
33

In every part of my research, browsing is a feature advocated to be useful to casual
users. Browsing is thus factored out and discussed first as a topic by itself. Following
this topic, three sections discuss work related to the three core components of the
thesis: publishing data, extracting data, and integrating data. Finally, this chapter
ends with a section on previous approaches to building a data-centric browser.

User Interfaces for Browsing2.1	

To allow users to browse through a data corpus, traditionally the data is organized
into a hierarchy of some forms and then links are shown for drilling down the hi-
erarchy. Such hierarchies were called “directories” on portal sites such as Yahoo! in
the early days of the Web.

Faceted browsing was pioneered by R.B. Allen [39] in 1995 for browsing docu-
ment collections that fall into several orthogonal sets of categories—or facets—
which do not naturally fit together to form a single hierarchy. For example, data
on schools can exhibit several facets: locations of the schools, subjects in which the
schools excel, sport team performance, special facilities, etc. Although most parents
looking for schools for their children probably start by filtering the schools by loca-
tion, a parent with a child gifted in Math probably wants to filter the schools by
subject instead; and a parent with a physically disabled child probably thinks first
about special facilities. Picking any one hierarchy will make it unnatural and inef-
ficient for some of the users to browse the data. In the faceted browsing paradigm,
all sets of categories—all facets—are offered simultaneously so that each user can
start filtering on any facet and continue to filter by any other facet subsequently.

Related Work2.	

2. Related Work

34

In effect, faceted browsing lets each user build her own hierarchy on the fly as she
picks which facet to filter by at each step of her browsing process. Faceted browsing
has been adopted in many online shopping sites because different users have differ-
ent criteria for choosing products.

Faceted browsing was subsequently adopted for browsing data collections on
web sites by J. English, M. Hearst, R. Sinha, K. Swearinen, and K.P. Yee in an
unpublished manuscript in 2002 [47].

Faceted browsing is even more useful in tools intended for browsing arbitrary
structured data, as there is no way to create a organization hierarchy for that data
beforehand. This is why many generic semantic web browsers adopt faceted brows-
ing [53, 60, 64, 68].

All faceted browsing interfaces that I am aware of display preview counts next
to each choice in each facet. This is not novel in faceted browsing but a contri-
bution brought over from query preview interfaces [61]. These counts give users
information about the result set of each choice before the choice is clicked, saving
users from going down any obviously wrong path and having to back up. These
counts in each facet also serve to summarize the data by showing the distribution
of the data values in that facet.

My work extends the faceted browsing paradigm in a few ways. Sifter offers
faceted browsing without field labels and shows that it is workable. Potluck tailors
for data cleaning and integrating tasks by adding to each facet a way to filter down
to records that are missing data for that facet. Exhibit lets casual users create fac-
eted browsing interfaces by themselves.

Publishing Data2.2	

This section surveys the technologies for and research on data publishing from
several perspectives. First, the purposes of using data technologies in the publish-
ing process are discussed: data can make the publishing process more efficient and
the outcomes better, or data itself is the outcome that, for instance, serves policies
of open data access and visions of data interoperability. Understanding what a
data publishing technology is designed to do helps assess its effectiveness. Second,
data publishing technologies and research tools are analyzed by three criteria: the
flexibility they afford publishers to model data, the flexibility they allow publishers
to specify presentations, and the efforts required of publishers. The section then
concludes with the discussion of previous work related to specific components of
Exhibit, specifically its client-side database, its expression language, and its lens
templating facility.

2. Related Work

35

Rationales for Using Data Technologies 2.2.1	
in Publishing

People are either motivated to use data technologies in publishing because those
technologies make the publishing process itself better in some ways, such as more
efficient, or because those technologies produce data useful for some other pur-
poses.

Direct Benefits2.2.1.1	

By the principle of separation of concerns, database technologies, complemented
with server-side templating technologies such as ASP, PHP, and JSP, let online retail-
ers and institutional publishers publish large quantities of information efficiently
and offer data-centric features on their web sites. Database technologies are cru-
cial for implementing data-centric features such as sorting, searching, and filtering.
Templating technologies let the presentation of a whole web site be made coherent
easily and quickly. Recently, client-side templating technologies—XML together
with XSLT, JSON [13] together with mjt [18] and the like—are also used toward
the same goal. Data technologies are used in this common case as a means to make
the publishing process efficient and the outcomes visibly better. The motivation
is economic and well understood. Exhibit serves the same motivation but targets
casual users instead of large publishers, leading to different design criteria, such as
trading off scalability for ease of use.

Indirect Benefits2.2.1.2	

Another goal for using data technologies is to enable prospective uses of and ben-
efits from one’s own data. In certain cases the prospective use is well understood:
RSS enables news articles and blog posts to be aggregated by topics to meet the
tastes of individual users. For another example, Mangrove [58] is a project that
aims to aggregate RDF annotations on web pages published by individuals within
a department to automatically construct departmental directories and calendars.
(RDFa [27] and eRDF [25] are also syntaxes for embedding RDF within web pages.)
Recently, microformats [17] are recommended for marking up semantic tidbits
within web pages so that microformat-aware browsers can provide additional fea-
tures on those tidbits, such as a contextual menu command for dialing phone num-
bers.

In other cases, prospective uses are more experimental: recently, many web
sites expose web APIs for users and third parties to explore potential mash-ups for
their data and services. Microformats could also be said to support experimental
prospective uses because until they are widely adopted, their actual use is still to
be determined. RDFa and eRDF, advocated to serve the same purpose as micro-
formats, are similarly experimental. In fact, being more general than microformats
and more cumbersome to write, the usefulness of RDFa and eRDF over microfor-
mats is still a debate.

In the rest of the cases, prospective uses for published data are highly specula-
tive: the Semantic Web project [31] and related efforts, such as the Linked Data

2. Related Work

36

best practice [14], advocate publishing of interlinked semantic web data to enable
unexpected reuse, explaining that “it is the unexpected reuse of information which
is the value added by the web” [14]. While I do believe in the value of information
reuse, I doubt that many individuals can be easily persuaded to labor altruistically
for unpredictable future benefits to humanity. Thus, prospect for information reuse
cannot itself be an advocacy but must be a side effect of some other concrete and
near-term benefits. Failing that, the publishing of data must be enforced by policies
of some governing bodies, as is the case with the PubMed service offered by the
United States National Library of Medicine [24]. Still, publishing data for no par-
ticular use is challenging as there can be no practical criterion by which the quality
of the data and of the publishing process can be judged.

Flexibility of Data Modeling and Presentation2.2.2	

Data publishing technologies can be compared along two orthogonal dimensions:
flexibility of data modeling and flexibility of presentation. The former is a spec-
trum ranging from rigid schemas that cannot be changed to general data models
that can fit any information. The latter ranges from predetermined layouts and
styles to completely customizable presentations. Figure 2.1 lays out this space and
frames the discussion that follows.

Domain Specific Approaches2.2.2.1	

Rigid schemas are often enforced by domain-specific applications and web ser-
vices. For example, web photo album generating tools and hosting services such
as Gallery [9] and Flickr do not allow any field beyond the typical EXIF headers,
date/time, title, description, tags, and geographical coordinates. If a chef wants a
schema to record the main ingredients and cuisines in the photos of her dishes, she
cannot extend Gallery’s and Flickr’s schemas properly but would have to coerce
the generic tagging mechanism for that purpose. However, the two fields “main
ingredient” and “cuisine” will be mixed together, with “Pork” and “Portuguese”
next to each other if the tags are sorted alphabetically by default.

Their lack of data-modeling flexibility aside, domain-specific tools do often of-
fer well-designed presentations suitable for their domains. Built on fixed schemas,
it can also be easy for them to provide a theming framework for third parties to
customize their look and feel. Theming might involve anywhere from overriding
CSS styles to editing HTML layouts to server-side programming.

Domain Generic Approaches2.2.2.2	

Domain-generic applications and services are built to support arbitrary schemas
from the ground up. Online spreadsheet services, such as DabbleDB [5], EditGrid
[21], and Google Spreadsheets, work just like desktop spreadsheet applications and
can hold any sort of data. As a one-size-fits-all online database service, Google
Base [10] holds topics ranging from local events to weight loss programs. Simi-
larly, Freebase [8] strives to be “a global knowledge base: a structured, searchable,

2. Related Work

37

writeable and editable database built by a community of contributors, and open to
everyone,” which means that it has to hold data on any topic.

Domain-generic data modeling standards, specifically RDF [28] which is de-
signed for the Web, also strive to allow for arbitrary data models. The Semantic
MediaWiki extension [73] described previously is built on RDF and can thus power
wikis containing data on any topic. Various RDF-based browsers, such as mSpace
[64], /facet [53], and Longwell [15], provide advanced browsing and visualization
features on arbitrary data, albeit in generic ways. (Hildebrand [30] provides a sur-
vey of many existing RDF-based browsers.)

The flexibility in data modeling is often correlated with generic user inter-
faces: Freebase, Google Base, Semantic MediaWiki extension, online spreadsheet
services, and most RDF-based tools present their data in generic property/value
tables that are not optimized visually per domain. For example, when displaying
the information on a paper, it is sufficient and conventional to show:

Huynh, D., Miller, R., and Karger, D. Exhibit: Lightweight Structured
Data Publishing. WWW 2007.

but domain-generic tools would instead display:
type: Paper
title: Exhibit: Lightweight Structured Data Publishing
author:

type: List
element 1:

type: Person
title: Huynh, D.

element 2:
type: Person
title: Miller, R.

element 3:
type: Person

Figure 2.1. Flexibility of presentation and data modeling as well as the efforts
required to adopt and use (circle size) for various publishing frameworks.

fle
xi

bi
lit

y
of

 d
at

a
m

od
el

in
g

flexibility of presentation

Flickr

Exhibit custom
web app

Google Base,
DabbleDB,
Semantic MediaWiki
 extension

Customized
Semantic MediaWiki
 extension

HTML

2. Related Work

38

title: Karger, D.
venue:

type: Conference
title: WWW
year: 2007

The result is at best a waste of space and at worst a cognitive load on the reader
to visually parse unnecessarily spaced out and redundant information. Such pre-
sentations are often a concession that frameworks to support specifying custom
presentations on domain-generic information are hard to design and implement. If
customization is allowed, it often requires programming rather than WYSIWYG ed-
iting, such as in the use of Fresnel [44] in the Longwell RDF browser [15]. Fresnel is
a vocabulary for displaying RDF, and specifying presentations of RDF using Fresnel
involves coding in some RDF syntax such as N3. My Exhibit framework also re-
quires coding and its differences with the other frameworks will be discussed sec-
tion 2.2.5.

While presentations on domain-generic web services are impossible to cus-
tomize if the services do not offer a customization mechanism, as is the case with
Google Base and Freebase, domain-generic tools such as Semantic MediaWiki ex-
tension can be customized at the cost of some server-side programming.

Costs of Using Data Technologies2.2.3	

Data technologies for publishing can also be assessed by how much efforts they
require of publishers. Web services like Google Base and Freebase only require ac-
count registration and familiarization with their web interfaces. Faceted browsing
applications such as mSpace [64], /facet [53], and Longwell [15] require down-
loading the software, installing it (e.g., setting it up on a web server), configuring it
(e.g., setting up its database), and loading data into it possibly through program-
ming or command line interfaces.

Client-side Data Technologies2.2.4	

One of Exhibit’s distinctive characteristics is its use of a client-side database to sim-
plify the publishing process, eliminating server-side setup and configuration as well
as allowing the data to be authored in any format and in any software, and then
imported at the last moment when the web page is loaded into the browser.

Client-side data technologies are not novel. In the simplest case, data can be
downloaded to the client side as XML documents and queried using XPaths. Tabu-
lator [43] is a web application designed to load more and more RDF data from
arbitrary web sites to let the user explore the Semantic Web by following RDF links
within data from site to site. Tabulator works by dynamically loading RDF data into
a client-side RDF store also implemented in Javascript. TrimQuery [37] is another
client-side database that supports a SQL-like query language.

2. Related Work

39

Exhibit’s expression language, designed for retrieving data from Exhibit’s data-
base and optionally performing calculations on that data, resembles many proposed
RDF path languages [26], which in turn mimic the XPath language. Compared to
these languages, Exhibit’s expression language currently lacks conditionals within
paths—the ability to specify a boolean expression on a segment on a graph path to
filter the candidate result nodes on that segment to only those for whom the expres-
sion is true. Conditionals are useful for such a case as, given a person, querying for
her children under 20 years of age. However, Exhibit’s expression language can
be extended with new functions to support domain-specific computations, such as
geographical distance calculations.

Presentation Templating Technologies2.2.5	

Presentation templating technologies range from straightforward substitution of
data values into forms (filling in the blanks) to recursive rule-based view resolution
to completely automated schema-based UI generation.

Server-side templating languages such as ASP, PHP, and JSP and their client-
side counterparts such as mjt [18] are used for straightforward form-based substi-
tution. To create the presentation for a data record, an HTML page or fragment
is written, laying out the structure of that presentation, and wherever data should
appear in the HTML, calls to the back-end database are inserted instead of actual
data values. Branching and looping constructs are supported for more involved
cases, such as for rendering a list of several authors of a paper. Such constructs
make these approaches less descriptive and more procedural.

The form-based substitution approach is simple to use but does not facilitate
reuse of fine-grained presentation logic. For example, if books and papers are to
be presented sufficiently different so to warrant different templates, then whatever
about books and papers that should still be shown in the same way must be dupli-
cated in both templates. For instance, if authors should be shown as “last name,
first initial” in comma-separated lists for both books and papers, then the code for
doing so must exist in both templates. To facilitate reuse, view systems, such as the
Haystack’s user interface framework [62] and Fresnel[44]-based interfaces, stitch
together fine-grained presentation logic based on presentation rules that match
each piece of data to be displayed with the appropriate piece of presentation logic
in a given context. In the “book” and “paper” context, lists of authors will be
matched with the same presentation logic, resulting in the same presentation. That
piece of presentation logic needs to be written only once and then registered for
both contexts.

While view systems are more powerful than the form-based substitution ap-
proach, especially when applied on complex data models, they are also harder to
use. The presentation of a piece of data, embedding the presentation of other
pieces of data related to it, is not specified in a single block of code, but dynamical-
ly composed by evaluating possibly complex and conflicting rules, pulling together
different fragments of presentation logic.

2. Related Work

40

As Exhibit is intended for small data sets, it adopts the form-based substitution
approach, trading off power for simplicity.

Extracting Data2.3	

There are many goals for extracting data from the Web. This section will first dis-
cuss those goals before diving into the two main families of approaches to web data
extraction: supervised and unsupervised. The section will then discuss the literature
related to the primary goal of web data extraction for casual users: augmentation
of web user experience. The section concludes with a survey of efforts that intend
to facilitate web data extraction.

Goals for Web Data Extraction2.3.1	

The most common goal for large-scaled web data extraction is to fuel some systems
with the data. Online flight booking services such as Expedia, Travelocity, Kayak,
etc., scrape airline sites for flight data and aggregate it to provide one-stop flight
shopping experience over many airlines. There are similar aggregation services for
commercial merchandise, such as Google Product Search. Research projects such
as START [33] scrape the Web for facts to answer natural language questions.

In other cases, what the extracted data will fuel is less clear. Swoogle [34] crawls
the Web for semantic web documents, purporting to be “Google for the Semantic
Web” but there is no investment in the usability of its user interface, making its
purpose unclear. DBpedia [7] scrapes templates in Wikipedia to accumulate an
RDF data set of millions of triples of facts, and YAGO [69] scrapes Wikipedia’s text
to derive millions of relationships. Freebase [8] also scrapes Wikipedia in order to
bootstrap its own database. Without concrete uses for their data, it is unclear how
DBpedia, YAGO, and Freebase can objectively assess the data and their extraction
processes.

Web data extraction is also used for augmenting web user experience. Faaborg’s
and Lieberman’s Miro system makes use of data detectors to extract tidbits out of
web pages and then applies automations over them as have been demonstrated by
example through the complementary system called Creo [48]. Using Creo and
Miro, users can automate tasks that would require repeating the same sequences
of actions through web sites, such as ordering items on a grocery shopping list by
demonstrating how to order one of them. Marmite [75] specializes in letting casual
users build web mash-ups by visually stringing together data processing elements
and filling out their parameters.

Often the web user experience augmentation is simply the ability to bookmark
or save fragments of web pages. Hunter-Gatherer [65], the Internet Scrapbook
[70], and commercial tools like NetSnippets [19] let users clip out, collect, orga-
nize, and make reports out of web page fragments. Thresher [54], the browser

2. Related Work

41

extension of Dontcheva, et al. [46], and the AdaptiveBlue browser extension [1]
even extract structured data from web pages, such as books’ titles, authors, publish-
ing dates, and keywords.

Supervised vs. Unsupervised Extraction2.3.2	

Web data extraction approaches fall on a spectrum from entirely supervised to en-
tirely unsupervised algorithms. There are many unsupervised algorithms, relying
on partial tree alignment [78, 66], tree edit distance [63], and tabular structures
[57] to isolate data records from web pages. Wang et al. [74] claim to able to label
the extracted fields from web sites that offer complex search forms by watching
where the field values programmatically entered into the forms reappear in the
search result pages. In general, research efforts that yield unsupervised algorithms
are focused mainly on the algorithms themselves and are detached from how their
algorithms and resulting data can actually be used by human users.

Supervised algorithms require user intervention and thus need user interfaces.
With users’ help, they are also more accurate than unsupervised algorithms and are
more suitable for producing data that will actually be used immediately by users.
Thresher [54] allows a user of the Haystack system [62] to mark out a sample data
record within a web pages and label the fields within that record. Thresher then
learns the patterns for extracting the rest of the records on the page. The browser
extension by Dontcheva et al. [46] works in a similar way, but while Thresher al-
lows the user to use arbitrary schema to label fields, Dontcheva’s system is limited
to only a dozen fields. On the other hand, Dontcheva’s system lets an existing
extraction pattern be updated iteratively when the user returns to an old page and
marks up more fields. Dontcheva’s system can also scrape detailed pages linked off
from the original page to scrape.

Recently, there are web applications such as Dapper [6] that let users scrape
existing web sites for data and serve that data up in structured formats as “feeds,”
or make use of data already scraped by other people. These web applications still
offer very limited capabilities for cleaning up data and constructing rich visualiza-
tions. Those that offer more capabilities, such as Ning [20], require programming.

While user supervision makes the extraction algorithm more accurate, it puts
more demand on the user and increases the cost/benefit ratio for using the extrac-
tion tool. Dontcheva et al. report that users of their system often forgot to label
fields.

In contrast to all of these supervised and unsupervised approaches, my tool
Sifter shows that field labels are not needed before some value can be added on
the extracted data. Sifter retains the presentation elements in the original web page
and uses them to visually bind augmentation features to the extracted fields without
needing field labels.

2. Related Work

42

Web Content Augmentation2.3.3	

In the early days of the Web, there were several research projects, such as WBI [41]
and WebWatcher [55], that augment web pages with navigation recommendations
by watching the user’s browsing actions. Microsoft’s SmartTags were originally de-
signed for adding contextual menu commands to semantic tidbits detected in web
pages, letting users right-click on any piece of text that looks like a phone number
and choose the “dial” contextual menu command. All of these tools work by inject-
ing additional content into the original web pages or hooking into them contextual
menus.

Recently, Thresher [54] scrapes web pages and then offers appropriate contex-
tual menu commands whenever the user right-clicks on a data record on an already
scraped page. Thresher also delegate other augmentations to Haystack. For in-
stance, scraped data records can be browsed through Haystack’s faceted browsing
interface.

There are also programming tools like Greasemonkey [12] and Chickenfoot
[45] that enable users to script modifications on web pages, but so far they lack a
rich data model to support augmentations more sophisticated than just cosmetic
changes (e.g., removing ads) and simple addition of third-party content to web
pages (e.g., injecting prices from competing sites).

Sifter is novel in its choice of faceted browsing as a useful augmentation and in
its ability to offer faceted browsing features in-place over sequences of web pages.

Facilitating Web Data Extraction2.3.4	

A few efforts have advocated the embedding of semantic markups within HTML
code so to facilitate web data extraction. The Mangrove project [58] “seeks to
create an environment in which users are motivated to create semantic content
because of the existence of useful semantic services that exploit that content and
because of the process of generating such content is as close as possible to exist-
ing techniques for generating HTML documents.” Mangrove provides web services
such as a departmental calendar, a departmental personnel directory, a semantic
search service, etc., that are all fueled with data extracted from web pages an-
notated with RDF. RDFa [27], eRDF [25], and microformats [17] are standards
intended for the same purpose, but at the scale of the whole Web rather than one
department.

Integrating Data2.4	

This section starts by reviewing literature in the database field on data integration
and data warehousing, which are two families of approach for pooling data from
several sources and providing a coherent access point to all of them. One aspect of

2. Related Work

43

data integration is ontology alignment, which will be discussed next. Finally, re-
lated work on data integration user interfaces is examined.

Data Integration and Warehousing2.4.1	

Pooling data together from several sources to create a coherent view can be done
in two main families of approach called data warehousing and data integration. Data
warehousing involves the Extract, Transform, and Load (ETL) process: extracting data
from external sources, transforming it to fit internal needs, and loading it into a
new database. Once loaded, applications can then be written on the new data-
base, which can be updated periodically to reflect changes to the original sources.
Data integration, also known as data federation, involves dynamically querying the
original sources and integrating the search results on-the-fly to fit a mediated schema.
Both approaches have their own advantages and disadvantages, such as whether
the data is kept up-to-date, how real-time queries can be answered, and how costly
it is to add more sources [51].

Since the 1990s, data integration approaches have developed into an industry
called Enterprise Information Integration (EII). It also has a sister industry called
Enterprise Application Integration (EAI) which focuses on getting applications to
connect, rather than data sources to connect. The customers of these industries
are businesses rather than consumers. These industries are still not yet mature as
argued by a panel of experts at as recently as SIGMOD 2005 [50].

There is a related industry called Enterprise Analytics (EA) aimed to provide
tools for discovering insights over several sources of data internal to businesses.
For example, Spotfire [32] couples advanced browsing features such as dynamic
query filters with rich visualizations such as starfield displays to help detect outli-
ers and highlight trends. Compared to EII and EAI, EA is also selling to business
but its products are positioned much closer to human users. All of these industries
produce tools for experts and make trade-offs that favor the experts’ needs. For
instance, the ability to handle complex ontologies will be favored over the ease of
learning how to use the tools.

Ontology Alignment2.4.2	

One aspect of data integration involves aligning original ontologies with one an-
other, matching up classes and properties, or alternatively mapping each of the
original ontologies into a mediated ontology. This topic of ontology alignment
is also known as ontology mapping, ontology merging, and ontology integration.
Kalfoglou and Schorlemmer conducted a comprehensive survey of ontology map-
ping research in 2005 [56], reporting on a total of 35 works. These works are
either tools for data modeling experts or domain experts, or machine learning al-
gorithms, or combinations of tools and automation. They target large and intricate
ontologies for which data modeling expertise is desirable and for which automation
would give experts a head start.

2. Related Work

44

Ontology alignment is one specialized stage of data integration, and it de-
mands specialized tools for ontology alignment experts. From the perspective of
these experts, ontology alignment is an end, not a means. In order to do anything
useful with the aligned ontologies, external tools would be needed. In contrast, for
casual users ontology alignment is not an end and it is likely not even known to be
a requirement.

Furthermore, these data integration tools tend to work on ontological abstrac-
tions, basing their interface interactions on concepts such as classes (Figure 2.2).
Casual users have little knowledge about data modeling and ontological abstrac-
tions, and little interest in learning.

Data Integration User Interfaces2.4.3	

There has been some limited research on user interfaces for casual users to inte-
grate data. Tabulator [43] lets casual users import RDF data from multiple sources
together to create personal mash-ups with maps, calendars, timelines, etc. Not only
does Tabulator consume only RDF data and no other format, it also provides no
mechanism for aligning ontologies. It seems to make an implicit assumption that

Figure 2.2. Professional ontology alignment tools, such as Protégé [23], are too
advanced for casual users. They require understanding of abstract concepts like
classes, class hierarchies, inheritance, inference, etc. (Image from http://protege.
stanford.edu/.)

2. Related Work

45

there is a high chance of usefulness from simply pooling together data already in
RDF without doing any alignment.

WebScripter [76] lets casual users create coherent reports out of data collected
from several sources, offering data alignment features for that purpose. Although
the desired target audience is casual users, WebScripter’s interface is still expert-
oriented, full of jargon such as “DAML”, “class”, “instance”, etc. Unlike my Potluck
tool, WebScripter offers no feature for fixing data at the syntactic level (e.g., swap-
ping first name and last name) and it has not been formally evaluated on actual
users.

Toward a Data-Centric Browser2.5	

As there is more and more data in reusable forms on the Web, casual users will
encounter it more often and their use of the data will increase in frequency and in
sophistication. Where casual users meet the Web—the web browser—will need to
catch up. Designed for the text-centric Web for viewing hypertext documents, the
contemporary browser may no longer be suitable for the data-centric Web. There
is a need for a data-centric browser that addresses casual users’ needs in interacting
with a future data-centric Web. This section surveys enhancements to the contem-
porary web browser that are data-centric in nature, intended for users to manage
data encountered on the Web.

Data Models2.5.1	

Most of the few works aimed to enhance the standard web browser in a data-
centric fashion adopt the RDF data model [28] for storing their data. They include
Thresher [54] (described previously) which is built on Haystack [62]. Haystack is
an RDF-based personal information management platform. The browser extension
Operator [22] uses RDF as its data model and adds contextual menu commands
to web page fragments marked up with microformats [17]. Tabulator [43] demon-
strates what Semantic Web browsing might be like by dynamically pulling in more
and more data into its client-side RDF store. The rest of the works, notably the
browser extension by Dontcheva et al. [46] and Faaborg’s and Lieberman’s Creo
and Miro [48], use their own data models.

Data-Centric Features2.5.2	

Four kinds of data-centric features are offered by these tools: browse data, act on
data, edit data, and store data permanently. Thresher plus Haystack offer faceted
browsing functionality, contextual menu commands to act on extracted data, a
generic mechanism for editing, and permanent storage for the data. Dontcheva
et al.’s browser extension supports permanent storage and browsing capabilities.

2. Related Work

46

Tabulator offers only browsing features, and Operator offers mostly contextual
commands. Creo and Miro are only for automation.

Deployment Paths2.5.3	

These tools can also be compared by their deployment paths. At one end, Haystack
demands the full adoption of a whole new personal information management plat-
form, of which the augmented web browser is a small component. At the other
end, Tabulator is just a web page that can be loaded into any browser on demand
(unfortunately, cross site scripting security restrictions on web pages prevent it from
loading data from arbitrary domains). In the middle are the various browser exten-
sions previously mentioned, which require some efforts to adopt. Less effort and
less risk generally yield more adoption.

