6 Summary

This chapter explored several ideas that made publishing data to the Web in brows-
able and reusable forms easy for casual users, those without programming skills.
Embodying these ideas, the lightweight publishing framework Exhibit has let a few
hundred people create richly interactive web sites with maps and timelines.

TLD
.com
.edu
.org
.net
nl
Ar
.ca
uk
At
.anfo
.CO
.TO
.de
.us
.mil
.at
.dk
Bil
.gov
WS
.ar
.au
.CX
.CZ
.gr
.hu
an
nt
s
.nu
.pl
Tu
.se
.za

exhibit count
246

215

91

35

20

19

18

17

11

et e e et e e = — = ND RO ND OO QO s T O O O

Table 3.1. A survey of real-world ex-
hibits by topics shows adoption in many

top level domains.

topic
publications
eople
Eciegtiﬁc data
photos
classroom materials
engineering timetables
products
movies
sports
events
presentations
projects
web sites
books
locations
recipes
personal histories
play castings
games
space launch sites
world conflicts
hotels
restaurants
blog posts
cars
links
buildings
breweries & distilleries
elections
activities
museums
sounds
historical artifacts
characters
streets
early christian periods

HMong state population

vocabulary
history
materials
documents
plays

wars

3. PUBLISHING DATA

exhibit count item count

20 4013
18 2647
2517
871
477
899
433
237
195
162
128
957
317
199
127
97
12
441
422
280
278
203
97
97
89
70
68
35
50
50
45
32
24
24
24
21
15
14
13
8

e i e el i Ll el i L e e e e e e e i i Ll L e L Ll L]) 1 N NS N Y] N N N SN S SN SO HE WIS IS, } &2 @)

7
)
3

Table 3.2. A survey of real-world exhibits by topics

shows a long tail distribution.

77

3. PUBLISHING DATA

o600 Music Composer Research Database For All Eras (=)
é v By e [X] fi} http:/ /www.musiced magic.com/Exhibit/composers.html v B 3 <|» 3 o
m
.
Music Composer Research Database Google:
The information in this database is intended to be a starting point for research and study into I
the great composers of classical music. Search |
The information about each composer is provided in a clean, visual format that will help you see the Ads le
relationships between the various composers of the Medieval Period, the Renaissance, the Barogque Send Sympathy Gift
Era, the Classical Era, the Romantic Era, and current Twentieth Century music. For more detailed Sympathy Gift Idea
information on how to use this database please visit the instruction manual at MusicEdMagic.com Buy Sympathy Gift
Pet Sympathy Gift
Ads by Google Devon Family History Somerset Genealogy Hoff Genealogy Hough Genealogy -
VIEW TIMELINE » VIEW ALL INFO » MAP PLACES OF BIRTH » PLACE OF DEATH » PLACE OF BURIAL
-_— Y TR Era
64 Items total i Copy All * . Baroque -
% Classical
Only 55 can be plotted on the timeline. 3 Middle Ages
o Towertillams R
15 Twentieth Century ks
Hlls GEs 1 Uncategorized i
EE e — S _
e i Neotoric
1. American Folk 3
1. Arias
. 2. Balet
1. Blackface Minstrelsy —
sl 1 Canons r
7 Mantatas - _V
BirthCountry
1. Australia L
4. Austria i
% Belgium -
Daone Q |/

78

Figure 3.18. An exhibit of 64 music composers from the eleventh century to the
present day. The composers can be viewed on a timeline by their lifetimes, and on
maps by their birth places, death places, and burial places. They can be browsed
by the music eras, by their major genres, and by their countries of birth. Even
with all the information about composers already on the Web, someone still feels
compelled to create his own research “database” of composers.

3. PUBLISHING DATA

06806 SIMILE | Exhibit | 6th Grade SOLs -
" - e (%] fJ} @ hup:/ /byrdmiddle.org/sol.html v | 42 “" 3 A A I
™
Important 6th Grade SOL Figures Explorer
1. Journalist
This is more than a web page. This is an interactive site that allows you to manipulate and sort the data with 1. Patriot
just a dick or two. If you'd like to see an example of the page in use click here. 1 Philosopher
]
TABLE » DETAILS « PHOTOS » BIRTH PLACES » SITES OF DEMISE = LIVES 1/ Poet
- T Conv Al 2. Politician
i Copy All
19 People total e & President

PICTURE

Civil War
Colonial
Exploration

Mew Nation
Revolutionary War

AN A UM

Figure 3.19. An exhibit of 19 important figures in history that serves as edu-
cational materials in a grade 6 classroom. Even though the same materials are
available elsewhere, each teacher might want to present them to their students in
a different way, adding personal insights that match the rest of their curriculum.

79

3. PUBLISHING DATA

| OO0 Charmed TV Series Episode Guide (=]
@ ,l‘ BE htp:/ jwww.storycharms.com/tvseries.html B | & <|' 3: Cl~ & -
Charmed TV Series Page
soychamshome ~ Cha@rmed TV Series Episode Guide
See episode details of Charmed, your favourite TV series, right here. Click on the options to change the information being shown on the
Charmed Episode Guide » page. There's a lot of information on this page, so please allow time for the details to load.
Charmed Timeline . penmmee
. Copy All !
Charmed Series Auction items 178 Items total Pzl g features
Charmed Series Links 5 Agent Brody
rted by: de; th ;
Charmed TV Listings SOTten Dy: EpIR00ss e M Alchemist O
Charmed Series 1 Quiz Something Wicca this Way Comes | Season: 1 | Episode: 1.01 | Date: 01/04/2000 Andras
Charmed Series 2 Quiz The Halliwell sisters are reunited and discover their heritage Andy

much to their dismay. Angel of Death

Rate this page Angel of Destiny |+

& Excellent Angel of Fortune |7
 Good
¢ Fair T
(o
r I've Got You Under My Skin | Season: 1 | Episode: 1.02 | Date: 08/04/2000

Piper is scared to go into a church now she is a witch. Phoebe meets a photographer
but he's really a youth-sucking demon after immortality.

Thanks for Not Morphing | Season: 1 | Episode: 1.03 | Date: 15/04/2000
The sisters’ absent father appears wearing an anti-evil amulet. And their neighbours are
trying to steal the Book of Shadows.

SN B W
«r (T]

Dream Sorcerer | Season: 1 | Episode: 1.04 | Date: 22/04/2000
Prue has terrifying dreams of a man threatening to kil her and he nearly does.

episode
Dead Man Dating | Season: 1 | Episode: 1.05 | Date: 29/04/2000 101 0
A ghost asks Piper to ensure his bodly is buried to save him from a Chinese demon. 1.02
1.03
The Wedding from Hell | Season: 1 | Episode: 1.06 | Date: 06/05/2000 1.04 .
Piper is catering a wedding but then the bride is suddeniy jilted for a stranger. 1' 05 £
Done € 1Error

Figure 3.20. An exhibit of 178 episodes from the Charmed TV series.

80

3. PUBLISHING DATA

000 Ancestral Timelines {select Birth Places view} (=]
é v B e [%] fJ} 2 http: / fwww.gageandtim.com/family/history/ancestors. html v e <‘> E Rk
-
- -
Ancestral Map and Timeline
This is a map and timeline showing how the lives of my ancestors overlapped.
TIMELINES - BIRTH PLACES - DEATH PLACES - VIEW ALL INFO Timeline: The top panel shows ancestors' felines
e — oss the decades. The bottom panel shows them
82 Items Eﬂ oss centuries. Click and drag to go back and
torth through history. Click on a Iifeline to get more
info about the person.
out of 82 cannet be plotted. View All Info: Click to get a table view of the

ancestors' info.

Last Name

2 Anderson
Baad
Barker
Borland
Borrowman
Burnside
Chippey

Mol
o

} = o a

-

Lineage
2 Harman
15 Hotchkiss
5 Leslie

b 2 Linebaugh

o Riley

Morth Atantic
Qcean

f GA -
) L a4 geria
Mexico ste
T 15 Rising
B .
 apsos e e A2y M55 17 S

- -

Q Hotchkiss @ Lestie () Linebaugh () Riley (D Rising () sharp @) Snapp () mixed Blr;h g::r::::ticut
5 lllinnis

9 Boxes below: Click on the options below to see the

Hybrid |% info re-sorted according to that choice.

0

fale

IEIX 44 ¥

oI

Transferring data from mt0.google.com...

NI

Figure 3.21. An exhibit of 82 ancestors containing a timeline and maps of
birth places and death places. The people can be browsed by their last names,
lineage, birth regions, and death regions. The information found in this exhibit
will unlikely be on any other web site. That is, even with Wikipedia and Freebase
growing in size everyday, some information will just never find its way into such
public repositories.

81

3. PUBLISHING DATA

laa)é)

Productos de Bubbly

\,4' eJ /I‘ == hitp:/ /www.bubblyspain.com/new/productos.html

‘ay

27 Baiio
7 Barra Masaje
6 Cabello
1 Cremas

36 Jabén

-

4 Aceites sélidos de bafiera
8 Bafios de espuma solidos

18 Bloques de jabén
4 Bombas de bafio
4 Crema sdélida

1 Cremas al peso

9 Discos de jabén

9 Lingotes de jabén
3

4

Tratamientos de Bafiera

Trufas

-

aplicacién

5 Afrodisiaco
Analgésico
Ansiolitico
Anti-inflamatorio
Antiacné
Antiarrugas
Antibacterias
Anticaida
Anticaspa
Anticelulitico
Antidepresivo
Antiedad
Antigrasa
Antihongos

HHENNHFENNNEERE

"
N

Done

-CAT:\LOGO DE PRODUCTOS

77 Productos total

ordenados por: categoria y subcategoria; luego por... = o/ agrupar segln orden « () mostrar duplicados

Bafio (27)

Aceites sélidos de bafiera (4)

Bafios de espuma sélidos (8)

Welcome to Ibiza

Chocolate

Lavanda

Coco helado

Pifia colada

& 1Error

g C]C‘ﬁ?'

Ak

EN

82

Figure 3.22. An exhibit of 77 sweet products in a Spanish shop. Ior such a
small business, investing in a full three-tier web application is costly.

lalaXa) Syracuse University Library :: Banned Book Week

3. PUBLISHING DATA

‘_i‘ W e/ flibrary. syr.edu/information/banned_books/exhibit. htm ¥ |

LIBRARY

ABOUT US | SERVICES | HELP | RESEARCH TOOLS

€ 5 &

SYRACUSE

Celebrate Your Freedom - Read a Banned Book

Syracuse University Library observes Banned Books Week, September 29 - October 6, 2007, as a part of the
S.1. Newhouse School of Public Communications year-long First Amendment Celebration. For more information
about Banned Books Week, contact Tasha Cooper, nacoop0l@syr.edu or visit the resource pages hosted by the
American Library Association.

THUMBNAILS » DETAILS » TIMELINE

1 1 Items total :‘"

I

. ®» & grouped as sorted » (O show duplicates

sorted by: type; then

Adult Book

y %" |
Rt
sy

Eve's Diary Lolita

The Bluest Eye

by Mark Twain and
Lester Ralph

Banned/Challenged:

Illustrations

by Viadimir Nabokov
Banned/Challenged:
Sexual Situations

by Toni Morrison
Banned/Challenged:

Sexual Situations,
Strong Language, and

Racism

Children’'s Book

type

3. Adult Book
Children's Book
Essay
Pamphlet
Play

Y

reason

1. Ilustrations

4 Political Views
Racism
Religious Views
Sexual Situations

[T I RN

Strong Language

-

1829
1848
1849
1906
1955
1962

1nTn

P

N L

location

3. Bird Library
3 Bird Library Special
Collections

MLK Library

¥
i

Figure 3.23. An exhibit of 11 banned books. Certain materials may never find
their way into official discourse. Empowering end users to publish is even more
important a cause.

83

3. PUBLISHING DATA

84

OO0 Cheltenham Little League Events {select Practice and Came Table view} =]
-« @ ,J_‘ @ htp:/ jwww.cheltenhamlittieleague. v [= <|> 3: Cl~ &% -
A -A

Cheltenham Little League Events

+ |Instructions Select your team in "All_Team_Events" below to get all of the events for your team!

Date

01/02/07
01/03/07
01/05/07
01/09/07
01/10/07
01/22/07
(TH(E i

<[r

Sport

baseball
softball
t-ball

Event
game
practice
tournament

All_Team_Events

CLL12
CLL20
ClLs
CLL6
EA12
EA4
.]Yﬂi

PRACTICE AND GAME TABLE » UMPIRES TABLE » GAME, PRACTICE AND UMPIRE TILE

10 Items total

Label~ | Date |Start | Sport Event | Location || Field |Home |Away Practice || All Teams
0001 || 01/02/07 || 09:00 | baseball | practice || cAA CAM ciz | oz
0002 || 01/02/07 || 10:30 | baseball | practice || caa CAA3 cls | cus
0003 | 01/03/07 | 10:00 | softball | game OYRLL | OYRI |cLliz |Ead EAd and
cLLi2
0004 || 01/03/07 | 13:30 | tball | practice || OYRLL | OYRi cle | cLLs
0005 | 01/05/07 | 14:00 | softball | game EA EA3 |EA12 | o2 CLL12 and
EA12
0006 || 01/09/07 || 10:00 | t-ball | practice | OYRLL || OYR2 OPEN | OPEN
0007 | 01/09/07 | 11:00 | softball | game CAA cA2 |CLLS | cLe CLL6 and
CLLS
0008 || 01/10/07 || 15:30 | baseball | practice || CAA cAA2 OPEN | OPEN
0009 || 01/22/07 || 14:00 | softball | tournament || caa cant || cLizo || svad JYA4 and
CLL20
0010 || 02/01/07 || 14:00 | softball |practice | OYRLL || OYR4 cle | cLLs
Done 0

Figure 3.24. An exhibit for organizing little league sport games. It is filled with

acronyms and is tailored for a very small audience, to whom it proves useful.

3. PUBLISHING DATA

0606 LLARC Catalogue (=]
@ A v @ - Q @ hup://llarc.mit.edu/materials/catalogue/ v 2 ‘|' B |G| A *
Location: LLARE > Matarials > LLARE Catalogue > LLARC Catalogue |

SEARCH:

AUTHOR OR DIRECTOR MEepIA TYPE LANGUAGE AREAS

109 A 23 AudioCD F 1 B e I
1 ABC News 224 Cassette 22 Bilingual/Biculwral 64 Culture
| Aciman, André 2% CD-ROM Studies 374 Films
! Adams, Thomas and 5 Computer Program 87 Chinese | Films ; Culture

Kuder, Susan 195 DVD 118 BSL 20 Films; Culture

4 Akin, Fatih 4 Textonly 144 French | Films; y
! Alarcon, Ruiz de < 228 German : CultureFilmsCulture |+

4 6 Video CD s
Alassane. Mustabha [T .. el X 1 Tralian

- - -

—
T
Y
)

LLARC CATALOGUE » SHOW LONG DESCRIPTIONS

867 tems

Cat. No. TITLE~ AUTHOR/DIRECTOR MEDIA
CHO77 2046 Films Wong, Kar Wai DVD 1

FR 175 A BATONS ROMPUS Language Study; Furstenberg, Gilberte Cassette
s, Specches,

J
Done ©

Figure 3.25. An exhibit of 867 teaching resources in the Language Learning
and Resource Center at MIT. Its author 1s skilled in server-side programming but
he still finds Exhibit a quick way to build a browsable interface for his data.

85

3. PUBLISHING DATA

0Oonn

Daniel Abadi's Publications

x'_‘v

¢

/I‘ ||| http:/ /web.mit.edu/dna fwww/displaypubs_html|

Daniel Abadi's Publications

16 Publications total

2007 (5) Technical Report
Thesis
Conference Paper (4)
VLDB (2)
Scalable Semantic Web Data Management Using {Copy vanua
Vertical Partitionng 77U CIDR
Abadi, Daniel J., Marcus, Adam, Madden, Samuel R., and Hollenbach, Kate ICDE
nVLDB SIGMOD
Efficient management of RDF data is an important factor in realizing the VLDB
Semantic Web vision. Performance and scalability issues are becoming VLDB Journal
increasingly pressing as Semantic Web technology is applied to real-world
applications. In this paper, we examine the reasons why current data
management solutions for RDF data scale poorly, and explore the fundamental
scalability limitations of these approaches. We review the state of the art for .
improving performance for RDF databases and consider a recent suggestion,
‘property tables'. We then discuss practically and empirically why this solution
has undesirable features. As an improvement, we propose an alternative year
solution: vertically partitioning the RDF data. We compare the performance of 2002
vertical partitioning with prior art on queries generated by a Web-based RDF 2003
browser over a large-scale (more than 50 million triples) catalog of library data. 2004
Qur results show that a vertical partitioned schema achieves similar performance
1o the property table technigque while being much simpler to design. Further, if a 2005
column-oriented DBMS (a database architected speciallg for the vertically 2006
partitioned case) is used instead of a row-oriented DBMS, another order of 2007
magnitude performance improvement is observed, with query times dropping
from minutes to several seconds.
PDF 246 KB T
authors .
Abadi. Daniel .J. ~ b
Done Q

sorted by: year, publicationtype, and venue; then by... * & grouped as sorted + © show duplicates

o
q

,) Cl- %

publicationtype

Conference Paper
Demonstration
Journal Article

86

Figure 3.26. An exhibit of a database researcher’s publications, who finds it
casier to use Exhibit than to build a database-backed web site for his publications.

3. PUBLISHING DATA

006 Semantic Web Education and Outreach Interest Group Case Studies and Use Cases =
- & /I‘ @ hitp:/ /www.w3.0rg/2001/sw/sweo/public/UseCases /Ove rview. html Brle & ¢ :} G- &% -
- T i i ™

W Technology and Society | Semantic Web
il domain Activity

Semantic Web Education and Outreach Interest Group:
Case Studies and Use Cases

Case studies include descriptions of systems that have been deployed within an organization, and are now being used within a production environment. Use cases
include examples where an organization has built a prototype system, but it is not currently being used by business functions.

The list is updated regularly, as new entries are submitted to the Interest Group. There is also an R551.0 feed that you can use to keep track of new submissions.

22 entry Search facets:
sorted by: entry-type and labels; then by... » & grouped as sorted Application
B2B integration
Case study {13) business organization

,,,,,,,,,,,,,,,,,,, cultural heritage
data integration

1. An Intelligent Search Engine for Online Services for Public Administrations, Municipality of Zaragoza (Case

study) eGovernment

Contributed by: Jesis Fernandez Ruiz geographic information
2. An Ontology of Cantabria’s Cultural Heritage, Fundacion Marcelino Botin (Case study) iystleg'l v

Contributed by: Francisca Hernandez 2

3. Composing Safer Drug Regimens for the Individual Patient using Semantic Web Technologies, Country
PharmaSURVEYOR Inc. (Case study)

Contributed by: Erick Von Schweber Be!gmm
4. Enhancing Content Search Using the Semantic Web, Siderean Software and Oracle Corporation (Case study) China
Contributed by: Mike DiLascio and Justin Kestelyn France
5. Geographic Referencing Framework, Ordnance Survey (Case study) India
Contributed by: Catherine Dolbear Ireland
6. Improving the Reliability of Internet Search Results Using Search Thresher, Segala (Case study) Ital
Contributed by: David Rooks y i
7. Real Time Suggestion of Related Ideas in the Financial Industry, Bankinter (Case study) Spain v
Contributed by: José Luis Bas Uribe -
8. Semantic Content Description to improve discovery, Vodafone Group Research & Development (Case Institution’s Activity area

study)

Contributed by: Kevin Smith aeronautics

9. Semantic Web Technology for Public Health Situation Awareness, School of Health Information Sciences, a_utum_uti_ve o v
University of Texas (Case study) financial institution +
Fantrihutad b Darca Mirhadi haslth carm

Done Q

Figure 3.27. An exhibit of Semantic Web case studies and use cases. Exhibit is
making Semantic Web data useful by making it viewable by end users.

87

3. PUBLISHING DATA

88

