
47

When it came into existence, the Web was hailed for giving individuals the same
publishing power as large publishers. But over time, large publishers learned to ex-
ploit the structure in their data, leveraging databases and server-side technologies to
provide rich browsing and visualization features. People have come to expect from
professional sites features like searching, sorting, filtering, comparison, maps, etc.
Individual small publishers fall behind once more: neither old-fashioned static pag-
es nor domain-specific publishing frameworks (e.g., web photo album generators)
and services (e.g., Flickr) supporting limited customization can match full-fledged
database-backed web applications that cost thousands of dollars. Fortunately, ideas
embodied in tools that have made publishing so efficient for large publishers can
also help small publishers as long as the needs and abilities of small publishers are
taken into consideration. This chapter explains how.

A typical application consists of three layers: data, presentation, and applica-
tion logic in between. Separating data from presentation allows mixing and match-
ing data with presentation so that the same data can be shown in different ways. It
is also easier to build tools specialized for dealing with either data (e.g., databases)
or presentation (e.g., form editors) separately.

This principle of separating data from presentation has been built into tech-
nologies that target large publishers. Designed for scalability and flexibility, these
technologies are far too complex for casual users to adopt. Such users have so far
only been offered HTML as the generic web publishing technology, and in HTML,
data and presentation are mixed together.

To let casual users benefit from the separation of data from presentation, the
costs of authoring data, authoring presentation, and connecting them up must be
lowered.

Publishing Data3.

3. Publishing Data

48

The cost of authoring presentation can be lowered in two ways by assuming
that the presentation needs of casual users are not so complex:

First, a variety of common features such as sorting, grouping, searching, fil-•
tering, map visualization, timeline visualization, etc. can be provided out-of-the-
box so that each casual user need not re-implement them herself. (As her presenta-
tion needs get more sophisticated and unique, she will eventually need to program
her own features.)

Second, customization to the presentation can be specified in an • HTML-
based syntax right inside the HTML code used to layout the web page. This is so
that the publisher can work on every part of the page’s presentation inside a single
file in a single syntax. (As the publisher’s needs to customize the presentation get
more sophisticated, the HTML-based syntax will no longer satisfy her.)

The cost of authoring data can be lowered in two ways by assuming that casual
users publish only small data sets:

First, if a publisher is already editing her data in some particular format and •
some particular editor convenient to her, she should not need to load that data into
a database and then maintain the data through the unfamiliar and inconvenient
user interface of the database. She should be able to keep managing her data how-
ever she likes, and the data only gets loaded into the database when it needs to be
rendered. This is realizable if the data is small and loading it into the database is
quick. (As the data gets larger, there is a point when the data should already be
loaded into a database to ensure a responsive web site.)

Second, data schemas can be made optional if their benefits do not justify •
their costs. While schemas are advantageous on large data sets for database opti-
mizations and for managing data at a higher level of abstraction, their benefits on
small data sets are much less apparent. (As the data gets larger or more complex,
there is a point when schema abstractions benefit both the publisher as well as the
publishing engine.)

Finally, all the costs of setting up software (database, web server, and appli-
cation server) can be eliminated if the software is packaged as a Web API to be
included into a web page on-the-fly. Such a Web API can also easily allow for exten-
sions, which accommodate the increasing sophistication in a casual user’s publish-
ing needs.

These ideas have been built into the Exhibit lightweight data publishing frame-
work, packaged as a Web API. This chapter will discuss the design of Exhibit’s
user and publisher interfaces in section 1, its data model in section 2, and its user
interface model in section 3. Section 4 briefly describes Exhibit’s implementation.
Finally, section 5 reports real-world usage of Exhibit and discusses its impact.

3. Publishing Data

49

Interface Design3.1

As Exhibit is a publishing framework, it has two interfaces: one facing publishers
and one facing users of the published information. A web page published using
Exhibit will be referred to as an exhibit in lowercase.

User Interface3.1.1

An exhibit looks just like any other web page, except that it has advanced features
mostly seen on commercial and institutional sites. Figure 3.1 and Figure 3.2 show
two exhibits covering different types of information. Each is styled differently, but
there are several common elements, as described below.

Exhibit’s user interface consists mainly of views and facets, whose locations on
the page are controlled by the publisher. The exhibit in Figure 3.1 is configured
by the publisher to support two different views of the same data: Thumbnails and
Timeline. Thumbnails is currently selected by the user and it is showing. The exhibit
in Figure 3.2 is configured to support six views, and the birTh Places view is cur-
rently showing. Each kind of view—map, timeline, table, thumbnail, tile, scatter
plot, bar chart, etc.—supports its own configuration settings. The Google Maps
[11] map in the birTh Places view is configured to embed the presidents’ portraits
in the map marker, and the Terms timeline view is configured to color-code the
presidents’ terms by their political parties. Although these settings are specified by
the publisher, some can be changed dynamically by the user (e.g., sorting order in
Figure 3.1). Exhibit’s user interface can be extended by third-parties’ views if the
publisher chooses to include them.

Items can be presented differently in different views. Where there is little space
to render sufficient details in-place (e.g., on a map), markers or links provide af-
fordance for popping up bubbles containing each item’s details (e.g., map bubble
in Figure 3.2). The rendition of each item contains a link for bookmarking it indi-
vidually. Invoking this link later will load the exhibit and pop up a rendition of the
bookmarked item automatically.

The facets (left in Figure 3.1 and right in Figure 3.2) let users filter the cur-
rently displayed items. This is a conventional dynamic query interface with preview

counts.

3. Publishing Data

50

Figure 3.1. A web page embedding Exhibit to show information about break-
fast cereal characters [36]. The information can be viewed as thumbnails or on a
timeline and filtered through a faceted browsing interface.

3. Publishing Data

51

Figure 3.2. A web page embedding Exhibit to show information about U.S.
presidents in 6 ways, including maps, table, thumbnails, and timelines.

3. Publishing Data

52

Publisher Interface3.1.2

Making an exhibit like Figure 3.1 involves two tasks: creating the data and creating
the presentation. Both are iterated until the desired result is achieved. This section
briefly describes the publishing process, leaving technical details to later sections.

Creating the Data3.1.2.1

Exhibit supports its own JSON [13] format natively but can automatically import
a variety of formats including Bibtex, Excel, RDF/XML, N3, and Google Spread-
sheets feeds. The data file for those breakfast cereal characters looks something like
that in Figure 3.3. The items’ data is coded as an array of objects containing prop-
erty/value pairs. Values can be strings, numbers, or booleans. If a value is an array,
then the corresponding item is considered to have multiple values for that property.
For instance, according to Figure 3.3, the Trix Rabbit character is released in both
the US and in Canada. The publisher is mostly free to make up the names of the
properties. We will discuss the specifics of the data model subsequently.

Data for a single exhibit needs not reside in a single file. It can be split into
multiple files for convenience. For example, a couple’s recipes exhibit can pool its
data from two separate files: her-recipes.json and his-recipes.json.

Creating the Presentation3.1.2.2

The web page itself is just a regular HTML file that can be created locally, iterated
locally until satisfaction, and then, if desired, uploaded together with the data files
to the web server. Figure 3.4 shows the initial HTML code needed to start making
the exhibit in Figure 3.1. This code instantiates an Exhibit instance, loads it with
the data file referenced by the first <link> element, and specifies where to embed
a view panel, which shows a tile view by default. Also by default, the tile view sorts
all items in the exhibit by labels and displays the top ten items using the default lens.
This lens shows property/value pairs for each item. Reasonable defaults are hard-
wired into Exhibit to give the publisher some result with minimal initial work.

Figure 3.3. An Exhibit JSON data file showing data for one breakfast cereal
character, which is encoded as property/value pairs.

{
 items: [
 { type: 'Character',
 label: 'Trix Rabbit',
 brand: 'General Mills',
 decade: 1960,
 country: ['USA', 'Canada'],
 thumbnail: 'images/trix-rabbit-thumb.png',
 image: 'images/trix-rabbit.png',
 text: 'First appearing on ...'
 },
 // ... more characters ...
]
}

3. Publishing Data

53

The publisher does not even need to write this initial HTML code from scratch:
it is trivial to copy this code from existing exhibits or from online tutorials. This is
how HTML pages are often made—by copying existing pages, removing unwanted
parts, and incrementally improving until satisfaction. The declarative syntax of
HTML, the forgiving nature of web browsers and their reasonable defaults, and the
quick HTML edit/test cycle make HTML publishing easy and instantly gratifying.
Exhibit has been designed to afford the same behavior.

Figure 3.5 shows the final HTML code needed to render the exhibit in Figure
3.1 (logo graphics and copyright message omitted). The additional code, in black,
configures the facets, the two views, and a lens template in the Thumbnails view.
(Lens templates will be discussed in the User Interface Model section.)

Making the presentation look better can also involve filling in and fixing up the
data schema. Figure 3.6 shows how the plural label for the type Character is de-
clared so that plural labels in the UI, e.g., 12 characters, can be generated properly.
The decade property values are declared to be dates instead of strings so that they
can be sorted as dates.

To change the schema, e.g., renaming a property, the publisher can simply
invoke the text editor’s Replace All command. Or if the data is imported from a
spreadsheet, she can just rename the corresponding column header label. Saving
old versions of the data involves making copies of the data files. Changing schema
and keeping versions of the data might not be as simple if databases were used.

Thus, just by editing one or two text files in any text editor, and perhaps editing
data in a spreadsheet, a casual user with only basic knowledge of HTML and no
programming skills can create a richly interactive web page with sorting, searching,
filtering, maps, timelines, etc.—features that would otherwise take a whole team of
web engineers months to implement.

<html>
<head>
 <title>Topher’s Breakfast Cereal Character Guide</title>
 <link type="text/javascript"
 rel="exhibit/data" href="cereal-characters.js" />
 <script type="text/javascript"
 src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js">
 </script>
</head>
<body>
 <div ex:role="viewPanel"></div>
</body>
</html>

Figure 3.4. To create the web page in Figure 3.1, the author starts with this
boiler plate HTML code, which displays the characters in cereal-characters.js
through the default lens that lists property/value pairs.

3. Publishing Data

54

Figure 3.5. The publisher starts with the code in gray (from Figure 3.4), in-
cludes more and more of the code in black, and tweaks until the desired result
(Figure 3.1) is achieved (logo graphics and copyright omitted). Tweaking involves
following online documentation or just copying code from other existing exhibits.

<html>
<head>
 <title>Topher’s Breakfast Cereal Character Guide</title>
 <link type="application/json" rel="exhibit/data" href="cereal-characters.json" />
 <script src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js"></script>
 <script src="http://static.simile.mit.edu/exhibit/extensions-2.0/
 time/time-extension.js"></script>
 <style>
 .itemThumbnail {
 width: 120px;
 }
 </style>
</head>
<body>
 <table width="100%">
 <tr valign="top">
 <td width="20%">
 <div ex:role="facet" ex:expression=".brand" ex:facetLabel="Brands"></div>
 <div ex:role="facet" ex:expression=".decade" ex:facetLabel="Decades"></div>
 <div ex:role="facet" ex:expression=".country" ex:facetLabel="Countries"></div>
 <div ex:role="facet" ex:expression=".form" ex:facetLabel="Forms"></div>
 </td>
 <td>
 <div ex:role="viewPanel">

 <div ex:role="view" ex:viewClass="Thumbnail"
 ex:possibleOrders=".brand, .decade, .form, .country">

 <div ex:role="lens" class="itemThumbnail">

 <div ex:content="value"></div>
 </div>
 </div>

 <div ex:role="view"
 ex:viewClass="Timeline"
 ex:start=".year"
 ex:colorKey=".topic">
 </div>
 </div>
 </td>
 </tr>
 </table>
</body>
</html>

exhibit aPi and extensions

One or more links to data

lens templates
specifying
how to render
each
data item

facets

views

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

custom styles

3. Publishing Data

55

Data Model3.2

An Exhibit data model is a directed graph in which the nodes are either items or
native values such as numbers, strings, and booleans, and the arrows are properties
(Figure 3.7). Each property has a property value type which specifies the types—
numbers, strings, booleans, items, etc.—of the nodes at the pointed ends of the
arrows. In the simplest case where there is no relationship between items (no blue
curved arrows in Figure 3.7), then the data model degenerates into a flat list of
items with native-valued properties. A casual user would normally start with such
a conceptually simple list of items and then when the need actually arises, link the
items up to form a graph.

Items3.2.1

Each item has one or more properties, one of which is the mandatory label prop-
erty, which is a string naming that item in a human-friendly manner (friendliness is
subject to the publisher’s discretion). This label is used to render the item whenever
a concise, textual description of that item is needed.

Every item is also mandated to have an id property, which identifies that item
uniquely within the containing exhibit. If no id property value is specified explic-
itly when the item is being loaded into the database of the exhibit, the item’s label
property value is used as its id. Other items in the same exhibit can relate to this
item simply by having property values equal to the item’s id.

The third mandated property is uri, which is the URI used to name the item
when it is exported to any RDF [28] serialization format. (The uri property helps
make exhibits’ data readily available to semantic web applications.) If no uri prop-
erty value is specified when the item is being loaded, the URI is generated automati-
cally by appending its id property value to the URL of the containing exhibit.

The last mandated property is type. An item’s type property value is just a
string, such as “President” and “Publication”. If not explicitly specified, the item’s

{
 types: {
 ‘Character’: { pluralLabel: ‘Characters’ }
 },
 properties: {
 ‘url’: { valueType: "url" },
 ‘decade’: { valueType: "date" }
 }
 items: [
 // ... items ...
]
}

Figure 3.6. Schema information can be added to the JSON file to improve
Exhibit’s user interface.

3. Publishing Data

56

type defaults to “Item”. Types are introduced to divide the set of items within a
single exhibit into several subsets of conceptually different items, such as “Publica-
tion” vs. “Author”, or “Patient” vs. “Hospital Record”. If the data within an exhibit
were to be stored in a relational database, there would logically be one relational
table for each type.

Although there are four mandated properties, a publisher is only burdened to
make up one—the label property—for each item. Note that in Figure 3.3, the
item has neither id nor uri property value; both values will be generated. An id
property value must be specified explicitly if another item with the same label has
already been loaded into the database. A uri property value must be specified
explicitly if the publisher intends the item to refer to some Web resource with an
existing URI. For example, in an exhibit that compares several web sites’ traffic on
a bar chart, each item corresponds to one web site and the item’s uri should logi-
cally be the web site’s URL.

th
es

is-
ad

vis
or

-o
f

th
es

is-
ad

vis
or

-o
f

th
es

is-
re

ad
er

-o
f

David huynhlabel

dfhuynh@mit.edu

Grad student

email
position

David Kargerlabel

karger@mit.edu

Faculty

email
position

rob millerlabel

rcm@mit.edu

Faculty

email
position

eric millerlabel

em@zepheira.com

researcher

email
job

Figure 3.7. An Exhibit data model is a graph in which the nodes are items
(circles) or native values (rectangles) and the arrows are properties.

3. Publishing Data

57

Types3.2.2

The information on types is schematic information. Each type has three mandated
schematic properties: label, id, and uri. Note that when the type property of
an item is specified, that type property value is the type’s id, not the type’s label
(Figure 3.8). Whereas usually an item’s label is specified and its id is generated
from its label, a type’s id must be specified first (by assigning some item that type
property value) and then the type’s label is taken to be the same as its id, unless
overridden. Whereas for items, ids are primarily used to distinguish those with the
same label, for types, ids are used as short-hand notations. For example, in Figure
3.8, the types’ ids save the publisher a lot of typing while the types’ labels are easy
to comprehend for viewers.

Beside id, uri, and label, a type can have other schematic properties that
help in the localization of the user interface. For instance, when a type has a plu-
ralLabel, that schematic property value is used in English-speaking locales to
generate user interface text for labeling several things of that type, e.g., 9 People
instead of 9 Person.

There is no need for the publisher to explicitly declare every type in the types
section. A type is added to the system whenever an item of that type is added. This
lets the publisher focus on the items—the main point of her exhibit—and only add
information on types and properties when they make the user interface better.

Figure 3.8. The types section in the JSON file specifies schematic properties of
types, such as their labels and uris.

{
 items: [
 ...
 { ...
 type: "RCAct",
 ...
 },
 ...
],
 types: {
 "RCAct" : {
 label: "Ribosomal Chaperone Activity",
 pluralLabel: "Ribosomal Chaperone Activities",
 uri: "http://www.geneontology.org/go#GO:0000005"
 },
 "RMR" : {
 label: "Regulation of Mitotic Recombination",
 pluralLabel: "Regulations of Mitotic Recombination",
 uri: "http://www.geneontology.org/go#GO:0000019"
 }
 }
}

a type’s id

3. Publishing Data

58

Properties3.2.3

Schematic information can also be given on properties. Properties have the same
three mandated schematic properties as types (label, id, and uri) plus two more:
reverseLabel and valueType. Together with label, reverseLabel lets a prop-
erty be described in both directions (e.g., child of in one direction and parent of in
the other).

A property’s valueType hints at the nature of that property’s values—whether
they are numbers, or booleans, or strings, or items’ ids, etc. There is a fixed set of
value types, currently including: text, number, date, boolean, url, and item. All
values of type item are locally unique ids of items in the same exhibit. Figure 3.6
shows how property value types are declared in data files.

Note that such declaration of value types are hints only. Exhibit will try to
coerce property values into whatever types that are most appropriate for each par-
ticular use. For example, when a property foo with value type text is used to
specify the starting dates of items on a timeline view, then all foo property values
are automatically parsed into dates to render the timeline.

This design choice of tying value types to properties, rather than requiring
type declaration on each value, facilitates incremental improvements to the data.
For instance, brand property values in Figure 3.3 are initially, by default, of type
text. This might satisfy the publisher until she wants to record details about the
brands, at which time she can simply specify the value type for brand to be item
and add the data for the brands (Figure 3.9).

Expressions3.2.4

Exhibit provides an expression language that makes it convenient to access its
graph-based data model.

Consider an exhibit whose data model is illustrated in Figure 3.10. The ex-
hibit contains information on some publications, their authors, the schools where
the authors teach, the countries where the schools are located, and perhaps more.
Evaluating the expression .written-by on some publications yields their authors;
evaluating .written-by.teaches-at yields the schools where the publications’
authors teach; and so forth. The hop operator . traverses the graph along a given
property. To traverse against a given property, the hop operator ! is used. Thus,
evaluating !teaches-at!written-by on some schools returns publications writ-
ten by authors at those schools. The two kinds of hop operator can be mixed:
evaluating .written-by.teaches-at!teaches-at!written-by on some publi-
cations returns all publications written by all authors teaching at the same schools
as the authors of the original publications.

A sequence of alternating hop operators and property ids, such as .written-
by.teaches-at, is called a path. Evaluating a path yields a collection of values
(with or without duplicates). Why duplicate values are allowed will become clear
subsequently.

3. Publishing Data

59

Figure 3.9. Elaboration of brand property values by specifying the value type
for the property brand and adding Brand items.

{
 properties: {
 'brand': {
 valueType: 'item'
 }
 },
 items: [
 { type: 'Character',
 label: 'Trix Rabbit',
 brand: 'General Mills',
 decade: 1960,
 country: ['USA', 'Canada'],
 thumbnail: 'images/trix-rabbit.png',
 text: 'First appearing on ...'
 },
 // ... more characters ...

 { type: 'Brand',
 label: 'General Mills',
 headQuarter: 'Minnesota',
 founded: 1856
 },
 // ... more brands ...
]
}

Figure 3.10. In this sample Exhibit data model, evaluating the expression
.written-by.teaches-at.located-in on publications yields the countries in which the
schools where the publications’ authors teach are located.

teaches-at

located-in

written-by

exhibit: l
ightweight...

lab
el Publication

type
David Karger

lab
el

Person

type

miT

lab
el

school

type
united states

lab
el

country

type

3. Publishing Data

60

In addition to paths, Exhibit expressions can also contain native values like
strings and numbers, and functions, operators and constructs. For example, concat(.
last-name, ', ', .first-name) computes a full name out of a last name and a
first name, and count(.parent-of) returns the number of children of a person.
Other functions include:

union• (for taking set unions of collections);
contains• (for testing if a collection contains a given element);
exists• (for testing if another expression returns any result, that is, if the
result collection is non-empty);
add• and multiply (for taking summations and products of elements in one
or more collections);
and• , or, and not (for combining boolean values);
date-range• for computing differences between two dates in a particular unit
such as in days or in years;
distance• for computing geographical distance between two latitude/longi-
tude pairs.

It is easy for third parties to implement more functions. Publishers just need to
link the third parties’ Javascript code into their exhibits.

Exhibit’s operators are the standard arithmetic operators (+, -, *, /) and bool-
ean operators (=, <>, ><, <, <=, >, >=).

There are two constructs at the moment:
if• , which evaluates its first argument to a boolean value and based on that,
chooses to evaluate either its second argument or its third argument;
foreach• , which evaluates its first argument into a collection; then for each
element in that set, evaluates the expression that is its second argument on
that element; and finally returns the union of all results.

The reason we need expressions to support duplicates in collections is as fol-
lows. Consider an exhibit about students and their assignments. To compute a stu-
dent’s average, we divide the sum of the grades of her assignments by the number
of assignments: add(.assignment.grade)/count(.assignment). Say a student
gets 100 for two assignments. If the result of the sub-expression .assignment.
grade is a collection without duplicates, then the student’s average is computed
incorrectly as 100 / 2 = 50. To fix this problem, Exhibit introduces two more hop
operators .@ and !@ that prevent duplicates from being eliminated further down
the evaluation process. Thus, add(.assignment.@grade)/count(.assignment)
would compute the correct average.

The full production rules for Exhibit expression language is provided in Figure
3.11.

3. Publishing Data

61

Data Import/Export3.2.5

While the Exhibit JSON format is relatively readable and writeable, it might not be
the format of choice for some publishers. They might already have their data in an-
other format (e.g., BibTex), or they might be used to editing tools that do not export
to Exhibit JSON (e.g., Excel). These publishers can simply annotate the <link> ele-
ments referencing their data with the right mime-type (e.g., type="application/
bibtex") and Exhibit will import it automatically. Exhibit’s importer architecture
allows for third parties to plug in their own importers.

Exhibit also has an extensible exporter architecture that can serialize its data
into several formats, ready to be copied off. The natively provided exporters can
generate RDF/XML, Exhibit JSON, Semantic MediaWiki extension wikitext [72],
and Bibtex. The purpose of these exporters is to facilitate and encourage propaga-
tion of reusable data by offering convenience to both users and publishers. For ex-
ample, being able to copy off the Bibtex of some publications that you have found
in an exhibit so that you can cite them is very convenient. You can also copy that

<expression> ::= <sub-expression>
 | <expression> <expr-op> <sub-expression>
<sub-expression> ::= <term>
 | <sub-expression> <subexpr-op> <term>
<term> ::= <factor>
 | <term> <term-op> <factor>
<factor> ::= <number>
 | <string>
 | <construct>
 | <function-call>
 | <path>
 | "(" <expression> ")"

<construct> ::= <if-construct>
 | <foreach-construct>
 | <default-construct>
<if-construct> ::= "if" "(" <expression> "," <expression> "," <expression> ")"
<foreach-construct> ::= "foreach" "(" <expression> "," <expression> ")"
<default-construct> ::= "default" "(" <expression-list> ")"

<function-call> ::= <identifier> "(" <expression-list>? ")"

<expression-list> ::= <expression>
 | <expression-list> "," <expression>

<path> ::= <hop-list>
 | <identifier> <hop-list>
<hop-list> ::= <hop>
 | <hop-list> <hop>
<hop> ::= <hop-op> <property-id>

<expr-op> ::= "=" | "<>" | "<" | "<=" | ">" | ">="
<subexpr-op> ::= "+" | "-"
<term-op> ::= "*" | "/"
<hop-op> ::= "." | "!" | ".@" | "!@"

Figure 3.11. Production rules for the Exhibit expression language.

3. Publishing Data

62

data in Exhibit JSON format and incorporate it into your own exhibit to make an
archive of related work.

Exhibit’s default exporters generate an origin property value for each item to
export. This value is the URL that, when invoked, returns to the original exhibit
and pops up the view of that item automatically. This is a lightweight mechanism
for attribution.

User Interface Model3.3

Exhibit’s user interface consists of several types of component:
collections• ;
widgets: • facets, views, and lenses; and
helpers: • coders.

Exhibit also maintains a hierarchy of UI contexts that store inheritable UI settings
such as formatting rules. These components and the formatting rules can all be speci-
fied in HTML. The following subsections define these various UI concepts and de-
scribe how they can be specified in HTML.

Collections3.3.1

A collection contains a subset of the items currently in the exhibit’s database. Cur-
rently, a collection can be defined to contain items by some particular types, e.g.,

<div ex:role="collection" ex:itemTypes="Man; Woman" id="adults"></div>
<div ex:role="collection" ex:itemTypes="Boy; Girl" id="kids"></div>
<div ex:role="collection" ex:itemTypes="Man; Woman; Boy; Girl"></div>

Each collection has an ID, which can be specified using the HTML id attribute. The
ID of a collection is used to refer to it from other components, as will be discussed
in later subsections. If no id attribute is given, the ID is assumed to be “default”
and the effect of the definition is to redefine the default collection, which comes,
by default, with every exhibit. If not redefined, the default collection contains all
items currently in the exhibit’s database.

What a collection originally contains is called its root set. This root set can be
filtered down to a filtered set by facets attached to the collection, as will be discussed
next.

Facets3.3.2

A facet is a component whose purpose is to filter a collection’s root set down to a
filtered set. Facets can be declared as follows:

<div ex:role="facet"
 ex:expression=".ethnicity"
 ></div>

3. Publishing Data

63

<div ex:role="facet"
 ex:expression=".profession"
 ex:collectionID="adults"
 ></div>
<div ex:role="facet"
 ex:expression=".height * 2.54"
 ex:facetLabel="Height (cm)"
 ex:collectionID="kids"
 ex:facetClass="NumericRange"
 ex:interval="10"
 ></div>

The ex:expression attribute is required and in the simplest case, it specifies the
property by which to filter the collection to which the facet is attached. In the first
example, the facet can be used to filter the attached collection by (people’s) ethnic-
ity; in the second, by professions; and in the third, by heights. The expression does
not have to be a simple property; it can compute more complex values such as seen
in the third example. The ex:collectionID specifies which collection a facet is
attached to; if missing, the default collection is used (as in the first example).

The ex:facetLabel attribute gives a text label to the facet. If missing, and
if the expression is a simple property, Exhibit uses the property’s label; otherwise,
Exhibit shows an error message where the label should be rendered.

The ex:facetClass attribute specifies which class of facet to instantiate.
There are two classes being supported: List and NumericRange (List is the de-
fault class). List facets show each value computed by the expression as a choice for
filtering while NumericRange facets convert each value into a number and group
values into intervals.

Views3.3.3

A view is a component that renders the filtered set of items in a collection to which
it is attached. As the collection gets filtered by the facets attached to it, the views
attached to that collection update themselves to show the current filtered set.

Views can be specified much like facets. Each kind of view supports its own
settings that are appropriate to it. For example, a tabular view supports settings
pertaining to its columns, e.g.,

<div ex:role="view" ex:viewClass="Tabular"
 ex:columns = ".label, .imageURL, .party, .age"
 ex:columnFormats = "text, image, text, number"
 ex:sortColumn = "2"
 ex:sortAscending = "true"
 ></div>

Lenses3.3.4

An Exhibit lens renders one single item. Lenses are not specified individually per
item, but they are instantiated from a few lens templates, which are specified in HTML.

3. Publishing Data

64

A template is just a fragment of HTML that can be specified in-line, as in Figure
3.12, or in a different file.

Within a lens template, the content attribute of an element specifies what
content to stuff into that element when the template is instantiated for an item. For
example, in Figure 3.12, the <h1> element will be filled with the label property
value of the item.

Attributes that end with -content are assumed to contain Exhibit expressions.
These expressions are resolved into actual values when the lens is instantiated, and
the values are used to assert HTML attributes of the same name but without the ex:
namespace and the -content suffix. For example, the ex:src-content attribute
in Figure 3.12 is replaced with the image property value of the item being ren-
dered, generating the attribute src="images/trix-rabbit.png" in the generated
HTML element.

The ex:if-exists attribute of an element determines whether that element
and its children in the template should be included in the presentation of a par-
ticular item. For example, if an item does not have an image property value, the
template in Figure 3.12 will not generate a broken image. The ex:if attribute of
an element specifies an expression that evaluates to a boolean; if the boolean is
true, the first child element of the element is processed; otherwise, the second child
element is processed if it is present. The ex:select attribute of an element speci-
fies an expression that evaluates to some value which is used to select which child
element to process. The child element with the matching ex:case attribute value
is processed. Otherwise, the last child element that does not have any ex:case at-
tribute is processed.

The ex:control attribute specifies which Exhibit-specific control to embed.
There are only two controls supported at the moment: the item-link control and
the copy-button control; the first is a permanent link to the item being rendered
and the latter is a drop-down menu button that lets the user copies the item’s data
off in various formats.

UI Contexts and Formatting Rules3.3.5

Each component has a UI context which gives it access to UI settings, such as how
dates should be formatted (e.g., “July 4” or “7/4” or “7月4日”). Such formatting
rules can be added to the UI context of a component through the ex:formats at-
tribute on the component’s HTML specification, e.g.,

<div ex:role="view"
 ex:viewClass="Timeline"
 ex:start=".birth"
 ex:formats=
 "date { mode: short; show: date } number { decimal-digits: 2 }"
 ></div>

In this example, whenever dates are rendered inside that timeline view, they are
displayed in short form without time of the day (e.g., “04/07/07” for July 4, 2007).
Whenever numbers are displayed, two decimal digits are shown.

3. Publishing Data

65

<table ex:role="exhibit-lens" cellspacing="5" style="display: none;">
 <tr>
 <td>

 <div ex:control="copy-button"></div>
 </td>
 <td>
 <h1 ex:content=".label"></h1>
 <h2>

 </h2>
 <p ex:content=".text"></p>
 <center ex:if-exists=".url">
 <a ex:href-content=".url" target="new">More...
 </center>
 </td>
 </tr>
</table>

Figure 3.12. Lens template for showing a breakfast cereal character in a pop-up
bubble as shown in Figure 3.13.

Figure 3.13. Bubble showing a breakfast cereal character.

3. Publishing Data

66

Note that the resemblance in syntax to CSS is intended for familiarity. An
ex:formats specification consists of zero or more rules (cf. CSS rules). Each rule
consists of a selector which specifies what the rule applies to (cf. CSS selectors) and
then zero or more settings inside a pair of braces. In the example, there are two rules
and two selectors, date and number. Those two selectors select the value types to
which the rules apply.

For each selector there is a different set of allowable settings. For example, for
date there are time-zone, mode, and template. For each setting there is a set of
acceptable setting values. For example,

time-zone• takes a number or the keyword default;
mode• takes any one of the keywords short, medium, long, and full to spec-
ify how detailed to render dates and times;
template• takes a string that acts as a template for formatting dates and times
in case those four standard modes do not satisfy the publisher’s needs; and
negative-format• (for currency) takes any combination of the flags red,
black, parentheses, no-parentheses, signed, and unsigned to specify
how negative currency values should be rendered.

As in CSS, URLs in formatting rules are wrapped in url(). Similarly, expres-
sions are wrapped in expression(). For example,

ex:formats=
 "item { title: expression(concat(.full-name, ', ', .job-title)) }"

specifies that when a textual description of an item is needed, render the full-
name property value followed by a comma and the job-title property value.

The full production rules for Exhibit’s format language is provided in Figure
3.14.

Other UI settings beside formatting rules can be specified through other attri-
butes, such as ex:bubbleWidth for the width in pixels of popup bubbles. Settings
not specified in a view’s HTML specification are inherited from the view’s outer

Figure 3.14. Production rules for the Exhibit format language.

<rule-list> ::= <rule>*
<rule> ::= <selector> ["{" [<setting-list>] "}"]
<selector> ::= "number" | "date" | "boolean" | "text" | "image" |
 "url" | "item" | "currency" | "list"

<setting-list> ::= <setting> | <setting-list> ";" <setting>
<setting> ::= <setting-name> ":" <setting-value>

<setting-value> ::= <number>
 | <integer>
 | <non-negative-integer>
 | <string>
 | <keyword>
 | <url>
 | <expression>
 | <flags>
<flags> ::= <keyword>+

3. Publishing Data

67

lexical scope, that is, from the settings specified on components whose HTML speci-
fications lexically contain this view’s HTML specification.

Coders3.3.6

A coder translates a piece of information to some visual feature, e.g.,
from the • political-party property value “Republican” to the color red,
and from “Democrat” to the color blue;
from the • service property value “Restaurant” to an icon showing a fork and
a knife, and from “Hotel” to an icon showing a bed;
from the • magnitude property value 5 (assumed to be the magnitude of an
earthquake) to the number 40, indicating how large the corresponding map
marker should be;
from the • temperature property value -30 (assumed to be in Celsius) to the
color code #0000aa, a particular shade of blue indicating how cold it is.

For the four examples above, these are the coders’ specifications:

<div ex:role="coder" ex:coderClass="Color" id="political-party-colors">
 Republican
 Democrat
 Any other party
 Multiple parties
 No party
</div>

<div ex:role="coder" ex:coderClass="Icon" id="service-icons">
 Restaurant
 Hotel

 <span ex:icon="question-mark.png"
 ex:case="default">Other service
 <span ex:icon="many-question-marks.png"
 ex:case="mixed">Multiple services
 <span ex:icon="x.png"
 ex:case="missing">No service
</div>

<div ex:role="coder"
 ex:coderClass="NumericGradient" id="earthquake-magnitudes"
 ex:gradientPoints="1, 20; 10, 60"
 ></div>

<div ex:role="coder" ex:coderClass="ColorGradient" id="temperature-col-
ors"
 ex:gradientPoints="-40, #000088; 0, #ffffff; 50, #ff0000"
 ></div>

The ex:case attribute is used to specify special cases, such as when a single marker
on the map corresponds to several values to translate (e.g., because several politi-
cians belong to different political parties were born in the same city), or when there
is no data to translate (e.g., because there is no temperature recorded for a particu-
lar city). The ex:case="default" attribute value is used to code all remaining
cases (e.g., other political parties beside Democrat and Republican).

3. Publishing Data

68

To connect a view or a facet to a coder, you need to specify on the view or
facet’s HTML specification which coder to use and what data to feed it. To have a
map view plotting politicians colored by political parties, then we can specify that
map view as follows:

<div ex:role="view" ex:viewClass="Map"
 ex:latlng=".latlng"
 ex:colorCoder="political-party-colors"
 ex:colorKey=".party"
 ></div>

As another example, to construct a map view of buildings and the services avail-
able in them, write:

<div ex:role="view" ex:viewClass="Map"
 ex:latlng=".latlng"
 ex:iconCoder="service-icons"
 ex:iconKey=".service"
 ></div>

Several coders could potentially be used in the same view. For example, on a map
plotting natural disasters, an icon coder can indicate whether a disaster is an earth-
quake, a volcano eruption, a tsunami, etc.; a marker size coder can show the mag-
nitudes of those disasters; and a color coder can show the casualties (e.g., more red
means more casualties).

Implementation3.4

The Exhibit framework is implemented in several Javascript, CSS, and image files.
It is available at a public URL where anyone can reference it from within his or her
HTML pages. Exhibit publishers do not need to download any software, and users
who view exhibits do not need to install any browser extension. This zero cost is the
signature of client-side Web APIs and is largely responsible for the explosion in the
embedding use of Google Maps [11].

Exhibit’s source code is available publicly. Any of its parts can be overridden
by writing more Javascript code and CSS definitions after including Exhibit’s code.
Third parties can implement additional components to supplement Exhibit.

Exhibit’s architecture is illustrated in Figure 3.15. At the bottom is the data
layer consisting of the database, the expression language parser and evaluator, and
importers and exporters. At the top is the user interface layer, which consists of
three sub-layers:

UI• contexts and localization resources—storage of presentation settings for
the rest of the user interface layer.
collections and coders—components that do not render to the screen but •
determine what data widgets should render and how to render it.
widgets which perform the actual rendering and support interactions.•

3. Publishing Data

69

There are several points of extensibility. More views, facets, and coders can be
added. More importers, exporters, and functions (to be used in expressions) can be
registered. For example, a new facet class can be added to show a calendar or a
timeline supporting date range selection instead of just listing individual dates.

The localization component encapsulates localized UI resources, including text
strings, images, styles, and even layouts. This is only our early attempt—interna-
tionalizing a framework that generates user interfaces at run-time is very difficult.
We note that even HTML is biased for English. For example, bold and italics, which
have native syntax in HTML, are foreign concepts to most Asian scripts.

Figure 3.15. Exhibit’s architecture

database

expressions exporters

D
aTa

hTml
configuration

data

importers

hTml
configuration

textDOm

ui contexts localization

collections coders

lenses tile, thumbnail, tabular views list, numeric range facets

u
ser

 in
Ter

Fac
e

3. Publishing Data

70

Evaluation3.5

Exhibit was evaluated in two ways: by its performance in contemporary popular
browsers and by its actual usage by casual users.

Performance3.5.1

Four platform/browser configurations were chosen for testing Exhibit version 2.0
as of July 26, 2007:

MacBook Pro laptop, Mac OSX 10.4.10 •
2.16 GHz Intel® Core 2 Duo, 2 GB RAM

Firefox 2.0.0.51.
Safari 3.0.2 (522.12)2.

Dell Dimension 8200 desktop, Windows XP SP2 •
2.53 GHz Intel® Pentium® 4 CPU, 1.00 GB RAM

Firefox 2.0.0.53.
Internet Explorer 7.0.5730.114.

For Firefox, new profiles were created for testing. For the other browsers, their
caches were cleared.

Exhibit’s performance was measured in two ways: by its load time and by its
interactivity time. The only independent variable was the number of items in the
test exhibit, which varied from 500 to 2,500. The results are shown in Figure 3.16
and Figure 3.17, which will be explained below.

Load Time3.5.1.1

Load time was divided into two stages:
Data loading: populating the database with data that has already been re-•
ceived at the browser, thus excluding network traffic cost;
UI• rendering: constructing the initial presentation of the exhibit, which in-
cludes all the costs of computing the facets, querying the database for data to
construct the lenses, and actually generating DOM elements.

There were two variations of UI rendering:
All items were sorted by label and rendered in a tile view.•
All items were sorted by label but only the first 10 were rendered.•

Four platform/browser configurations combined with two variations of UI
rendering yielded the eight charts shown in Figure 3.16. These charts show that
UI rendering cost considerably more than data loading, and that by rendering only
the first 10 items, reasonable load time performance (under 5 seconds) could be
achieved in all tested platform/browser configurations for 1,000 item exhibits.

Interactivity Time3.5.1.2

To test interactivity time, I measured the time it took from clicking on a facet value
with a count of 3 (after the test exhibit has finished loading and rendering) to when

3. Publishing Data

71

the exhibit has finished rendering the filtered set of items and updating the facets.
There were also two variations of initial UI rendering as in the load time test, pro-
ducing a total of eight traces in the two plots in Figure 3.17. Rendering all items at
the beginning did affect the filtering time substantially, perhaps because there was a
high cost for removing generated DOM elements. Responsive performance (within
half a second) could be achieved in all platform/browser configurations if only 10
items were rendered initially.

These test results yielded encouraging evidence that reasonable performance
is achievable by Exhibit’s client-side approach. More browser optimizations and
faster hardware will soon make Exhibit scale better. Already we see that the latest
beta version of Safari double the speed of the latest released version of Firefox on
the same platform.

3. Publishing Data

72

rendering all items rendering First 10 items

Fi
re

fo
x

2.
0.

0.
5

Sa
fa

ri
3.

0.
2

(5
22

.1
2)

Figure 3.16. Exhibit’s load-time performance results on four configurations (two
operating systems, two browsers per operating system) with the number of items
as the independent variable. At 1000 items, by rendering only the first 10 items,
the data loading and UI rendering times combined take shorter than 5 seconds
on all configurations.

Mac OSX 10.4.10, 2.16 GHz Intel Core 2 Duo, 2 GB 667 DDR2 SDRAM

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

3. Publishing Data

73

rendering all items rendering First 10 items

Firefox 2.0.0.5
Internet Explorer 7.0.5730.11

Windows XP SP2, Pentium(R) 4 CPU 2.53GHz, 1.00 GB RAM

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

0

5

10

15

20

25

30

35

40

45

50

55

60

500 1000 1500 2000 2500

items

seconds

Data Loading UI Rendering

`

3. Publishing Data

74

rendering all items

rendering First 10 items

Figure 3.17. The times taken to filter down to 3 items from the same initial
configurations in Figure 3.16. By rendering only the first 10 items initially, the
filtering times on all configurations can be reduced to below one second even for
exhibits containing 2500 items in total.

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500

items

milliseconds

IE7
Firefox 2 (Win)
Firefox 2 (Mac)
Safari 3

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500

items

milliseconds

IE7
Firefox 2 (Win)
Firefox 2 (Mac)
Safari 3

3. Publishing Data

75

Usage3.5.2

Eight months after Exhibit 1.0 was released, server logs indicate that more than
800 web pages link to the Exhibit API. Note that deploying Exhibit as a Web API
serves two purposes: letting Exhibit authors do away with downloading and setting
up software as well as allowing us to track actual usage of Exhibit through referrals
in our server logs.

Table 3.1 shows usage of Exhibit at several top level domains. Many of them
are attempts to follow a tutorial for creating exhibits. Some are broken and aban-
doned attempts; some are duplicate versions of the same exhibits; and a few are in
foreign languages which I do not understand.

It is very difficult to categorize the rest as they are very unique and different
from one another, as much as existing web sites are unique. An early attempt to
group them by topics is shown in Table 3.2. Note the many esoteric topics that
form the long tail distribution. Even within a single topic such as “people” there
is diversity, ranging from university presidents, to army officers, to tavern keepers.
These exhibits can contain as few as three items, to as many as 1,700. A few have
been well designed visually, many have layouts and color themes copied off from
other exhibits, and the rest are bare. Out of those 700 or so pages, 175 make use
of the timeline view and 123 of the map view.

Figures 3.18 – 3.27 show ten exhibits created by real Exhibit authors. Figure
3.18 shows an exhibit that has been created by someone who claimed in an e-mail
message to me not to be a programmer. Even though there is plenty of informa-
tion online about music composers, he still felt compelled to create a “database” of
music composers.

Figure 3.19 displays information about historical figures. It is meant to be
classroom materials for grade six. Even though the same materials are available
elsewhere, this teacher wanted to present them to his students in a different way,
perhaps to match the rest of his own curriculum. Similarly, a Charmed TV series
fan put up Figure 3.20 even an official episode guide exists.

On the other hand, the information shown in Figure 3.21—information about
someone’s ancestors—will unlikely be published anywhere else, as it is very per-
sonal information. Similarly, the data about sweet products of a small Spanish shop
shown in Figure 3.22 is unique.

Figure 3.23 shows an exhibit of banned books. By making it easier for end us-
ers to publish arbitrary data, Exhibit makes such information, shunned by official
sources, more likely to see the light of day. From this perspective, Exhibit serves as
a tool for empowerment.

Exhibit is also found to be a useful organization tool thanks to its faceted brows-
ing and flexible visualization features: Figure 3.24 shows information about little
league games and practices. Several tabular views are configured to show the same
data differently, perhaps to different groups in the exhibit’s target audience. The
four digit numbering scheme in the events’ labels indicates expected long-term
use.

3. Publishing Data

76

More interestingly, Exhibit has been found useful even by programmers. The
programmer responsible for implementing a browsing interface for the learning
resources in the Language Learning and Resource Center at MIT chose Exhibit
over building his own web application and have made several exhibits, including
the one shown in Figure 3.25.

Similarly, a database researcher has found it easier to make an exhibit of his
publications, seen in Figure 3.26, than to build his own database-backed publica-
tion site.

Finally, semantic web researchers have turned to Exhibit as a means to display
their data (Figure 3.27), especially because they have no tool to display their data in
such a usable and useful manner.

Summary3.6

This chapter explored several ideas that made publishing data to the Web in brows-
able and reusable forms easy for casual users, those without programming skills.
Embodying these ideas, the lightweight publishing framework Exhibit has let a few
hundred people create richly interactive web sites with maps and timelines.

3. Publishing Data

77

topic exhibit count item count
publications 20 4013
people 18 2647
scientific data 6 2517
photos 5 871
classroom materials 5 477
engineering timetables 4 899
products 3 433
movies 3 237
sports 3 195
events 3 162
presentations 3 128
projects 2 957
web sites 2 317
books 2 199
locations 2 127
recipes 2 97
personal histories 2 12
play castings 1 441
games 1 422
space launch sites 1 280
world conflicts 1 278
hotels 1 203
restaurants 1 97
blog posts 1 97
cars 1 89
links 1 70
buildings 1 68
breweries & distilleries 1 55
elections 1 50
activities 1 50
museums 1 45
sounds 1 32
historical artifacts 1 24
characters 1 24
streets 1 24
early christian periods 1 21
HMong state population 1 15
vocabulary 1 14
history 1 13
materials 1 8
documents 1 7
plays 1 5
wars 1 3

Table 3.2. A survey of real-world exhibits by topics
shows a long tail distribution.

TLD exhibit count
.com 246
.edu 215
.org 91
.net 35
.nl 20
.fr 19
.ca 18
.uk 17
.it 11
.info 7
.co 6
.ro 6
.de 5
.us 5
.mil 4
.at 3
.dk 3
.fi 2
.gov 2
.ws 2
.ar 1
.au 1
.cx 1
.cz 1
.gr 1
.hu 1
.in 1
.int 1
.is 1
.nu 1
.pl 1
.ru 1
.se 1
.za 1

Table 3.1. A survey of real-world ex-
hibits by topics shows adoption in many
top level domains.

3. Publishing Data

78

Figure 3.18. An exhibit of 64 music composers from the eleventh century to the
present day. The composers can be viewed on a timeline by their lifetimes, and on
maps by their birth places, death places, and burial places. They can be browsed
by the music eras, by their major genres, and by their countries of birth. Even
with all the information about composers already on the Web, someone still feels
compelled to create his own research “database” of composers.

3. Publishing Data

79

Figure 3.19. An exhibit of 19 important figures in history that serves as edu-
cational materials in a grade 6 classroom. Even though the same materials are
available elsewhere, each teacher might want to present them to their students in
a different way, adding personal insights that match the rest of their curriculum.

3. Publishing Data

80

Figure 3.20. An exhibit of 178 episodes from the Charmed TV series.

3. Publishing Data

81

Figure 3.21. An exhibit of 82 ancestors containing a timeline and maps of
birth places and death places. The people can be browsed by their last names,
lineage, birth regions, and death regions. The information found in this exhibit
will unlikely be on any other web site. That is, even with Wikipedia and Freebase
growing in size everyday, some information will just never find its way into such
public repositories.

3. Publishing Data

82

Figure 3.22. An exhibit of 77 sweet products in a Spanish shop. For such a
small business, investing in a full three-tier web application is costly.

3. Publishing Data

83

Figure 3.23. An exhibit of 11 banned books. Certain materials may never find
their way into official discourse. Empowering end users to publish is even more
important a cause.

3. Publishing Data

84

Figure 3.24. An exhibit for organizing little league sport games. It is filled with
acronyms and is tailored for a very small audience, to whom it proves useful.

3. Publishing Data

85

Figure 3.25. An exhibit of 867 teaching resources in the Language Learning
and Resource Center at MIT. Its author is skilled in server-side programming but
he still finds Exhibit a quick way to build a browsable interface for his data.

3. Publishing Data

86

Figure 3.26. An exhibit of a database researcher’s publications, who finds it
easier to use Exhibit than to build a database-backed web site for his publications.

3. Publishing Data

87

Figure 3.27. An exhibit of Semantic Web case studies and use cases. Exhibit is
making Semantic Web data useful by making it viewable by end users.

3. Publishing Data

88

