
Image Segmentation for Highly Variable Anatomy:
Applications to Congenital Heart Disease

by

Danielle Frances Pace

B.Cmp.H., Queen’s University (2007)
M.E.Sc., The University of Western Ontario (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

June 5, 2020

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polina Golland

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Image Segmentation for Highly Variable Anatomy:

Applications to Congenital Heart Disease

by

Danielle Frances Pace

Submitted to the Department of Electrical Engineering and Computer Science
on June 5, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Automated segmentation of medical images can facilitate clinical tasks in diagnosis,
patient monitoring, and surgical planning. However, current methods either rely on
explicit correspondence detection, or use machine learning techniques that require a
large collection of fully annotated and representative images. Neither of these ap-
proaches are suitable when anatomical variability is high and labeled data is limited.
In this thesis, we formulate new interactive segmentation methods and evaluate their
applicability to congenital heart disease, which involves a wide range of cardiac mal-
formations and topological changes and for which few image analysis methods have
been previously developed. We begin by describing the new imaging datasets that
we have created to support our research in congenital heart disease. Next, we show
that image patches can be used to exploit manual segmentations made on a small
set of slice planes in order to automatically segment the rest of an image, and inves-
tigate the potential of active learning to automatically solicit user input. Third, we
develop an iterative segmentation model that can be accurately learned from small
datasets which do not necessarily include the same pathologies as a new image to
be segmented, and demonstrate that our model better generalizes to patients with
the most severe heart malformations. Ultimately, the methods developed here take
a step towards bringing the benefits of medical image analysis to challenging clinical
applications involving large anatomical variability and small datasets.

Thesis Supervisor: Polina Golland
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Problem Overview

The main focus of this thesis is medical image analysis for tasks in which the anatom-

ical variability in a population is significant. In particular, we focus on image seg-

mentation, which is the problem of classifying each pixel in an image according to

its anatomical label. Previous image segmentation methods rely on shape models,

atlases or a set of exemplary pairs of images and segmentations, and have problems

generalizing to inconsistent anatomy when labeled examples are scarce. This is be-

cause they require either explicit correspondence detection or a very large dataset of

labeled images that illustrates all possible anatomical variants. Our aim is to develop

interactive segmentation methods that input an image on which some annotations

have been made by a user and output a highly accurate segmentation, and that (1)

do not require a large amount of user interaction, (2) do not require a large dataset

of segmented images, and (3) can handle changes in the location, shape, topology,

number, and presence or absence of each anatomical structure to be segmented.

1.2 Clinical Motivation

Our work is driven by problems in analyzing cardiac magnetic resonance images (MRI)

from patients with congenital heart disease (CHD). Specifically, we aim to develop
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interactive image segmentation algorithms that can efficiently and accurately outline

the cardiac structures of the whole heart. Our clinical goal is to enable more routine

clinical use of patient-specific 3D heart models for surgical planning.

1.2.1 Congenital Heart Disease

Congenital heart disease includes all heart defects existing at birth, encompassing a

wide array of potential cardiac malformations and topological changes [1]. Congenital

heart disease is the leading cause of birth defect related deaths [2], and affects ap-

proximately 1% of births in the USA, about 25% of which is critical CHD for which

surgery or other interventions are necessary [3]. Moreover, the life expectancy for

CHD patients is improving, leading to an increasing population of adults with CHD

that has not been previously seen [4].

Anatomy of the Normal Heart:

Fig. 1-1 visualizes the anatomy of the heart, and includes almost all of the anatomical

terms referred to in this thesis. Briefly, deoxygenated and oxygenated blood remain

separate in the normal heart. Deoxygenated blood arrives via the superior vena cava

(SVC) and inferior vena cava (IVC) into the right atrium (RA), and is pumped into

Figure 1-1: Internal anatomy of the heart. Adapted with permission from [5].
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the right ventricle (RV) and then through the pulmonary arteries (PA) towards the

lungs. Oxygenated blood returns from the lungs via the pulmonary veins, arriving

into the left atrium (LA) and traveling through the left ventricle (LV), which pumps

it through the aorta (AO) to the body.

Congenital Heart Defects:

CHD can involve a wide range of heart defects, as shown in Tables 1.1 and 1.2. These

include shape changes within a vessel or chamber, abnormal connectivity between

cardiac structures (e.g., VSD, ASD, DORV, TGA, Glenn surgery, Fontan surgery),

abnormal structure locations (e.g., inverted ventricles, inverted atria, dextrocardia,

mesocardia), duplicated structures (e.g., bilateral SVC), and/or missing structures

(e.g., common atrium, single ventricle). These problems often occur in combination.

Severe CHD requires multiple surgeries throughout infancy, childhood and adult

life. For example, in DORV, surgeons may have to decide whether to (1) place a

surgical baffle to connect the aorta to the left ventricle through the existing ventricular

septal defect, or (2) detach and reattach the aorta and pulmonary artery to reestablish

normal blood flow [6, 7]. Importantly, the heart of each CHD patient is different,

exhibiting a unique combination of original heart defects, new atypical connections

and implants from any prior surgeries, and shape changes from long-term cardiac

remodeling [8].

1.2.2 3D Heart Models for Congenital Heart Disease

To choose the best surgical approach and refine the preoperative plan, clinicians must

understand each patient’s highly individual heart anatomy, evaluating the size and

location of defects and determining their relationships with other cardiac structures.

Cardiac MRI is an attractive modality for preoperative imaging [9,10]. It captures

cardiac anatomy and function in high resolution 3D (or 4D) images, while avoiding

ionizing radiation (which is particularly important for children). However, visualiz-

ing the 3D block of image data remains a challenge. Clinicians often view one 2D
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Table 1.1: Variants of cardiac anatomy in CHD. All hearts are shown in the anterior
view (patient faces towards the camera) or posterior view (patient faces away). Images
are axial slices. The ↔ symbol indicates that two structures are connected.

Normal Heart
(Anterior View)

∙ AO ↔ LV

∙ PA ↔ RV

Normal Heart
(Posterior View)

∙ Heart points to
the left

∙ SVC ↔ RA

∙ IVC ↔ RA

Severely Dilated
Chamber

∙ E.g., severely
dilated RA

∙ Rest of anatomy
is normal in this
patient

Severely Dilated
Vessel

∙ E.g., severely
dilated PA

∙ Other defects
were surgically
repaired

VSD

∙ Ventricular
Septal Defect

∙ Hole in the wall
between the two
ventricles, i.e.,
LV ↔ RV

ASD

∙ Atrial Septal
Defect

∙ Hole in the wall
between the two
atria, i.e.,
LA ↔ RA

DORV

∙ Double Outlet
Right Ventricle

∙ AO ↔ RV

∙ PA ↔ RV

∙ Always has VSD

∙ This patient has
also undergone
PA Banding

TGA

∙ Transposition
of the Great
Arteries

∙ AO ↔ RV

∙ PA ↔ LV

∙ Often has VSD
or ASD
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Table 1.2: Variants of cardiac anatomy in CHD (continued).

Inverted
Ventricles or
Atria

∙ Right ventricle
and/or atrium is
on left side

∙ This patient has
both

Dextrocardia

∙ Heart points to
the right

∙ Often has Left
IVC, Left SVC
and/or inverted
ventricles

Mesocardia +
Pulmonary
Atresia

∙ Heart points
center

∙ PA valve did not
form properly

∙ This patient
also has inverted
ventricles, an
ASD and DORV

TGA Surgery +
Bilateral SVC

∙ Rastelli
procedure to
restore normal
connectivity

∙ Two SVCs (one
left, one right)

∙ This patient also
has an ASD

Common
Atrium

∙ Only one atrium

∙ This patient also
has DORV

Single Ventricle

∙ Only one
ventricle

∙ This patient also
has an ASD and
PA banding

Glenn Surgery

∙ SVC ↔ PA
(bypass heart)

∙ IVC ↔ RA

∙ This patient also
has DORV and
Superoinferior
Ventricles

Fontan Surgery

∙ Follows Glenn
(SVC ↔ PA)

∙ IVC ↔ PA
(surgical baffle)

∙ This patient
also has inverted
ventricles, an
ASD and DORV
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Figure 1-2: 3D heart models for a patient with DORV. 3D heart models can visualize
the entire intracardiac blood pool, the shell arround it (consisting of the thick muscle
surrounding the ventricles and the thin walls surrounding the atria and great vessels),
or each individual cardiac chamber and great vessel.

image slice at a time, mentally integrating them to form a impression of the 3D heart

anatomy, or examine very coarse 3D blood pool models obtained through intensity

thresholding, which can be inaccurate, dramatically obscured by surrounding vas-

culature, and inadequate for viewing anatomy deep within the heart [11]. Further

analyzing the intracardiac anatomy during surgery is also difficult, due to blood in the

field of view, restricted viewing portals through valves and incisions, and the flaccid

heart.

Patient-specific 3D heart models hold great potential to enhance surgical planning

for CHD, whether they are rendered on a computer screen or 3D-printed. In this

thesis, we consider generating several different types of 3D heart models from a cardiac

MRI scan (Fig. 1-2). The most simple 3D heart model reveals the intracardiac blood

pool, while a “shell” model can be cut in half to better visualize the interior. Separately

labeling each structure produces heart models that may be more intuitive, and aids
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segmentation by reducing the shape variability of each labeled piece of the anatomy.

Studies have shown that using a 3D heart model may lead to a greater appreciation

of the true locations and sizes of intracardiac structures, aid decision making and

consensus, and even alter the surgical plan from that originally based on imaging

[11–15]. In particular, 3D-printed heart models provide an anatomically faithful and

tactile experience [16], can be used as physical phantoms for surgical practice [17],

and may reduce exposure to anesthesia and cardiopulmonary bypass via decreased

intraoperative times (again, important for children) [18, 19]. 3D heart models also

have applications in medical education [20].

Automatic segmentation would also facilitate the computation of several quantita-

tive metrics of cardiac function, such as chamber volumes, ejection fraction, myocar-

dial mass and thickening, aortic dimensions, and ventricular motion analyses [21,22].

In current clinical practice, such indices are typically derived from 2D or 2D cine

MRI. For CHD patients whose anatomy does not match what is expected by com-

mercial software, these images must be contoured manually or the automatic results

must be heavily adjusted. Segmenting 3D images avoids cross-referencing 2D images

from multiple views, and may be more accurate than estimating inherently 3D mea-

surements from sparse 2D data. Looking forward, separately delineating each cardiac

structure in 4D MRI (3D + time) data promises to enable future research into sim-

ulating post-surgical hemodynamics, assessing joint atrio-ventricular function, and

quantifying vessel wall stiffness.

Building a 3D heart model requires image segmentation (Fig. 1-3). Delineat-

ing all of the cardiac structures in a patient’s MRI scan is known as “whole heart

segmentation” [23–25]. In a 2016 review of segmentation techniques used in the

medical literature for 3D printing heart models in congenital heart disease, Byrne

et al. [26] found that most clinical studies used either simple image segmentation

methods (e.g. thresholding, region growing and manual editing) or a specific software

(Mimics, Materialise, Leuven, Belgium, proprietary algorithm). The lack of accurate,

robust whole heart segmentation for congenital heart disease is the bottleneck that

currently precludes widespread adoption of 3D heart models for surgical planning,
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Figure 1-3: Image segmentation is required to create a 3D heart model from a patient’s
MRI scan.

since segmentation currently involves extensive manual effort requiring many hours

per subject [12, 26–28].

1.3 Problem Definition and Challenges

The input to our methods is a 3D cardiac MRI scan, acquired with electrocardiogra-

phy (ECG) and respiratory gating to capture the heart at a single point in the cardiac

cycle without motion artifacts. This type of 3D cardiac MRI is widely available in

clinics. A useful 3D heart model can be created after segmenting the intracardiac

blood pool, heart walls (including the thick ventricular myocardium and thin walls

surrounding the atria and great vessels), and background. However, a more complete

whole heart segmentation involves separately outlining the left ventricle, right ven-

tricle, left atrium (including the pulmonary veins), right atrium, aorta, pulmonary

artery, superior vena cava and inferior vena cava.

Extreme Anatomical Variability:

CHD can affect the size, shape, location, connectivity, background appearance, num-

ber and existence of cardiac structures. There are additional variations due to age,

because a larger extent of the the head and torso is imaged for babies and young

children. Cropping the image around the heart standardizes the field of view, but

residual differences remain, e.g., only children have a large visible thymus lying in
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front of the heart. The anatomical variability of congenital heart disease is at or

beyond the limits of what has been previously attempted in automated medical im-

age analysis. Strong anatomical priors cannot be enforced, and relating information

across subjects with dramatically different heart configurations is very difficult.

Image Appearance:

Additional difficulties related to cardiac MRI are illustrated in Fig. 1-4. The valves

and thin walls that separate neighboring structures are often beyond the imaging res-

olution (typically around 1 mm3), and hence there is no contrast at object boundaries.

Different chambers and great vessels often appear very similar locally: in the normal

heart their identity can be resolved using global context, but this is not straightfor-

ward for CHD due to heart malformations. In addition, the tips of the ventricles are

sometimes placed out of the field of view during image acquisition to reduce scan time.

Finally, cardiac MR is subject to a number of artifacts. Specifically, steady-state free

precession (SSFP) images are subject to B0 inhomogeneities, and the pulmonary

veins in particular can be poorly visible because deoxygenated blood has a lower T2

and their position near the lungs induces off-resonance artifacts. Finally, very dark

regions surround metal implants such as stents.

Figure 1-4: Example challenges related to image appearance in whole heart segmen-
tation from cardiac MRI for CHD. (a) Lack of contrast at boundaries. (b) Different
objects can appear locally similar, e.g., the aorta, pulmonary artery and left SVC
pointed to by the blue arrows, and the left and right ventricles pointed to by the
yellow arrows. (c) Inferior part of the ventricles outside the field of view. (d) MR
inhomogeneity artifacts surrounding stents.

31



Limited Training Data:

Modern machine learning can yield excellent performance given a large annotated

dataset with limited domain shift. However, as in other fields within science and

engineering [29–31], limited training data is a persistent issue in medical image anal-

ysis. This is especially true for new applications of medical imaging that are outside

of the standard clinical routine, including ours. In part, this is due to the effort and

medical training required to manually label large 3D images, which only grows more

arduous as the analysis task is more difficult. Scarce training data precludes attempts

to model anatomical subtypes separately in an attempt to reduce anatomical variabil-

ity, as in [32, 33]. Moreover, patients with unique combinations of defects and prior

surgeries defy categorization anyway. In our datasets, specific heart abnormalities

are often represented by a single sample, and will be unseen during training if that

sample is assigned to the validation or test set. In order to be useful, any approach

based on machine learning must be able to learn from images that represent only a

subset of the possible anatomy, and generalize well to previously unseen anatomical

configurations.

Approach:

As described above, any methods that we develop must be able to handle extraordi-

nary anatomical variability while generalizing well from small, imbalanced datasets.

Experiments performed in this thesis demonstrate that state-of-the-art fully auto-

matic methods fail to do so. We therefore focus on developing efficient interactive

segmentation methods.

In interactive segmentation, a user works with the computer to segment an image

by providing limited manual inputs and/or correcting errors [34–44]. For example,

the user can provide inputs by identifying anatomical landmarks, painting a few

brushstrokes of tissue labels, or segmenting a few 2D slices in a 3D image. Interac-

tive segmentation enables accurate image segmentation for very difficult problems,

by aiding object localization and/or providing information on local appearance and
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shape. In many cases, the human user can apply their medical knowledge and logical

reasoning, while the segmentation algorithm may be able to contour precise bound-

aries faster, more accurately, and more reproducibly. Finally, research in interactive

segmentation is motivated by the fact that some interaction is unavoidable, since

clinicians must validate any segmentation used for decision making and correct the

errors that are inevitable in automatic segmentation.

1.4 Related Work

In this section, we review prior work in whole heart segmentation and image analysis

for congenital heart disease. Additional technical background relevant to the methods

developed in this thesis will be reviewed at the beginning of each subsequent technical

chapter.

Whole Heart Segmentation:

Whole heart segmentation has a rich history, especially for hearts that do not exhibit

substantial deviations from normal anatomy. When this doctoral work began, state-

of-the-art methods were based on adapting a canonical mesh model [45, 46] or used

multi-atlas segmentation [47]. Both of these approaches rely on finding correspon-

dences between the image to be segmented and some representation of the expected

anatomy. The first approach warps a generic surface mesh of the heart towards po-

tential boundaries in the image [48–51], while multi-atlas segmentation uses a dataset

of segmented atlas images to label a target image via dense deformable image regis-

tration and label fusion [52–56]. However, the substantial changes in heart geometry

and topology in CHD makes shape modeling, image registration, and correspondence

detection extremely difficult. The required correspondences between the model or

atlas and the image to be segmented would be very complex, and may not even exist.

In particular, fitting a heart model imposes a strong shape prior, since the amount of

allowed deformation is limited according to the variability in the training dataset, and

is therefore impractical for segmenting pathological cases for which is has not been
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trained. On the other hand, deformable image registration is required for multi-atlas

segmentation but typically fails when the input images are very different. Hence,

multi-atlas segmentation would require a very large number of previously segmented

scans and very sophisticated atlas selection. In fact Zuluaga et al. [57] actually exploit

the widespread mis-registrations to perform computer-aided diagnosis by predicting

whether subjects had normal anatomy or whether they had undergone an arterial

switch or atrial switch operation to repair TGA.

More specialized approaches have been proposed to address different modes of

variation in the heart. Prior work has addressed the physical distortions and appear-

ance changes that arise when segmenting the LV and RV in patients with adult-onset

heart diseases, such as left ventricular hypertrophy, dilated left ventricle, pulmonary

hypertension, heart failure or myocardial infarction [58–61]. However, these methods

still rely on probabilistic atlases or point distribution models that are built using data

from normal subjects, again requiring one to find a spatial transformation between

the abnormal heart and the normal model via anatomical landmarks or image regis-

tration. The concept is viable when one considers cardiac ventricles that can change

in shape, size and wall thickness, but such methods are unlikely to perform well for

whole heart segmentation in CHD.

Other groups have addressed how to handle topological changes in the anatomy in

the context of segmenting the LA, since the number of pulmonary veins and their con-

nectivity to the left atrial chamber naturally varies between individuals. Multi-atlas

segmentation can be improved by more appropriately weighting the contribution from

each atlas image [62]. One can also create a separate model for each expected anatom-

ical variant, apply each one, and then automatically choose amongst the results based

on the quality of each model’s local fit as estimated by region growing or machine

learning [32, 33]. However, modeling each subtype of CHD would be infeasible with-

out a prohibitively large database of segmented images, since the number of defects

and their potential combinations is huge. Others have proposed part-based models

for LA segmentation, which separately label the left atrial chamber and each pul-

monary vein and later enforce the consistency between them [63]. Such an approach
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would be difficult for our application, considering the large number of structures to

be segmented and their uncertain connectivity.

More recently, state-of-the-art methods in medical image segmentation train a

convolutional neural network (CNN) to segment images [64]. The U-Net architec-

ture (encoder-decoder with skip connections) is especially popular [65]. CNNs have

been extensively applied to whole heart segmentation, often using a dataset from the

Multi-Modality Whole Heart Segmentation (MM-WHS) challenge held at MICCAI

2017 [24]. This dataset consists of 60 computed tomography (CT) images and 60 MRI

scans from a variety of patients, including 16 images from CHD patients (7 training,

9 testing). In this context, researchers have investigated the use of two-step network

cascades (heart localization or coarse segmentation followed by a segmentation refine-

ment network) [66,67], deep supervision [68], multi-planar CNNs [69,70], losses based

on the Dice score [68,71], and integration of statistical shape priors [69]. To date, the

MM-WHS challenge results confirm the difficulty of our task: the MR images were

more difficult to segment than the CT images (likely due to lower contrast, signal-to-

noise ratio and spatial resolution, as well as imaging artifacts), and accuracy in the

CHD patient subset was lower due to shape changes.

Image Analysis for Congenital Heart Disease:

Algorithm development regarding automated image analysis for congenital heart dis-

ease is very limited, and has mostly been aimed towards computer-aided diagno-

sis [72–74] or heart function quantification [75–79]. Although image segmentation is

often required as part of the analysis pipeline, most often it was not the main focus.

Only two of these papers have a significant segmentation component, both of which

focus on Tetralogy of Fallot. Zhang et al. [72] segment the LV and RV in MR time

series data using a hybrid active shape and active appearance model approach, while

Mansi et al. [75] fit a geometric model to the image using marginal space learning, a

probabilistic boosting tree and steerable features. However, all of these prior works

have two deficiencies. First, they consider only the two ventricles [72, 73, 77, 79], the

right ventricle alone [75, 76], or the aorta [74, 78], rather than the whole heart. Sec-
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ond, most limit their focus to a single subtype of CHD [72–75, 78, 79], while those

that consider multiple subtypes required extensive manual inputs [76, 77].

1.5 Contributions

To the best of our knowledge, we have developed the first datasets and algorithms

for whole heart segmentation in cardiac MRI for patients with diverse subtypes of

congenital heart disease. This includes the first method to segment the blood pool and

heart walls, and the first method to separately outline individual cardiac chambers

and great vessels.

1. Datasets and Open Science for Congenital Heart Disease

We have created the first public dataset for whole heart segmentation in congen-

ital heart disease patients, which consists of twenty 3D cardiac MRI scans with

ground truth segmentations of the blood pool and heart walls [80]. The aim is

to foster increased research in medical image analysis for the understudied CHD

population through open data. This dataset has been continually expanded and

refined, and has since grown to contain sixty images with ground truth segmen-

tations of the LV, RV, LA, RA, AO, PA, SVC and IVC. The datasets and our

efforts in open science are described in Chapter 2.

2. Patch-Based Interactive Segmentation with Active Learning

We present a new interactive algorithm to segment the cardiac blood pool,

the ventricular myocardium and the thin walls surrounding the atria and great

vessels from cardiac MRI for patients with congenital heart disease. In Chap-

ter 3, we describe a new interactive segmentation method that exploits expert

segmentations on a small set of short-axis slice regions, and automatically de-

lineates the remaining volume using patch-based segmentation [81]. We also

investigate the potential of active learning to automatically solicit user input

in areas where segmentation error is likely to be high. Validation is performed

on twenty CHD subjects with a variety of congenital heart defects. We show
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that active learning strategies that ask the user to manually segment uncertain

regions of interest within short-axis slices yield higher accuracy with less user

input than approaches that query entire short-axis slices.

3. Learning Iterative Segmentation from Limited Data

This work addresses the need for whole heart segmentation to individually label

each cardiac chamber and great vessel for patients with congenital heart dis-

ease. State-of-the-art image segmentation methods use a convolutional neural

network (CNN) to directly segment an image in one step, requiring a large col-

lection of manually annotated images to capture the anatomical variability in a

cohort. In Chapter 4, we propose a novel iterative segmentation model, imple-

mented as a recurrent neural network (RNN), which can be accurately learned

from a small dataset [82]. The user provides a single landmark per structure,

and a segmentation is evolved over multiple steps until reaching a stopping

point that can be automatically determined or user-defined. The model grows

segmentations in a predictable way that is defined via the training data, and we

show that a loss function that evaluates the entire sequence of output segmen-

tations can be optimized using training images alongside input-output pairs of

partial segmentations. Our experiments demonstrate that, compared to con-

ventional models that segment an image in one step, our iterative segmentation

offers better generalization to patients with the most severe heart malforma-

tions, especially when training data is very limited.

These advances represent significant contributions towards our clinical goal of

enabling 3D heart models to improve surgical planning for patients with congenital

heart disease. A discussion of future technical directions and clinical outlooks is

provided in Chapter 5.
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Chapter 2

Datasets and Open Science for

Congenital Heart Disease

In this chapter, we describe the novel datasets for whole heart segmentation in con-

genital heart disease that we have continuously developed and expanded over the

course of this doctoral work. We will detail three versions, called HVSMR, HVSMR+

and HVSMR++. HVSMR stands for “Whole-Heart and Great Vessel Segmentation

from 3D Cardiovascular MRI in Congenital Heart Disease”. The original HVSMR

dataset contains images from twenty subjects with segmentations of the blood pool

and ventricular myocardium. This dataset was publicly released in a Challenge held

at MICCAI 2016, and was the first open dataset of its kind [80]. Later, the HVSMR+

and HVSMR++ datasets were created, which have more detailed segmentations of

individual cardiac chambers and great vessels, and contain progressively more images.

2.1 Background

Open source software (e.g., [83–89]) has had a critical impact on medical image analy-

sis over many years. Open data is increasingly recognized as being just as important,

especially since the proliferation of machine learning in radiology [90,91].

Curating a new medical image dataset involves careful subject selection, tedious

ground truth annotation, attention to the unstructured text in clinical reports, con-
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sideration of patient privacy, and questions of data ownership and control [90–93].

If the aim is to automatically reproduce an existing clinical workflow, then ground

truth classifications, measurements or image segmentations may be available in the

hospital PACS (Picture Archiving and Communication System). However, for new

applications of medical imaging, ground truth annotations must usually be gener-

ated, typically manually. This requires extensive training that cannot in general be

crowd-sourced. In addition, the many slices that make up a 3D medical image makes

annotation tasks like landmark detection and image segmentation extremely time

consuming, especially for complex tasks and when consistency across slices must be

maintained.

For these reasons, large annotated datasets are less prevalent in medical imaging

than in mainstream computer vision. There exist only a few initiatives involving

thousands of subjects, and these may not provide any annotations. Examples include

ADNI [94], the UK Biobank [95], and the Rotterdam Study [96] (see [92] for a few more

datasets). At present, most public medical image datasets are relatively small [97],

and many methodological developments rely on private data. More concretely, a

(non-peer reviewed) study found that the median size of the MR and CT datasets

used in MICCAI 2018 articles was around 70 [98], and a recent report found that more

than half of the papers published in MICCAI 2014-2018 used only private data [99].

When this thesis work began, no dataset was available for whole heart segmen-

tation in CHD patients, and, perhaps consequently, very little research had been

undertaken in this area. We grew our own dataset with considerable effort over sev-

eral years. After we released the HVSMR dataset in October 2016, research on image

segmentation for CHD immediately increased, demonstrating the importance of data

in our research community and the major impact of our contribution.

2.2 The HVSMR Dataset and Challenge

The original HVSMR dataset contains twenty 3D cardiac MR images from patients

with a variety of congenital defects, plus ground truth segmentations of the cardiac
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blood pool and ventricular myocardium. The images were acquired during clinical

practice at Boston Children’s Hospital (Boston, MA, USA), retrieved retrospectively

from the hospital PACS, and manually segmented.

Subject Selection: Cases with high image quality were chosen on a rolling basis, by

considering the signal homogeneity of the blood and myocardium and the strength of

off-resonance artifacts. Only images in which the LV and RV were completely visible

were selected.

Images: High resolution images of the entire heart were acquired in an axial view on a

clinical 1.5T scanner (Philips Achieva). Acquisitions were performed using the Heart-

NAV technique [100], which uses a free-breathing steady-state free precession (SSFP)

pulse sequence, with ECG and respiratory navigator gating used to freeze cardiac

and respiratory motion (TR=3.4ms, TE=1.7ms, 𝛼=60∘). Intravenous gadolinium-

based contrast agent (Ablavar (gadofoveset) or Gadovist) was used in some patients.

The proportion of imaging studies that use contrast has been reduced over time at

Boston Children’s Hospital to around 20-30% currently. Each image had a different

size (∼ 390 × 390 × 165) and near-isotropic resolution (∼ 0.9 × 0.9 × 0.85 mm).

Intensity Normalization: Since intensity distributions vary across cardiac MR

scans, intensity normalization is required. We created an intensity normalization

scheme based on estimating the mean blood pool and lung intensities in each image.

Each image was rescaled to a range ≈ [−0.1, 3.3] by fitting a linear transfer function

that mapped estimates of the typical blood pool and lung intensities to 0.8 and 0.07,

respectively. For each image, we estimated the blood pool intensity by automatically

extracting a slab of the cropped images that typically contains the ventricles, and

used the peak of the intensity histogram corresponding to the blood pool using the

Mean Shift algorithm [101]. Similarly, we estimated the typical lung intensity in the

image by extracting a slab in the upper portion of the cropped image that typically

contains the lungs only, and used the mode of the resulting intensity histogram.
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Segmentations: The blood pool and myocardium in each image was segmented by

a trained rater using 3D Slicer1 [85], which was reviewed by two hospital experts

who advised the rater on any required corrections. Segmentations were done in an

approximate short-axis view and then transformed back into the original image space.

Manual segmentation considered all three viewing planes, but segmentation quality

in the short-axis view was the deciding factor during review.

The blood pool class includes the cardiac chambers and great vessels taken to-

gether. All of the great vessels except the aorta were extended only a few centimeters

past their origin, since very long vessels can be visually disruptive when 3D heart mod-

els are used for surgical planning. The ventricular myocardium class also included

the coronaries if they traveled within it.

The HVSMR 2016 Challenge: The first HVSMR Challenge was held at MIC-

CAI 20162, with full conference papers published in Lecture Notes in Computer Sci-

ence [80]. The submission system and leaderboards remain open. The challenge was

organized by releasing 10 training images (with segmentations) and 10 test images

(segmentations not publicly available). Scoring is done through an automated sub-

mission system where participants can submit segmentation results, and considers a

weighted average of the Dice score, average boundary distance, and Hausdorff distance

for the blood pool and myocardium classes (see Section 2.4 for definitions).

In publicly releasing this dataset, we have sparked a broader research effort to-

wards medical image analysis for congenital heart disease. There have been approxi-

mately 100 submissions to the HVSMR leaderboard since the Challenge began, and

about 35 medical imaging conference and journal papers have been published using

the dataset (as of May 2020).

1http://www.slicer.org
2http://segchd.csail.mit.edu
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2.3 The HVSMR+ and HVSMR++ Datasets

While a segmentation of the cardiac blood pool and myocardium is sufficient to dis-

play or 3D-print a patient-specific 3D heart model, there are many advantages to

delineating each cardiac structure separately. On the methodological side, aiming

for a more detailed segmentation may make the segmentation task easier, since the

shape of each cardiac structure is less variable than that of the entire blood pool.

Hence, feasible shapes could possibly be learned during training, or explicit shape

priors could be incorporated. Clinically, it would allow for more detailed analyses of

cardiac structure and function, whether for an individual patient or across an entire

population. A second goal of ours was to increase the size of the dataset, to more com-

prehensively evaluate our methods and, for those methods based on machine learning,

to assess their dependence on the size of the training dataset.

The HVSMR+ and HVSMR++ datasets consist of 3D cardiac MR images with

ground truth segmentations that separately delineate the LV, RV, LA, RA, AO, PA,

SVC and IVC. The myocardium was deemed less important, as it would likely be

simple to derive once these eight structures are segmented. The HVSMR+ dataset

has the same 20 cases as HVSMR. The HVSMR++ dataset is larger, comprising 60

scans that include the 20 HVSMR images.

Subject Selection: 3606 cases were identified by searching the written radiology

reports at Boston Children’s Hospital (dating back to January 2012) for keywords in-

dicating that a 3D MR scan was acquired. In addition to free-text descriptions, each

report contains standardized “cardiology codes" (local to Boston Children’s Hospi-

tal) that enumerate hundreds of different patient diagnoses, abnormalities in cardiac

anatomy or function, and prior interventions. Since clinicians manually choose the

most relevant options as they write reports, many findings are not codified. In ad-

dition, the codes often describe initial diagnoses that have already been surgically

corrected and are no longer applicable to the scan. However, the codes do provide a

simple way to find patients with certain conditions.

We identified codes pertaining to important congenital heart defects and corrective
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surgeries, and manually selected 40 high quality images to add to the HVSMR dataset.

We aimed to create a balanced dataset that samples the different conditions and

their combinations as uniformly as possible, while recognizing that some imbalance

is inevitable since some defects are much more common than others. A trained rater

reviewed each image to verify that its list of diagnoses was correct and complete .

Subject Categorization: After assessing each heart’s anatomical malformations

(and not the patient’s prognosis), the cases were classified as mild, moderate or severe

under the advise of a cardiologist. The relevant conditions and their prevalence in

the HVSMR+ and HVSMR++ datasets are summarized in Table 2.1. To summarize,

mild hearts had roughly normal anatomy3, prior CHD surgery with restoration of

normal anatomy, and/or a mildly or moderately dilated chamber or vessel. Moderate

hearts had abnormal connectivity, holes in the interior heart wall, bilateral SVC, a

severely dilated chamber or vessel, and/or a congenital connective tissue disorder

causing extremely curvy vessels. Severe hearts exhibited global heart malpositions or

situs inversus (mirror image of normal anatomy), common atrium, single ventricle,

and/or major prior reconstructive surgery resulting in highly abnormal anatomy.

Images: The vast majority of images were acquired using the Heart-NAV technique

described above; very few were acquired using other protocols. All images were man-

ually cropped tightly around the heart and intensities were normalized as described

above.

3For example,

∙ patent foramen ovale – small hole in the wall between the two atria (present in all fetuses but
normally closes after birth),

∙ vessel stenosis – narrowing in a blood vessel,

∙ hypertrophic cardiomyopathy – thickened ventricular myocardium,

∙ crossed PAs – abnormal origin and bend of the PA branches as they arise from the main PA trunk,

∙ coronary aneurysm – dilated coronary artery (artery supplying blood to the heart muscle itself),

∙ hypertension – high blood pressure,

∙ Marfan syndrome – systemic connective tissue disorder with many symptoms including heart
problems, very thin chest often visible on cardiac MRI.
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Table 2.1: Heart defects and diagnoses in the HVSMR+ and HVSMR++ datasets.
Subjects can have multiple diagnoses, and are categorized as mild. moderate or severe
according to the most serious defect in the image (e.g., a repaired VSD does not count
as a VSD). Coincident variants are not used to categorize subjects. A dilated chamber
or vessel is only listed if it is the sole diagnosis. S/P = Status post.

HVSMR+ HVSMR++
20 Subjects 60 Subjects

Age 18.1 ± 11.2 11.6 ± 11.7
Mild 10 50% 12 20%

∼Normal 5 25% 6 10%
Mild/Moderate Dilation 5 25% 6 10%

Moderate 6 30% 11 18%
VSD 6 30% 30 50%
ASD 3 15% 23 38%

DORV 3 15% 19 32%
D-Loop TGA 1 5% 5 8%

S/P Arterial Switch – – 1 2%
Bilateral SVC 2 10% 9 15%
Severe Dilation 2 10% 4 7%
Tortuous Vessels – – 2 3%

Severe 4 20% 37 62%
Heterotaxy 1 5% 14 23%

Dextrocardia 2 10% 10 17%
Mesocardia 1 5% 5 8%

Inverted Ventricles 3 15% 16 27%
Inverted Atria – – 7 12%

Left/Central IVC 1 5% 15 25%
Left/Central SVC 1 5% 6 10%

L-Loop TGA 1 5% 5 8%
S/P Atrial Switch – – 1 2%

S/P Rastelli Procedure 1 5% 2 3%
Common Atrium 1 5% 10 17%
Single Ventricle – – 10 17%

S/P Glenn Procedure 1 5% 24 40%
S/P Fontan Procedure 1 5% 9 15%
Coincident Variants

Superoinferior Ventricles – – 2 3%
Double IVC – – 1 2%

PA Atresia or MPA Stump 1 5% 8 13%
S/P PA Banding 1 5% 7 12%

Aorta-PA Anastomosis – – 4 7%
Marfan Syndrome 2 10% 3 5%

MR Artifact (Aorta) 1 5% 9 15%
MR Artifact (PA) 2 10% 13 22%
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Segmentations: A described above, the 20 images in the HVSMR dataset already

contained ground truth segmentations of the blood pool and ventricular myocardium.

A trained rater manually divided each blood pool model into its constituent parts by

dropping landmarks at the relevant interfaces and fitting a local separating plane,

thus creating the HVSMR+ dataset.

The 40 new HVSMR++ images were segmented using a pipeline that leveraged

the existing 20 HVSMR+ images and segmentations (Fig. 2-1). A tool originally

designed for valve contouring in ultrasound [102, 103] was used to quickly annotate

roughly planar interfaces between the different heart structures, and these contours

were superimposed onto the image grid. A 3D U-Net convolutional neural network

trained on the HVSMR+ dataset was applied to each new image. This network did

not perform well after it was trained using a such a small dataset, and its segmentation

of the eight heart chambers and great vessels was often very inaccurate (although the

algorithms that we had already developed at this point in time were more accurate,

Figure 2-1: Ground truth HVSMR++ segmentations were created using a pipeline
that merged manual annotations with model outputs.
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Figure 2-2: Optional zones in the ground truth vessel segmentations.

we did not want to bias the ground truth towards our methods). Nevertheless, once

combined with the manually contoured interfaces, segmentation cleanup via island

relabeling and further painting or erasing was faster than manual segmentation from

scratch. The boundaries were carefully reviewed and adjusted to avoid bias towards

the neural network output as much as possible, and the resulting segmentations were

validated by hospital expert when the trained rater deemed the correct segmentation

to be ambiguous.

Note that this pipeline for ground truth annotation might be bootstrapped in

future to create bigger and bigger labeled datasets: once more images have been

segmented, they can be used to train a better model whose outputs require less

manual editing, and so on.

Results from a previous whole heart segmentation challenge noted that fair eval-

uation can be problematic when vessel lengths are not standardized in the ground

truth [24]. One may not want to penalize algorithms that produce vessel segmenta-

tions that are slightly too short or too long, as this does not make the segmentations

any less clinically useful [24,49,50]. To this end, for all sixty images we created ground

truth segmentations with consistent endpoints that were based on cardiac landmarks
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for model training, but also defined “optional zones” that defined a minimum required

vessel length and a permitted continuation (Fig. 2-2). More details are provided in

Table 2.2.

Seed Points: Seed points were used to simulate a user click within each structure.

These were manually created for the 20 images in HVSMR+ and automatically defined

for the sixty images in HVSMR++. More details are provided in Table 2.3.

Future Work: The HVSMR++ dataset could be made more balanced by adding

more D-Loop TGA, L-Loop TGA, arterial switch and atrial switch patients. We chose

to reduce the complexity of the dataset by not including patients with Tetrology of

Fallot, hypoplastic left heart syndrome or truncus arteriosus, but these conditions

could be added in future. Finally, the ground truth PA branch length was defined

with respect to a landmark that can be easily and reproducibly localized (the truncus

anterior on the right PA branch). This leads to PA branches whose lengths vary

across subjects. Another potential option is to use a constant branch length instead.

2.4 Segmentation Evaluation

Dice Score:

We use the Dice score throughout this thesis to quantify segmentation accuracy.

Given a ground truth segmentation y of an object, the Dice score for a given

segmentation ŷ is

𝐷𝑆𝐶(y, ŷ) = 100 · 2|y ∩ ŷ|
|y| + |ŷ|

, (2.1)

which is a volume overlap score where 𝐷𝑆𝐶(y, ŷ) = 100 indicates perfect overlap and

𝐷𝑆𝐶(y, ŷ) = 0 indicates no overlap.

Note that the Dice score is more sensitive to segmentation errors for small or

thin structures (e.g., the myocardium and vessel walls, IVC, and SVC) than in larger

structures (e.g., the entire blood pool or the four cardiac chambers).

If one does not want a vessel segmentation to be penalized for being slightly too
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Table 2.2: Ground truth definitions of each cardiac structure and their optional zones.

LV Typically bordered by the mitral valve, aortic valve, and/or VSD (if present). If
there is a single ventricle, it is labeled as LV. As advised by cardiologists, the
papillary muscles are not included in order to create realistic 3D heart models.

RV Typically bordered by the tricuspid valve, pulmonary valve, and/or VSD (if
present). The LV and RV are differentiated by considering chamber shape, wall
thickness, presence/absence of trabeculations, and the radiology report. As ad-
vised by cardiologists, the trabeculations are not included in order to create real-
istic 3D heart models.

LA Typically bordered by the mitral valve and/or ASD (if present). If there is a
common atrium, it is labeled as LA. The ground truth includes the pulmonary
veins (PVs) until they branch. The PVs can be optionally shorter, this was defined
by manually cutting each PV to require its stump only.

RA Typically bordered by the tricuspid valve, SVC insertion, IVC insertion, and/or
ASD (if present).

AO From the aortic valve through the ascending and descending aorta, until the most
inferior level of the LV/RV/LA/RA/PA. Includes two ascending aorta branches
for AO-PA anastomosis. Can optionally continue to the bottom of the image.

PA Typically includes the main PA trunk from the pulmonary valve to the bifurcation
point, plus the left and right branches with equal length (defined by the distance
from the bifurcation point to behind the truncus anterior on the right hand side).
For Glenn/Fontan patients, there is no main PA, only two branches. Effort was
made to track through MR inhomogeneity artifacts; if this was impossible then
any disconnected segments were labeled as optional. The distal ∼25% of each
branch in the ground truth is optional. Each branch can optionally continue until
it splits at its lower lobe anterior basal segmental branch.

SVC From the axial slice at the level of its bifurcation into the brachiocephalic veins,
down to its insertion into the attached atrium (angled according to atrium cur-
vature) or the PA branches (Glenn/Fontan patients). A second SVC may also
be present (bilateral SVC). The superior ∼25% in the ground truth is optional.
The right/left SVC can optionally continue higher, through the right/left bra-
chiocephalic vein and right/left internal jugular vein, respectively.

IVC From its insertion into the attached atrium (angled according to atrium curva-
ture) or inferior level of the PA branches (Fontan patients, baffle included), down
through the hepatic segment and subsequent branching. The ground truth was
defined by identifying the level of the first bifurcation, counting down by 5% of
the image height, and then dilating the pre-bifurcation segment to this level (so
that branches are cut at an angle). The non-optional segment was defined by
repeating this using the lowest axial slice in which the IVC appeared round (i.e.,
above any branching) and counting down by 2/3 · 5% of the image height. Can
optionally continue branching to the bottom of the image.
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Table 2.3: Seed points in the HVSMR+ and HVSMR++ datasets. References to “10
axial slices” assumes that the image’s height is 180 slices. The actual number of slices
used is proportional to the image’s actual height.

Summary Automatic Localization (HVSMR++)

LV Center region Centroid of its midaxial slice.

RV Center region Centroid of its midaxial slice.

LA Center region Centroid of its midaxial slice, after morpho-
logical erosion to remove PVs.

RA Center region Centroid of its midaxial slice.

AO Bottom of descending aorta Centroid of the segment extracted from its
bottom 10 axial slices.

PA Bottom of main PA trunk,
or midpoint between the two
PA branches (Glenn/Fontan
patients without a main PA
stump)

Centroid of the segment extracted from the
bottom 10 slices of the main PA trunk
(via dilation of attached LV/RV, or tak-
ing the bottom 10 axial slices if the main
PA is unattached), or centroid of the seg-
ment at the intersection between the two PA
branches via manual dilation of the PA op-
tional zones (Glenn/Fontan patients with-
out a main PA stump).

SVC At its superior end Centroid of the segment extracted from its
top 10 axial slices.

IVC Center of hepatic segment,
or below IVC-PA connection
(Fontan patients)

Centroid of the segment extracted above any
branching, or centroid of the segment ex-
tracted from its top 10 axial slices (Fontan
patients).

short or too long compared to the ground truth segmentation, the optional zone is

subtracted from the ground truth segmentation and the predicted segmentation before

computing the Dice score. In this way, only the “required” regions are compared.

Average Boundary Distance and Hausdorff Distance:

In addition to the Dice score, we also used the average boundary distance and the

Hausdorff distance to evaluate submissions to the HVSMR 2016 Challenge. Both

of these evaluate physical distances between spatial coordinates on the ground truth

50



segmentation boundary 𝜕y and the given segmentation boundary 𝜕ŷ. In the following

equations, 𝑑(v, v̂) is the Euclidian distance between two spatial coordinates v and v̂.

The average boundary distance is

𝐴𝐵𝐷(y, ŷ) =
1

2

(︃
1

|𝜕y|
∑︁
v∈𝜕y

min
v̂∈𝜕ŷ

𝑑(v, v̂) +
1

|𝜕ŷ|
∑︁
v̂∈𝜕ŷ

min
v∈𝜕y

𝑑(v, v̂)

)︃
, (2.2)

where 𝐴𝐵𝐷(y, ŷ) = 0 indicates perfect overlap and a large 𝐴𝐵𝐷(y, ŷ) indicates that

points on the two segmentation boundaries are far apart on average.

The Hausdorff distance is

𝐻𝐷(y, ŷ) = max

{︃
max
v∈𝜕y

min
v̂∈𝜕ŷ

𝑑(v, v̂),max
v̂∈𝜕ŷ

min
v∈𝜕y

𝑑(v, v̂)

}︃
, (2.3)

where 𝐻𝐷(y, ŷ) = 0 indicates perfect overlap and a large 𝐻𝐷(y, ŷ) indicates that

there exists at least one point on one segmentation that is far from all of the points

on the other segmentation.

2.5 Summary

In this chapter, we have described three imaging datasets that we have built to expose

the vast range of heart defects in congenital heart disease. Our efforts in making these

datasets public have been instrumental in opening new developments in medical image

analysis for congenital heart disease. For our purposes, they have supported the

development and evaluation of novel methods for whole heart segmentation, which

are described in the next chapters.
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Chapter 3

Patch-Based Interactive

Segmentation with Active Learning

In this chapter, we focus on segmenting the blood pool, myocardium and background

in cardiac MRI. To the best of our knowledge, this chapter represents one of the first

demonstrations towards clinically practical segmentation for patients with CHD in

order to enable routine use of 3D heart models for surgical planning [81].

3.1 Background

Image patches are small blocks of pixels (e.g., 3 × 3, 5 × 5, or 7 × 7). Patches are

often used for image analysis because they provide more context than individual pixel

intensities while remaining relatively low dimensional, and because many patches can

be extracted from few images [104–108]. Patch-based segmentation is an established

technique in medical image analysis to transfer segmentation labels across subjects

[107, 108]. An advantage of patch-based segmentation methods is that they are not

limited by the accuracy of an inter-subject deformable registration step, which is

especially error prone when there is large motion. In fact, they do not require any

explicit spatial correspondence detection. Instead, the label propagation is much

more flexible: following a rough image alignment (e.g., via affine registration), each

small patch of the new image is segmented by finding the most similar patches from
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the previously segmented atlas images and then fusing their labels.

Patch-based segmentation can be seen as an instantiation of the k-nearest neigh-

bors algorithm, in which the training data (𝑝1, 𝑙1), (𝑝2, 𝑙2), . . . (𝑝𝑛, 𝑙𝑛) consists of 𝑑× 𝑑

intensity patches 𝑝𝑖 ∈ R𝑑2 with associated labels 𝑙𝑖 ∈ {1, . . . , 𝐿} (classification of the

central voxel only) or 𝑙𝑖 ∈ {1, . . . , 𝐿}𝑑2 (“multi-point” classification of all voxels). One

must define the patch similarity measure that is used to identify the most similar

training patches. This can consider for example patch intensities, gradients and/or

location, typically after spatially constraining the search. Atlas selection can also be

used to select the best training images or regions to consider [55, 56]. One must also

choose a label fusion strategy, e.g., weighted or unweighted majority voting, which

can consider local and/or global features [47,109].

Patch-based segmentation has been shown to perform very well in multiple ap-

plication domains, including for cardiac MRI [110–113]. Previous research has inves-

tigated different patch similarity measures, e.g., by incorporating anatomical land-

marks [112] or spectral features [110], and label fusion strategies, e.g., by learning

local support vector machine classifiers that use gradient and context features in

addition to patch intensities [111]. Efficient implementations have also been demon-

strated [114,115].

Traditional patch-based segmentation can be more attractive than atlas-based

segmentation when anatomical variability is high, but still requires images to be

affinely registered and a search window established, so that patches from widely

disparate portions of the anatomy are not matched. This is not feasible for congenital

heart disease, unless perhaps one had a very large database of segmented images (and

a very robust atlas selection procedure) so that information would be transferred only

from the relevant atlases.

In this chapter, we propose to use patch-based segmentation within a given 3D

image volume, presenting the first interactive patch-based segmentation method and

demonstrating that it provides accurate whole heart segmentation in CHD. The

method uses a small set of manually labeled slices within the 3D image. These

regions provide patient-specific information on the heart’s shape and on the local ap-
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Figure 3-1: (a) Our patch-based interactive segmentation algorithm uses manual
segmentations on limited image domains (“reference” slices or regions of interest) to
segment the rest of the image (i.e., each “target”) slice. Note that the image has
been rotated into a short-axis orientation, so that the apex of the heart points down
and the bottom slices show cross-sections of the left and right ventricles. (b) An
important consideration is where the user should provide input. A simple option is
to uniformly distribute full short-axis slices. However, our interactive patch-based
algorithm is very flexible, and annotations could be made on any slice or short-axis
region.

pearance of the blood pool, myocardium and surrounding organs, which is exploited

by the algorithm to infer labels in the remaining parts of the image (Fig. 3-1a). This

approach can adapt to complicated shapes (e.g., the entire blood pool), and using

patches allows fine details in the segmentation to be maintained (e.g., the thin walls

and valves that separate the vessels and atria).

We decided to work with short-axis slices because clinicians are already accus-

tomed to segmenting short-axis views for making cardiac function measurements such

as ejection fraction [116]. The short-axis orientation is a standard radiological view

in cardiac imaging, and is defined by displaying the slices whose normals are parallel

to the “long-axis” line that intersects the center of the mitral valve (between the LV

and LA) and the heart’s apex (the tip at the bottom of the heart). In addition, the

overall mass of the heart’s shape is fairly well aligned with the long-axis, making it

easier to propagate labels up and down in short-axis slices than in the axial slices in

which the data is acquired.
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Figure 3-2: An active learning loop for image segmentation comprises three steps: (1)
uncertainty sampling to decide where the user should provide input; (2) a batch query
in which the user manually labels many voxels; and (3) re-running the segmentation
algorithm using the user’s new inputs.

Moreover, we examine active learning methods to further reduce the number of

interactions. Specifically, as depicted in Fig. 3-1b, where should the user provide

manual annotations for optimal performance?

At each step of an active learning session, the algorithm directs the user to man-

ually label part of the data deemed most informative [117]. These methods aim to

achieve the same accuracy with fewer user interactions compared to systems in which

the user decides where to provide input. Most active learning methods for interac-

tive medical image segmentation rely on uncertainty sampling with a batch selection

query strategy [118–123]. This active learning loop is illustrated in Figure 3-2. In

the uncertainty sampling step, the algorithm selects the voxels in which it is least

confident. Confidence can be measured using image-based metrics [120, 123], label

probability maps [119, 122], ensemble methods that assess the disagreement among

votes [118], or SVM classifiers that choose the data to query based on the distance

to the margin [121]. A batch query then asks the user to label multiple voxels in

each interaction step. A query can involve annotating sets of the most informative

voxels [118,119,121], segmenting entire slices [120,123] or deciding whether or not to

include an entire hypothesized object [122]. Finally, the segmentation algorithm is
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re-run once the new annotations are added to the training dataset.

Within our patch-based interactive segmentation framework for high-quality seg-

mentation in CHD, we explore the potential benefits of active learning with batch

queries based on uncertainty sampling. We show that methods that select entire

slices for manual delineation fail to perform significantly better than a simple strat-

egy based on a uniform distribution of the input slices. In contrast, active learning

queries that asks the user to segment regions of interest (ROIs) within short-axis

planes are more accurate with less user interaction.

3.2 Patch-based Interactive Segmentation

In this section we describe our patch-based interactive segmentation algorithm that

incorporates user annotations. The method also provides a baseline for our study of

active learning strategies for cardiac MRI segmentation.

Given image 𝐼 : Ω𝐼 → R, where the image domain is Ω𝐼 ∈ R3, we seek a label

map 𝐿 : Ω𝐼 → {𝑏𝑝,𝑚𝑦𝑜, 𝑏𝑔} that parcellates image 𝐼 into blood pool, myocardium

and background. For the purpose of creating 3D heart models, the myocardium

class includes the thick ventricular myocardium, the papillary muscles, and the walls

surrounding the atria and great vessels, i.e., the heart model’s “shell” that can be

3D-printed or displayed.

At each step of the interactive segmentation procedure, the user is presented with

a 2D slice or region of interest, and asked to manually segment it. We denote the

set ℛ𝐼 of manually segmented reference regions 𝑟𝑖 containing voxel intensities with

associated labels as
𝑟𝑖 : Ω𝑖 →

(︀
R, {𝑏𝑝,𝑚𝑦𝑜, 𝑏𝑔}

)︀
,

where Ω𝑖 ∈ R2 and Ω𝑖 ∈ Ω𝐼 ,

ℛ𝐼 =
{︀
𝑟𝑖
}︀
.

(3.1)

Each reference domain Ω𝑖 is defined on a short-axis plane. In the simplest case, Ω𝑖 is

an entire short-axis slice plane, but it may represent a smaller region within one. In

our baseline algorithm, the expert segments entire short-axis slices that are uniformly
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Figure 3-3: The steps of patch-based segmentation, illustrated for a single target
patch in which two entire reference slices are available. We use multipoint estimation,
so each reference patch carries one label per voxel, and not a single label for the
central voxel in the patch. Therefore, the eventual label for each voxel depends on
contributions from all overlapping patches.

distributed in the MRI volume.

Once the user annotations are provided, a patch-based method is used to update

the segmentation volume [107, 108]. An overview of the algorithm is shown in Fig.

3-3. The search region, patch similarity measure, and label fusion are as follows.

Search Region:

Not all manually segmented reference regions are useful when segmenting a given

target slice 𝑡, since the physically closest references are most informative. In Fig. 3-4,

we illustrate each target’s set of relevant reference regions ℛ𝑡 ∈ ℛ𝐼 , from which a

library of intensity patches with corresponding labels will be constructed.

If all of the reference domains Ω𝑖 are entire short-axis slices, each remaining target

slice in the volume is segmented using the two closest reference slices, one above and

one below. If there are smaller ROIs, each target slice is segmented using patches

from the two closest entire reference slices plus all of the ROIs between them. An
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ROI segmentation “shadows” the region behind it.

Once the set ℛ𝑡 of relevant reference regions is found, the search window for each

target patch is further limited to a 2D in-plane bounding box centered around it.

Patch Similarity Measure:

To segment patch 𝑝𝑡(𝑥
𝑖) centered at voxel position 𝑥𝑖 in target slice 𝑡, we must find the

𝐾 most similar labeled patches in ℛ𝑡. Here, we describe a patch similarity measure

that we have developed for patch-based interactive segmentation.

We use 𝑥 = [𝑥1, 𝑥2, 𝑥3] to denote the three coordinates of position 𝑥, where 𝑥1 and

𝑥2 are in-plane (short-axis) coordinates and 𝑥3 is the out-of-plane coordinate.

Given a patch 𝑝𝑟(𝑥
𝑗) centered at voxel position 𝑥𝑗 in a reference 𝑟 ∈ ℛ𝑡 with

Figure 3-4: Example setup of our patch-based interactive segmentation, in which a
target slice is segmented using two entire short-axis reference slices and a smaller
region of interest between them. We also illustrate the exponential curves for the
spatially adaptive in-plane and out-of-plane position weights 𝛿‖(𝑥𝑖,Ω𝑟) and 𝛿⊥(𝑥𝑖,ℛ𝑡),
respectively
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domain Ω𝑟, the distance between patch 𝑝𝑡(𝑥
𝑖) and patch 𝑝𝑟(𝑥

𝑗) depends on the patch

intensities, gradients and positions:

𝑑
(︀
𝑝𝑡(𝑥

𝑖), 𝑝𝑟(𝑥
𝑗)
)︀

= 𝛼‖𝑝𝑡(𝑥𝑖) − 𝑝𝑟(𝑥
𝑗)‖2 + 𝛽‖∇𝑝𝑡(𝑥

𝑖) −∇𝑝𝑟(𝑥
𝑗)‖2

+ 𝛿‖(𝑥
𝑖,Ω𝑟)

[︁
(𝑥𝑖

1 − 𝑥𝑗
1)

2 + (𝑥𝑖
2 − 𝑥𝑗

2)
2
]︁

+ 𝛿⊥(𝑥𝑖,ℛ𝑡)(𝑥
𝑖
3 − 𝑥𝑗

3)
2.

(3.2)

Here, 𝛼 and 𝛽 are weights on the relative importance of the intensity and gradient

terms, respectively. The position weights 𝛿‖(𝑥𝑖,Ω𝑟) and 𝛿⊥(𝑥𝑖,ℛ𝑡) are for the in-plane

and out-of-plane components of the positions, respectively. Making them spatially

adaptive means that they can adjust to the geometry of each situation, as illustrated

in Fig. 3-4. Essentially, the out-of-plane position weight does a soft selection amongst

the relevant reference regions, while the in-plane position weight determines an effec-

tive search window tailored to each reference.

First, we want the out-of-plane position weight 𝛿⊥(𝑥𝑖,ℛ𝑡) to be high when the tar-

get patch is physically close to any one of its reference regions, to encourage matching

to that close reference since it likely contains the same structures. To this end, the

out-of-plane position weight is defined as a function of the distance from 𝑥𝑖 to the

closest point within any of its references in ℛ𝑡:

𝛿⊥(𝑥𝑖,ℛ𝑡) = 𝛾1 exp
(︀
−𝛾2 ·𝐷⊥(𝑥𝑖,ℛ𝑡)

)︀
+ 𝛾3,

where 𝐷⊥(𝑥𝑖,ℛ𝑡) = min
𝑟∈ℛ𝑡

min
𝑥𝑗∈Ω𝑟

‖𝑥𝑖 − 𝑥𝑗‖.
(3.3)

Second, we focus on the in-plane position weight 𝛿‖(𝑥
𝑖,Ω𝑟) for each reference

region 𝑟. If a given reference is physically close to the target slice, then the matching

structure for each target patch is probably located at a similar in-plane position

within the reference, and 𝛿‖(𝑥
𝑖,Ω𝑟) should be high. In contrast, we want to be able

to search more widely within distant reference slices, i.e, 𝛿‖(𝑥
𝑖,Ω𝑟) should be low.

This enables matching of structures that might change shape substantially across

neighboring slices, and is especially useful when few references are available. The

in-plane position weight is therefore different for each reference, and is defined as the
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distance from 𝑥𝑖 to the closest point in the reference domain Ω𝑟:

𝛿‖(𝑥
𝑖,Ω𝑟) = 𝜆1 exp

(︀
−𝜆2 ·𝐷‖(𝑥

𝑖,Ω𝑟)
)︀

+ 𝜆3,

where 𝐷‖(𝑥
𝑖,Ω𝑟) = min

𝑥𝑗∈Ω𝑟

‖𝑥𝑖 − 𝑥𝑗‖.
(3.4)

Label Fusion:

Once the 𝐾 nearest neighbor patches from the reference regions are found, the labels

of the target patch are determined through majority voting with multipoint estima-

tion. For target patch 𝑝𝑡(𝑥
𝑖), we use 𝑙𝑡(𝑥

𝑖) ∈ {𝑏𝑝,𝑚𝑦𝑜, 𝑏𝑔}𝑑2 to denote its inferred

labels; this is a patch of labels centered at voxel position 𝑥𝑖 in target slice 𝑡. Similarly,

we use 𝑙𝑟𝑘(𝑥𝑘) ∈ {𝑏𝑝,𝑚𝑦𝑜, 𝑏𝑔}𝑑2 to denote the labels of the 𝑘-th nearest neighbor patch

𝑝𝑟𝑘(𝑥𝑘) centered at voxel position 𝑥𝑘 in a reference region 𝑟𝑘. Majority voting on the

𝐾-nearest neighbor patches maximizes the voxel-wise label posterior probabilities

𝑝(𝑙𝑡(𝑥
𝑖) = 𝑙 | 𝑝𝑡(𝑥𝑖),ℛ𝐼) =

1

𝐾

𝐾∑︁
𝑘=1

1
[︀
𝑙𝑟𝑘(𝑥𝑘) = 𝑙

]︀
, (3.5)

𝑙𝑡(𝑥
𝑖) = argmax

𝑙∈{𝑏𝑝,𝑚𝑦𝑜,𝑏𝑔}
𝑝(𝑙𝑡(𝑥

𝑖) = 𝑙 | 𝑝𝑡(𝑥𝑖),ℛ𝐼), (3.6)

where 1
[︀
·
]︀

is the indicator function and all operations operate element-wise on

𝑑 × 𝑑 patches. In practice, patches are extracted in a sliding window and overlap

each other. This means that the labeling for each voxel is influenced by all of the

patches that overlap it, and there are actually 𝐾 · 𝑑2 votes at each voxel. Multipoint

estimation results in a smoother segmentation, which removes the need for additional

smoothness constraints that could potentially eliminate small walls inside the heart

and surrounding the great vessels.

We also investigated weighted majority voting for label fusion,

𝑤
(︀
𝑝𝑡(𝑥

𝑖), 𝑝𝑟𝑘(𝑥𝑘)
)︀

= exp
(︁
−𝜃 · 𝑑

(︀
𝑝𝑡(𝑥

𝑖), 𝑝𝑟𝑘(𝑥𝑘)
)︀2)︁

,

𝑝(𝑙𝑡(𝑥
𝑖) = 𝑙 | 𝑝𝑡(𝑥𝑖),ℛ𝐼) =

∑︀𝐾
𝑘=1𝑤

(︀
𝑝𝑡(𝑥

𝑖), 𝑝𝑟𝑘(𝑥𝑘)
)︀
· 1
[︀
𝑙𝑟𝑘(𝑥𝑘) = 𝑙

]︀∑︀𝐾
𝑘=1𝑤 (𝑝𝑡(𝑥𝑖), 𝑝𝑟𝑘(𝑥𝑘))

,
(3.7)
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for a variety of values 𝜃, which gives more influence to reference patches that are more

similar to the target patch (simple majority voting is a special case where 𝜃 = 0),

and an adaptive weighted majority voting scheme [107] in which the weight factor 𝜃

is set at each voxel according to the distance to the first nearest neighbor:

𝜃 =
1

𝑑 (𝑝𝑡(𝑥𝑖), 𝑝𝑟𝑘=1
(𝑥𝑘=1)) + 𝜖

, (3.8)

with 𝜖 = 1e− 4 a small positive constant. If this distance is small, then 𝜃 is large and

only similar patches have significant votes. If this distance is large, then none of the

nearest neighbors are similar to the target patch and they contribute more equally.

3.3 Empirical Study: Active Learning for Reference

Selection

Here, we investigate different batch query strategies for automatically choosing the

reference subdomains {Ω𝑖} to be segmented by the user. Our baseline algorithm is

called uniform slice, and uniformly distributes entire short-axis slices. All other

methods are initialized by segmenting three uniformly distributed short-axis slices.

Another baseline is random slice selection, which is a common baseline in active

learning [120, 123]. Neither the uniform slice nor the random slice strategies

require an iterative back-and-forth with the user.

We first evaluate two active learning workflows that rely on the local uncertainty

to select either entire short-axis slices or smaller regions of interest. To decouple

the effect of the reference domain size from that of a specific uncertainty sampling

method, we use a ground truth manual segmentation to identify the next region to be

segmented. At each step, the slice or region with the highest cumulative segmentation

error (evaluated over its in-plane domain and ± ℎ slices) is selected for manual input.

We refer to these two iterative approaches as oracle slice and oracle ROI selection,

since the uncertainty estimation is perfect by construction. We emphasize that our

goal is to investigate the effect of the interaction mechanism, as this approach is clearly
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infeasible for segmentation of novel images. In practice, uncertainty can be measured

using metrics that locally estimate segmentation accuracy by assessing the entropy of

the patch vote distributions, the alignment of label boundaries with image gradients,

or the intensity homogeneity within small regions assigned the same label [120,123].

We also implemented an iterative optimal greedy slice selection that after each

step, aims to maximize the overall improvement in segmentation accuracy throughout

the entire image volume. In each step, this strategy exhaustively tries each possible

new reference slice, evaluates the global segmentation accuracy after its inclusion

using the ground truth segmentation, and keeps the slice that maximally reduces

error.

3.4 Evaluation

3.4.1 Data

Validation was performed using a precursor to the HVSMR dataset described in

Chapter 2. The dataset includes twenty cardiac MRI scans from patients with a

variety of heart defects plus corresponding ground truth segmentations of the blood

pool and myocardium, in which the myocardium class included the thick muscle

surrounding the two ventricles, the septum between them, the thin walls surrounding

the atria and great vessels, and the cardiac valves if visible. In contrast, the HVSMR

dataset is a subsequent refinement that includes the ventricular myocardium only.

Each high resolution 3D MR image was manually cropped to a tight region around

the heart and rotated into an approximate short-axis orientation (note that there is

residual rotation around the long axis that is not consistent across subjects). The

final image size after cropping was different for each scan (the average image size was

≈ 120 × 150 × 200). Each image was smoothed slightly using anisotropic diffusion.

The ground truth segmentations of the blood pool and myocardium were used to

simulate the user input provided in interactive segmentation.
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3.4.2 Parameter Selection

For patch-based interactive segmentation, we used 5 × 5 patches and limited the

nearest neighbor search to a 101 × 101 in-plane bounding box. Testing found that

retrieving 𝑘 = 5 or 𝑘 = 10 nearest neighbor patches for each target patch led to the

best segmentation accuracy; results are presented for 𝑘 = 10 here. The performance

of weighted majority voting varied little so long as 𝜃 < 0.4 and adaptive weighted

majority voting had no appreciable improvement. Here, we present results for simple

majority voting label fusion.

The weights governing the relative influence of the intensity, gradient and posi-

tion terms in the patch similarity measure from eqns. (3.2) - (3.4) were determined

empirically using four images. The best values were found to be 𝛼 = 1, 𝛽 = 1,

𝛾 = [8.49, 0.02, 0.0375] and 𝜆 = [1.62, 0.2, 1.25]. To determine the six parameters for

the spatially adaptive position weights (𝛾 and 𝜆), we ran the proposed intra-image

patch-based segmentation algorithm multiple times, where each trial used a differ-

ent number of uniformly distributed short-axis slices and different constant position

weights 𝛿⊥ and 𝛿‖. We plotted the best performing position weights for each target

slice as a function of the distance to the closest reference slice, fit a decaying exponen-

tial curve, and verified that using the exponential function outperformed all of the

constant position weights 𝛿⊥ and 𝛿‖ (i.e., using spatially adaptive position weights

yielded an improvement). In practice, the in-plane position weights 𝛿‖(𝑥
𝑖,Ω𝑟) were

rounded to the nearest member of the set {0.5, 1, 2, 3, 4, 5} in order to reuse results

from the 𝐾-nearest neighbor patch lookups across all of our experiments.

For both of the oracle selection strategies (oracle slice and oracle ROI), we

evaluated the local segmentation error on each slice (i.e., ℎ = 0). For oracle ROI,

we used ROIs of size 39 × 39.

3.4.3 Results

Fig. 3-5 shows example heart models and segmentations created using our patch-

based interactive segmentation, after instantiation with 3, 8 and 14 uniformly dis-
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tributed reference slices, respectively. The improvement in accuracy when more input

is provided is clear. A high quality model could be created using only 14 reference

short-axis segmentations out of ∼200 slices. Even the heart model instantiated with

only three reference slices showed a roughly correct global structure, although the

underlying segmentation has some errors.

Fig. 3-6 plots segmentation accuracy using uniform slice selection for the blood

pool and myocardium. The patch-based segmentation method achieved good accu-

racy using relatively few segmented slices, especially considering the difficulty of whole

heart segmentation in CHD. As expected, the error decreased as the simulated user

provided more manual input. In particular, manually segmenting 14 of approximately

200 short-axis slices provided a good trade-off between manual effort and segmenta-

tion accuracy, achieving a Dice score of 96.6±0.6 for the blood pool and 86.7±2.0 for

the myocardium.

Figure 3-5: Example 3D heart models (cut in half to visualize the interior) and seg-
mentation results for a subject with DORV, from our patch-based interactive segmen-
tation method with 3, 8 and 14 uniformly distributed reference slices. The interactive
segmentation results are shown in yellow and the ground truth segmentation in red.
Arrows indicate segmentation errors that are corrected by including more reference
slices. The red line superimposed onto the 3D heart models indicates the position of
the 2D image slice visualized below.
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Figure 3-6: Accuracy of patch-based interactive segmentation as a function of the
number of uniformly distributed reference slices. Segmentation accuracy was high,
and increased with the number of manually segmented slices.

We observed that the slices selected by active learning were sampled more densely

near the base of the heart (near the atria and many great vessels) and less so near

the apex (near the two ventricles), which correlates with the relative difficulty of

segmenting these areas.

Experimental results for active learning are reported in Fig. 3-7. All methods

substantially outperformed random slice selection, including uniform slice selec-

tion. Random slice selection can leave large gaps between annotated slices, especially

when the number of segmented slices is small, which makes it difficult to propagate

manual segmentations through the rest of the image. This suggests that random

selection is not always the most appropriate baseline when evaluating new active

learning methods, although it is widely used.

The oracle slice active learning strategy, which selects entire short-axis slices

according to their local error, did not achieve a meaningful improvement compared

to uniform slice selection. Even the optimal greedy slice strategy, which directly

measures the impact of adding a slice to the set of manually segmented slices, only

showed a modest improvement compared to uniform slice distribution. This sug-

gests that there is not much scope for improvement for active learning methods that

iteratively choose entire short-axis slices.
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Figure 3-7: Segmentation accuracy of alternative reference selection methods. These
are reported as the improvement over uniform slice selection, such that negative
values indicate that uniform slice selection outperforms the method. The oracle
ROI method is the most promising active learning approach. For experiments using
four images (random slice and optimal greedy slice), thin lines represent each
subject and the thick line corresponds to the mean. For experiments using twenty
images (oracle slice and oracle ROI), we show the mean and standard deviation.
Random slice selection scores are averages over five trials per subject. For oracle
ROI active learning, the Dice improvement is reported as a function of the cumulative
area that the user must segment.

The oracle ROI active learning strategy did show a substantial improvement

in segmentation accuracy given the same amount of user input (∼5 Dice score im-

provement for the myocardium and ∼2 Dice score improvement for the blood pool).

Compared to asking the user to segment entire slices, having the user segment smaller

regions of interest better targets areas with concentrated errors, and leads to more

efficient interactive segmentation.

Manual delineation of ∼14 short-axis slices requires less than one hour of an
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expert’s time, versus 8 or more hours for the entire volume. The runtime of our

current implementation of patch-based segmentation was roughly one hour per scan.

The computation time associated with adding a new reference region is proportional

to its size and the number of affected target slices.

3.5 Discussion

In this chapter, we have presented a new patch-based interactive segmentation method.

We demonstrated that it has high accuracy for whole heart segmentation for patients

with congenital heart disease, even when the user manual segments a small proportion

of slices that are uniformly distributed in the image volume, e.g., ∼14/200. Our ex-

periments also showed that active learning approaches, in which uncertain regions of

interest are identified and labeled by the user, have potential to reduce segmentation

time. To the best of our knowledge, this is one of the first works tackling image seg-

mentation for congenital heart disease and aiming to make creating 3D heart models

for surgical planning more efficient.

Our results add support to the idea that active learning can benefit interactive

segmentation of medical images. Two works that proposed active learning for interac-

tive segmentation workflows in which the user provides dense manual segmentations

on arbitrarily oriented slice planes also (1) showed that slice plane selection based on

active learning outperformed choosing planes at random, and (2) demonstrated high

accuracy (e.g., Dice score ≥ 90) after relatively few planes were annotated (e.g., 2-8

planes) [120, 123]. These investigations focused on segmenting structures with rela-

tively simple shapes (bones, liver, brain ventricles and putamen, thigh muscles, and

the hepatic vein). We found a similar trend for more complex anatomical structures

(the cardiac blood pool and our “shell” myocardium class), which our patch-based

interactive segmentation method could segment with high accuracy.

Our experiments raised an interesting question of what should be used as a sur-

rogate measure for the amount of user interaction. The results reported in Fig. 3-7

use the total area that is segmented as such a measure. This is similar to previous
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studies that count the number of slice planes segmented, the number of landmarks

clicked, etc. None of these consider the mental load and user time needed to provide

the requested annotations. Several alternative metrics for user effort are plausible,

and may depend on whether the user will densely paint labels on all voxels or draw

curves delineating different tissue subjects. To this end, we also examined accuracy

as a function of the number of edge voxels in the chosen reference regions, which is

one proxy of how arduous the region is to segment. When evaluated this way, the

differences between oracle slice and oracle ROI active learning disappeared, and

simply uniformly distributing the reference slices may be the best choice. In this

case, even the optimal greedy slice strategy, which tends to select slice planes with

very intricate details, could perform worse than uniform slice selection. A user study

evaluating the time required to manually segment slices versus ROIs would be the

best way to determine the most appropriate approximation of interaction time. It

would also allow us to evaluate the robustness of our approach to user error, since

here we simulate an optimal user that provides manual segmentations drawn from

the ground truth.

There are several potential future directions for both patch-based interactive seg-

mentation and active learning. In patch-based interactive segmentation, having the

user segment slices with different orientations would be useful, whether they come

from standard orthogonal axes or have completely arbitrary orientations. Currently,

it can be difficult to identify object boundaries that lie roughly in the short-axis

plane, since this interface is not reflected in nearby short-axis slices on which the user

can provide input. Also, we found that our patch-based algorithm produced rather

smooth segmentations, even without an explicit smoothness constraint. This is likely

because neighboring target patches tend to match to neighboring reference patches.

More explicitly promoting this behavior [105, 124] may be helpful, or it may prove

to be too brittle when when the number of manually segmented slices is small and

the target and reference slices show very different parts of the anatomy. Future work

could focus on reducing the algorithm runtime, e.g., through the use of approximate

nearest neighbors. In the clinic, patch correspondences could potentially be precom-
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puted as well, in the time between image acquisition and when a technician works on

the segmentation.

Regarding active learning, recall that model uncertainty for a given data point

can be used as a surrogate for how useful labeling that data point might be. Now

that we’ve determined that active learning based on ROIs can improve performance

under idealized conditions in which the most “uncertain” voxels are the incorrectly

labeled ones, an effective uncertainty measure must be formulated. We found that

directly computing an uncertainty map from the patch votes (specifically, by compar-

ing the number of votes for the most popular label versus the second most popular

label) did not correlate well with segmentation error (Fig. 3-8). First, some incor-

rectly segmented regions are not flagged as uncertain. For a given target patch, the

𝑘-nearest neighbor reference patches can be very close spatially with very similar

labels, in which case all of them vote identically and uncertainty is low even if the

segmentation is incorrect. Second, the label of almost every border voxel is uncer-

tain. This is because the ground truth segmentations, which were created manually,

do not segment each boundary in a completely identical way. Even if a target patch is

matched appropriately to reference patches that depict the correct edge orientation,

Figure 3-8: Segmentation error (in green) overlaid onto an uncertainty map com-
puted as the margin between the first- and second-place labels (white indicates high
uncertainty, black indicates low uncertainty). Note that the intensity distributions in
our image made it exceedingly rare for there to be votes for all three classes at an
individual voxel, so measuring this margin is appropriate. This uncertainty measure
did not correlate well with segmentation error.
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the labels of those reference patches may not overlap exactly. Besides finding a better

uncertainty measure, working with a more sophisticated active learning model that

probabilistically models the expected error reduction given a candidate ROI could

also improve segmentation accuracy with minimal user effort [117].

During the course of this doctoral work, features learned from data have steadily

superseded handcrafted features. One option for future work would be to learn the

patch similarity measure that underpins methods such as the one developed in this

Chapter [125, 126]. Alternatively, deep neural networks promise fast inference and

high accuracy without the need for extensive feature engineering, and have been

successfully applied to many computer vision and medical image analysis problems.

In this Chapter, we have provided a method that reduces the amount of user effort

for whole heart segmentation in CHD patients, from fully manual segmentation, to

dense annotations on relatively few 2D slices, and potentially to segmentations on

even smaller regions of interest. In our effort to further decrease the user interaction

to a few clicks, we also chose to leverage deep learning. This was partially inspired by

the results of the HVSMR Challenge that we held at MICCAI 2016 (see Section 2.2),

in which the top performing automatic methods used deep neural networks [127,128].

However, learning an accurate deep neural network model typically requires a large

training dataset when anatomical variability is high. In Chapter 4, we propose a

neural network model that can be accurately learned from a very small dataset, and

demonstrate improved generalization to subjects with severe heart malformations.
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Chapter 4

Learning Iterative Segmentation from

Limited Data

To the best of our knowledge, this work represents the first whole heart segmentation

for CHD that segments the left ventricle (LV), right ventricle (RV), left atrium (LA),

right atrium (RA), aorta (AO), pulmonary artery (PA), superior vena cava (SVC)

and inferior vena cava (IVC). It is an extension of our previous work on segmenting

the AO and LV using the smaller HVSMR+ dataset [82].

4.1 Background

State-of-the-art segmentation methods train a deep convolutional neural network

(CNN) to segment an image in one step [64, 65, 129]. These methods aim to opti-

mize the parameters of a model that inputs an image and outputs a probability map,

which at each voxel represents the estimated probability of each anatomical label.

CNNs [130] use convolution operations followed by a nonlinear activation functions

to generate successive sets of learned feature maps that form useful representations for

image segmentation. The low-dimensional, shared weights of the convolution layers

reduce the number of model parameters, based on the assumption that their output

feature maps are computed based on local information that disregards explicit spatial

coordinates, i.e., segmentations should be equivariant to translation. CNNs gener-

73



ally include pooling layers to make the intermediate feature maps smaller, reduce the

number of convolutions required to expand the model’s receptive field, and introduce

invariance to small translations. Upconvolution layers can be used to create feature

maps with finer resolution, and skip connections can be added to combine results

from different parts of the network, for example to merge features that are derived

from fine details in the input image with features that consider a wider context [65].

In a supervised setting, the CNN parameters are optimized using a training dataset

of images with ground truth segmentations. This is typically done by maximizing the

empirical log likelihood of the ground truth segmentations under the model param-

eters. Deep neural networks offer very fast inference with an accuracy that is often

similar or better than traditional image analysis methods, but typically require a

large training dataset to achieve good performance when the variability in the inputs

is high.

An alternative is to learn a model that iteratively segments an image over multiple

steps, at each step conditioning on a previous partial solution to make progress to-

wards the final answer. One simple approach that follows this general strategy is to use

a cascade of neural networks, e.g., following a network that outputs a coarse segmen-

tation or a region of interest with a fine-grained segmentation network [66,131–136].

Such a two-step cascade can be iterated further, repeatedly using the estimated seg-

mentation to re-crop the image and repeating until convergence [136,137]. An iterative

strategy is also a natural choice for instance segmentation, which requires separately

locating and segmenting all of the objects of each class label in an image. Several

approaches have been proposed to sequentially output a segmentation of each object,

using an internal memory or an attention mechanism [138–140].

Recurrent neural networks (RNNs) are popular methods for analyzing data se-

quentially [130]. RNNs model the repeated application of a recursive function, using

the same learned parameters at each step. This parameter sharing reduces the model’s

size and enables inference on sequences of arbitrary length. At each step, the network

inputs information from the previous step via recurrent connections. As illustrated

in Fig. 4-1, the global architecture can be constructed in a variety of ways. For
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Figure 4-1: Example recurrent neural network (RNN) architectures. (a) An input
sequence is processed to produce a single output, with recurrent connections at the
hidden layer, e.g. for video classification. Note that the learned network parameters
(here, 𝑈 , 𝑊 and 𝑉 ) are the same at each step). (b) An RNN trained to map an input
sequence to an output sequence, e.g for language translation. (c) In this architecture,
the recurrent connections directly use the output of each iteration as an input at
the next step. (d) The architecture from (c) modified for a single input: this is the
architecture of the RNN developed in this chapter. (Figure adapted from [130]).

example, the input or output can be a sequence or a single image, and the recurrent

connections can link the analogous hidden layers of consecutive iterations or connect

outputs to hidden units. RNNs have been used to learn dependencies across time

(e.g., object tracking [141]), space (e.g., image segmentation [142, 143]) or both time

and space (e.g., cardiac cine MRI analysis [144]). They have been widely applied to

image generation [145,146], object recognition [147], human pose estimation [148,149]

and image captioning [150].

This chapter develops an iterative segmentation model, and its RNN implemen-

tation, that starts from a user-supplied seed and progressively outlines the entire

structure via a sequence of output segmentations. Moreover, we develop a novel loss

to learn the model’s parameters so that it grows segmentations in a predictable, task-

specific manner. We investigate two variants: one in which the user decides when the

segmentation should stop growing, and another in which this stopping point is au-

tomatically predicted. Our model is reminiscent of traditional active contours, level
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Figure 4-2: Example results of an RNN for image segmentation that is trained with
a loss function that considers the final output alone. The segmentation improves
over time, but the evolution pattern would be difficult for a user to interact with
(reproduced from [153], Copyright c○ 2018, IEEE).

sets and particle filters [151,152], but leverages the powerful feature learning afforded

by modern machine learning. Our aim is to develop an effective segmentation scheme

initialized by a single click per structure, while keeping in mind further potential user

interaction as it may be needed in our challenging application.

Most previously proposed RNNs for image segmentation use a loss function that

evaluates the final output alone or encourages every intermediate segmentation in

the output sequence to match the complete ground truth segmentation as much as

possible [153, 154]. Alternative approaches model level sets [155–157] or sequentially

segment small areas pulled from an internal list of potential regions of interest [158].

In practice, this results in output sequences that progressively refine an initial coarse

segmentation of the entire object, and/or produce unpredictable growth patterns

(Fig. 4-2). Consider a user in-the-loop who aims to monitor the segmentation process

and correct errors. For these unpredictable segmentation patterns, it remains difficult

for a user to quickly scan for errors (especially considering 3D segmentations) and

inject knowledge at intermediate stages - what should the user fix at an intermediate

phase to guide the model to the correct answer?

In contrast, our iterative model is trained to produce predictable increments in
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Figure 4-3: Example results from our iterative segmentation model, which evolves
segmentations in a predictable way. (a) Example vessel segmentation (SVC) for a
heart with normal anatomy. (b) Example chamber segmentation (RV) for a heart
with severe malformations and several previous surgeries.

the segmentation. This segmentation pattern is defined by training data as described

below. Fig. 4-3 shows some example segmentations in the heart, which are trained

to grow along vessel centerlines and spherically outwards towards chamber borders.

The user can (1) easily monitor progress, because the region in which growth is

expected is spatially limited, (2) easily fix mistakes at intermediate steps, e.g., if a

vessel segmentation begins to grow in an incorrect direction, and (3) choose between

multiple feasible solutions in the output sequence, e.g., choosing an intermediate

segmentation result if the segmentation grows too large or asking for more iterations

if it is too small.

To accomplish this, we propose a novel loss that evaluates the entire sequence

of output segmentations against a desired segmentation trajectory. Maximizing the

likelihood of entire observed sequences is known as teacher forcing [130,159]. We show

how our loss can be factored into a sum over decoupled time steps, avoiding back-

propagation through time and allowing us to learn model parameters from images

alongside input-output pairs of partial segmentations. We derive these pairs on-the-

fly during training from complete ground truth segmentations. However, our model
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Figure 4-4: Simplified schematic of our RNN architecture for iterative segmentation.

can be trained to follow any desired evolution pattern, which is entirely specified by

the training data, because it operates directly on the 3D image grid, unlike approaches

that learn to progressively trace a contour [160,161] or perform slice-by-slice analysis

[162,163].

Our iterative segmentation has several benefits. Iterative segmentation models

can learn both local structure and long-range dependencies in the output domain,

because inference at each pixel also inputs label estimates for each of the pixels in its

receptive field [132,154]. This has potential to more effectively propagate information

from distant landmarks. Another consequence is that the model’s field of view is

implicitly expanded without increasing the number of parameters. Empirically, our

model better maintains the connectivity of each anatomical structure compared to

direct segmentation methods. We also show that it can be learned from very small

datasets that do not necessarily include the same pathology present in the test image.

Fig. 4-4 shows a schematic of our RNN architecture. At each step, the image

to be segmented and a partial segmentation form the input to a modified U-Net [65]

that is trained to predict the next segmentation in the sequence. This segmentation

becomes the input segmentation at the next step, via recurrent connections between

outputs and the first hidden layer. The U-Net contains a learned representation that
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is used to jointly learn a binary stopping indicator that denotes whether the output

segmentation is complete.

We validate the proposed iterative segmentation model using a dataset of 3D

cardiac MRI scans from patients with a diversity of CHD types. We compare it to

“direct” segmentation methods that we have developed for this problem which, like

all feedforward neural networks, segment the image in a single step. We show better

generalization in the context of learning with limited training data, by demonstrating

improved segmentation accuracy in subjects with the most severe cardiac malforma-

tions when learning using small datasets.

4.2 Iterative Segmentation Model

Given an image x : Ω → R and an initial segmentation y0 : Ω → {0, . . . , 𝐿 − 1}, we

seek a segmentation label map y : Ω → {0, . . . , 𝐿−1} that assigns one of 𝐿 anatomical

labels to each voxel in image x. Although we focus on binary segmentation of each

object in this chapter (i.e., 𝐿 = 2), the model is easily extended to jointly evolve

the segmentations of multiple objects. In practice, the initial segmentation y0 for

each anatomical structure is created by centering a small sphere around a seed point

placed by the user.

4.2.1 Probabilistic Model

We model the segmentation label map y as the endpoint of a sequence of segmen-

tations y0, . . . ,y𝑇 that captures a growing and evolving portion of the anatomy of

interest. In particular, y𝑡 : Ω → {0, . . . , 𝐿− 1} for time steps 𝑡 = 0, . . . , 𝑇 .

The number of iterations required to segment a given image depends on the shape

and size of the object. To capture this, we introduce a sequence of stopping indicators

𝑠0, . . . , 𝑠𝑇 , where 𝑠𝑡 ∈ {0, 1} and 𝑠𝑡 = 1 indicates that the segmentations should finish

evolving at y𝑡. Note that 𝑠0 = 0 always.

Given an image x, we assume pairs of segmentations and stopping indicators
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Figure 4-5: Probabilistic model for the proposed iterative segmentation. Given an
image x, we assume that pairs of segmentations and stopping indicators {y𝑡, 𝑠𝑡} follow
a first order Markov chain. Shaded nodes indicate observed variables.

{y𝑡, 𝑠𝑡} follow a first order Markov chain (Fig. 4-5), i.e.,

𝑝(y𝑡, 𝑠𝑡|x,y0, . . . ,y𝑡−1, 𝑠0, . . . , 𝑠𝑡−1) = 𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1), (4.1)

which leads to the recursion

𝑝(y𝑡, 𝑠𝑡|x,y0, 𝑠0) =
∑︁
y𝑡−1

∑︁
𝑠𝑡−1

𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1)⏟  ⏞  
transition probability

· 𝑝(y𝑡−1, 𝑠𝑡−1|x,y0, 𝑠0)⏟  ⏞  
recursive definition

. (4.2)

4.2.2 Transition Probability Model

To complete the recursion in eqn. (4.2), the transition probability 𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1)

must be defined. We do this by separately considering the cases 𝑠𝑡−1 = 1 and 𝑠𝑡−1 = 0.

When 𝑠𝑡−1 = 1, the segmentation y𝑡−1 is the finished segmentation, and the

transition model is trivial:

𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1 = 1) = 1
[︀
y𝑡 = y𝑡−1

]︀
· 1(𝑠𝑡 = 1), (4.3)

where 1
[︀
·
]︀

denotes the indicator function.

When 𝑠𝑡−1 = 0, the segmentation’s evolution is not yet finished. We introduce a
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deterministic latent representation

h𝑡 = ℎ(x,y𝑡−1) (4.4)

that captures all of the necessary information from the given image x and previous

segmentation y𝑡−1, i.e,

𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1 = 0) = 𝑝(y𝑡, 𝑠𝑡|h𝑡). (4.5)

We model the segmentation y𝑡 and stopping indicator 𝑠𝑡 as conditionally independent

given the latent representation h𝑡:

𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1 = 0) = 𝑝(y𝑡|h𝑡) · 𝑝(𝑠𝑡|h𝑡). (4.6)

This independence assumption is justified by the fact that deciding whether y𝑡 is the

final segmentation is equivalent to deciding whether y𝑡−1 is one step from completion,

due to the predictable segmentation evolution (see Section 4.2.3). Hence, to estimate

the stopping indicator 𝑠𝑡, knowledge of y𝑡 is not informative once we are given h𝑡,

which contains information about the image x and previous segmentation y𝑡−1.

Finally, we model ℎ(x,y𝑡−1), 𝑝(y𝑡|h𝑡) and 𝑝(𝑠𝑡|h𝑡) as stationary functions, i.e.,

they do not depend on the time step 𝑡.

4.2.3 Learning

We aim to learn the parameters of a model for the required transition probability

𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1 = 0). In this section, we develop a loss that considers the seg-

mentation’s evolution in addition to the final prediction.

We begin by assuming access to a training dataset 𝒟 containing images {x} and

variable-length ground truth sequences of segmentations {y0, . . . ,y𝑇 (x)−1,y𝑇 (x)} and

stopping indicators {𝑠0, . . . , 𝑠𝑇 (x)−1, 𝑠𝑇 (x)} = {0, . . . , 0, 1}, such that the final seg-

mentation is the sole complete segmentation. This dataset encapsulates the preferred
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segmentation growth dynamics.

Following the concept of teacher forcing [130, 159], we seek the parameter values

that minimize the expected negative log-likelihood over entire sequences of segmen-

tations and stopping indicators, conditioned on the image and initial conditions. In

particular, we seek parameters 𝜃* that minimize our loss ℒ(𝜃), i.e.,

𝜃* = argmin
𝜃

ℒ(𝜃), (4.7)

where

ℒ(𝜃) = Ex,y0,...,y𝑇 (x),𝑠0,...,𝑠𝑇 (x)∼𝒟

[︁
− log 𝑝(y1, . . . ,y𝑇 (x), 𝑠1, . . . , 𝑠𝑇 (x)|x,y0, 𝑠0;𝜃)

]︁
. (4.8)

Expanding the loss term yields

ℒ(𝜃) = Ex,y0,...,y𝑇 (x),𝑠0,...,𝑠𝑇 (x)∼𝒟

[︁ 𝑇 (x)∑︁
𝑡=1

− log 𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1;𝜃)
]︁
,

= Ex,y0,...,y𝑇 (x),𝑠0,...,𝑠𝑇 (x)∼𝒟

[︁ 𝑇 (x)∑︁
𝑡=1

− log 𝑝
(︀
y𝑡|ℎ(x,y𝑡−1);𝜃

)︀
− log 𝑝

(︀
𝑠𝑡|ℎ(x,y𝑡−1);𝜃

)︀]︁
.

(4.9)

In the first step, we see that teacher forcing leads to a sum over decoupled time

steps, due to the Markov property in eqn. (4.1). This greatly simplifies training,

because back-propagation through time is no longer required. In the second step, we

see that eqn. 4.9 is an expectation over a segmentation loss and a stopping indicator

loss.

Since the loss is a sum over decoupled time steps, training data that predefines en-

tire output sequences is actually unnecessary. The loss can be equivalently minimized

using a simplified dataset 𝒟′ consisting of tuples {x,y𝑖𝑛,y𝑜𝑢𝑡, 𝑠}, where the segmen-

tations y𝑖𝑛 and y𝑜𝑢𝑡 correspond to consecutive time steps and 𝑠 denotes whether y𝑜𝑢𝑡

is a complete segmentation:

ℒ(𝜃) = Ex,y𝑖𝑛,y𝑜𝑢𝑡,𝑠∼𝒟′

[︁
− log 𝑝

(︀
y𝑜𝑢𝑡|ℎ(x,y𝑖𝑛);𝜃

)︀
− log 𝑝

(︀
𝑠|ℎ(x,y𝑖𝑛);𝜃

)︀]︁
. (4.10)

82



These input-output pairs can be generated on-the-fly during training: more details

on training data generation are provided in Section 4.3.2.

Again, eqn. (4.10) is an expectation over the sum of a segmentation loss and

a stopping indicator loss, which are defined as follows. The segmentation y𝑡 and

stopping indicator 𝑠𝑡 are predicted jointly, and both of their losses influence the

parameters for the latent representation h𝑡. This multi-task approach often improves

learning, and results in fewer trainable parameters compared to training two separate

networks [164,165].

Segmentation Loss:

We assume that the label of each voxel in the segmentation y𝑜𝑢𝑡 is conditionally in-

dependent of all other voxels given ℎ(x,y𝑖𝑛). Predicted segmentations can therefore

be represented as probability maps, at each voxel storing the parameters of a cat-

egorical distribution over 𝐿 labels. Given a ground truth output segmentation y𝑜𝑢𝑡

and a predicted voxel-wise segmentation probability map ŷ𝑜𝑢𝑡 that arises from model

parameters 𝜃, the segmentation loss is therefore a voxel-wise cross-entropy loss, to

which we add spatially varying weights:

ℒ𝑠𝑒𝑔(y𝑜𝑢𝑡, ŷ𝑜𝑢𝑡) =
∑︁
v∈Ω

𝐿−1∑︁
𝑙=0

−𝜔𝑙
y𝑜𝑢𝑡

(v) · y𝑙
𝑜𝑢𝑡(v) · log ŷ𝑙

𝑜𝑢𝑡(v). (4.11)

We use spatially varying weights 𝜔𝑙
y𝑜𝑢𝑡

(v) with two goals in mind. The first is class

rebalancing, hence the dependence on each label 𝑙. The second is to encourage seg-

mentations to “snap” to the borders, by more strongly penalizing errors near ground

truth segmentation boundaries [166], hence the dependence on the ground truth out-

put segmentation y𝑜𝑢𝑡.

First, we define the class rebalancing weights 𝜔𝑙 as the inverse label frequencies

in the segmentations from the training data, normalized to sum to one.

Second, we introduce a weight map 𝜔y𝑜𝑢𝑡 : Ω → {0, 𝜔0} that contains a constant

boundary weight 𝜔0 > 0 for voxels whose minimum distance 𝑑y𝑜𝑢𝑡(v) to a boundary

83



in the ground truth output segmentation y𝑜𝑢𝑡 is less than a constant distance 𝑑0:

𝜔y𝑜𝑢𝑡(v) =

⎧⎪⎨⎪⎩𝜔0, if 𝑑y𝑜𝑢𝑡(v) < 𝑑0,

0, otherwise.
(4.12)

Then, the weights 𝜔𝑙
y𝑜𝑢𝑡

(v) are

𝜔𝑙
y𝑜𝑢𝑡

(v) = 𝜔𝑙 + 𝜔y𝑜𝑢𝑡(v). (4.13)

Stopping Indicator Loss:

The distribution of the stopping indicator 𝑠 is Bernoulli, so the stopping indicator loss

is a binary cross-entropy loss, again weighted for class rebalancing. Given a ground

truth stopping indicator 𝑠 ∈ {0, 1} and a predicted probability of stopping 𝑠 ∈ [0, 1]

from model parameters 𝜃, we have

ℒ𝑠𝑡𝑜𝑝(𝑠, 𝑠) = −(1 − 𝜔𝑠) · 𝑠 log 𝑠− 𝜔𝑠 · (1 − 𝑠) log(1 − 𝑠), (4.14)

where the class rebalancing weight 𝜔𝑠 is the proportion of training instances in which

the stopping indicator equals one.

4.2.4 Inference

Since the recursion in eqn. (4.2) is computationally intractable due to the summation

over all possible segmentations y𝑡−1, given model parameters 𝜃 we infer y𝑡 and 𝑠𝑡

using point estimates, directly from the most likely previous segmentation y*
𝑡−1 and

stopping indicator 𝑠*𝑡−1:

𝑝(y𝑡, 𝑠𝑡|x,y0, 𝑠0) ≈ 𝑝(y𝑡, 𝑠𝑡|x,y*
𝑡−1, 𝑠

*
𝑡−1;𝜃),

where y*
𝑡−1, 𝑠

*
𝑡−1 = argmax

y𝑡−1,𝑠𝑡−1

𝑝(y𝑡−1, 𝑠𝑡−1|x,y0, 𝑠0;𝜃).
(4.15)
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This recursion continues until 𝑝(𝑠𝑡 = 1|x,y0, 𝑠0;𝜃) > 0.5, at which point the segmen-

tation y*
𝑡 is deemed the final segmentation and iterative segmentation stops. A user

can override this automatic stopping prediction by choosing an earlier segmentation

or asking for more iterations.

4.3 Recurrent Neural Network

Our RNN has parameters 𝜃 = {𝜃ℎ,𝜃𝑦,𝜃𝑠} and implements the recursion

h𝑡 = ℎ(x,y𝑡−1;𝜃ℎ),

y*
𝑡 = argmax

y𝑡

𝑝(y𝑡|h𝑡;𝜃𝑦),

𝑠*𝑡 = argmax
𝑠𝑡

𝑝(𝑠𝑡|h𝑡;𝜃𝑠).

(4.16)

Recurrent connections between the hidden layers of successive steps would break

the Markov property in eqn. (4.1). Instead, we assume that an image, partial seg-

mentation and stopping indicator capture everything about the current state that is

needed to predict the next step [130].

4.3.1 RNN Architecture

Our RNN is depicted in Fig. 4-6. It is constructed by joining copies of a 3D U-

Net architecture [65] that we augment to model 𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1 = 0). At each

time step 𝑡, the augmented U-Net has 𝐿 + 1 input channels containing the image

to be segmented and a binary mask for each of the anatomical labels in the input

segmentation y*
𝑡−1, including the background. There are two outputs: the output

segmentation y*
𝑡 , which becomes the input segmentation in the next time step, and the

stopping indicator 𝑠*𝑡 , which indicates whether the segmentation process is finished.

Recall that in the U-Net architecture, a final bank of learned feature maps is used

to produce the final segmentation probability map. In our RNN, these learned feature

maps form the latent representation h𝑡 = ℎ(x,y𝑡−1;𝜃ℎ) that includes all information

from the image x and input segmentation y𝑡−1 needed to jointly predict the output
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segmentation y𝑡 and stopping indicator 𝑠𝑡. The size of h𝑡 equals the dimensions of

image x multiplied by the number of channels 𝐶 (note that this is not a bottleneck

layer).

The inputs first undergo a downsampling path, which consists of a series of 3×3×3

convolutions with ReLU activations, and maxpooling layers that increase the receptive

field size while maintaining a reasonably sized model and imparting some translation

invariance. This results in a set of learned low-resolution features aiming to capture

global context. Second is an upsampling path, which consists of upconvolution layers

and additional 3×3×3 convolutions with ReLU activations. This eventually recovers

full spatial resolution, while skip connections at each resolution level concatenate

features from the downsampling path, allowing successively finer details in the input

to be considered. At each resolution level, the number of computed feature maps

doubles. All model parameters up to this point form 𝜃ℎ, as the output of this part of

the network architecture is the latent representation h𝑡.

The output segmentation probability map 𝑝(y𝑡|h𝑡;𝜃𝑦) is computed as in the stan-

dard U-Net. Each voxel stores the parameters of a categorical distribution over 𝐿

Figure 4-6: Schematic of the RNN trained to jointly evolve the segmentation and
predict the stopping indicator. The main block is an augmented U-Net architecture.
(Here, the number of feature maps in the latent representation h𝑡 is 𝐶 = 24).

86



labels. These are computed from the feature maps in h𝑡 via 𝐶 · 𝐿 1 × 1 × 1 convo-

lutions, whose parameters form 𝜃𝑦, and a softmax activation. Finally, a voxel-wise

argmax yields y*
𝑡 .

The scalar parameter 𝑝(𝑠𝑡 = 1|h𝑡;𝜃𝑠) of the stopping indicator’s Bernoulli distri-

bution is computed via 𝐶 3×3×3 convolutions that reduce the latent representation

h𝑡 to a single channel. The parameters of these convolutions form 𝜃𝑠. A global average

pooling with sigmoid activation yields a scalar in [0, 1] representing 𝑝(𝑠𝑡 = 1|h𝑡;𝜃𝑠).

Finally, an argmax yields 𝑠𝑡.

4.3.2 Training Data Generation

Recall that the training data 𝒟′ = {x,y𝑖𝑛,y𝑜𝑢𝑡, 𝑠} should illustrate the application-

dependent segmentation evolution pattern that the RNN should learn. In our case,

for every training image we have a ground truth segmentation y for each anatomical

structure and an example seed y0 (for details on how these are generated, see Chapter

2). During each training epoch, we automatically generate one sample from 𝒟′ for

each training image. The process is visualized in Figure 4-7. Note that we will train

a neural network to evolve all segmentations natively in 3D, i.e., not via slice-by-slice

processing.

Great Vessel Segmentations:

These are trained to grow along the vessel centerline at a constant rate. Before train-

ing, we use fast marching [167] to precompute a distance map that is zero in the

background and for each foreground voxel, stores the distance of the shortest path to

the seed point that remains within the ground truth segmentation. During training,

this map can be thresholded to get arbitrary partial segmentations. Corresponding

input-output segmentation pairs (y𝑖𝑛,y𝑜𝑢𝑡) are created by first thresholding at a dis-

tance 𝑑1 chosen uniformly at random to form y𝑖𝑛, and at 𝑑2 = 𝑑1 + 𝑑𝑠 to form y𝑜𝑢𝑡,

where 𝑑𝑠 is the desired step size.

87



Figure 4-7: For each training image x, input partial segmentations, output partial
segmentations and stopping indicators (y𝑖𝑛,y𝑜𝑢𝑡, 𝑠) are generated on-the-fly during
training from the complete ground truth segmentation y and seed y0.

Chamber Segmentations:

These are trained go grow outward at a constant rate. Since these are larger struc-

tures, during training we first randomly perturb the seed point by moving y0 within

the chamber center. We then generate two concentric spheres centered on it: the

radius 𝑟1 of the smaller sphere is chosen uniformly at random, and the larger radius

is 𝑟2 = 𝑟1 + 𝑟𝑠, where 𝑟𝑠 is the desired step size. Both spheres are intersected with

the ground truth complete segmentation to form (y𝑖𝑛,y𝑜𝑢𝑡).

Stopping Indicators:

The ground truth stopping indicator 𝑠 ∈ {0, 1} is computed by comparing the output

segmentation y𝑜𝑢𝑡 with the complete ground truth segmentation y. For vessels, we

evaluate whether the distance threshold 𝑑2 used for the output segmentation is close

to the maximum distance in the fast marching image. For chambers, we consider the

proportion of voxels in the complete ground truth segmentation that are contained

in the output segmentation.
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Seed Point Locations:

Seed points (Table 4.1) were chosen to maximize their potential for automatic de-

tection in future. For example, the seed for the aorta could have been placed at the

aortic valve, and segmentations grown away from the heart, which would be easy

to complete accurately. However, the descending aorta is more salient, so we grow

segmentations in the opposite direction, towards the aortic valve. For all but the

PA, segmentations must grow toward one or more boundaries with another structure

(typically a valve, ASD/VSD, or the connection of the IVC/SVC into the adjacent

atrium or vessel). The lack of contrast at these borders, which separate the global

blood pool, provides a challenging test case for our automatic stopping.

Table 4.1: Seed points to be clicked by the user. For more details, see Chapter 2.

Chambers Great Vessels

LV Center region AO Bottom of descending aorta
RV Center region PA Bottom of main PA trunk
LA Center region SVC Superior end (two for bilateral SVC)
RA Center region IVC Center of hepatic segment

4.3.3 Data Augmentation

We found data augmentation to be essential to learn from a small training dataset,

and use it to mimic the diversity of heart shapes and sizes, global intensity changes

(caused by variable acquisition settings and inhomogeneity artifacts) and noise (in-

duced by elevated heart rates or arrhythmias). We apply random affine transfor-

mations (translation, rotation, scaling and shearing), nonlinear transformations, left-

right and anterior-posterior flips (which are helpful due to dextrocardia and other

cardiac malpositions in CHD), constant intensity shifts, and additive Gaussian noise.

Cardiac MRI exhibits both inhomogeneity artifacts from previously implanted

stents and heterogeneous background appearance due to the surrounding vasculature

(Fig. 4-8(a)). To simulate this variability, we perform additional data augmentation
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Figure 4-8: (a) Representative cardiac MR images showing a stent artifact and bright
background areas showing surrounding fluid and vasculature. (b) We use data aug-
mentation to create corrupted input segmentations y𝑖𝑛 and uncorrupted output seg-
mentations y𝑜𝑢𝑡 so that the trained RNN is robust to errors in its intermediate results.

for the AO and PA by adding random dark regions inside the vessel and random dark

or bright regions next to it.

Finally, if the augmented U-Net for 𝑝(y𝑡, 𝑠𝑡|x,y𝑡−1, 𝑠𝑡−1 = 0) is trained solely us-

ing error-free input segmentations y𝑖𝑛, then it may not operate well at test time when

it must perform inference on its own imperfect outputs. As shown in Fig. 4-8(b),

we address this by corrupting the input segmentations y𝑖𝑛 using random nonrigid de-

formations. We also add random foreground blobs in the segmentation that vary in

number, location and size. The output segmentation y𝑜𝑢𝑡 remains unchanged. During

training, the RNN must learn to remove input segmentation errors while simultane-

ously growing the segmentation appropriately. Hence, when the model recursively

operates on its own results, it will be more robust to errors in its input and able to

correct them.

4.4 Evaluation

In this section, we evaluate our iterative model’s performance for the challenging

application of whole heart segmentation for congenital heart disease patients, and

compare it to several automatic and interactive learning-based methods that directly

segment an image in one step.
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4.4.1 Data

We used the HVSMR+ and HVSMR++ datasets described in Chapter 2. (Recall that

the 60 HVSMR++ cases include the 20 HVSMR+ cases). These datasets contain 3D

MRI scans with ground truth segmentations of the LV, RV, LA, RA, AO, PA, SVC

and IVC, a seed point for each structure, and a “mild”, “moderate” or “severe” label

according to each heart’s cardiac malformations. Each image was cropped to a tight

region around the heart and resized to ≈ 128× 180× 144 (depending on the network

architecture used).

The datasets were used in two ways:

∙ Train on HVSMR+, Test on HVSMR++: These experiments test an algo-

rithm’s ability to generalize from training on a very small dataset biased towards

more normal anatomy (HVSMR+: 20 subjects, 10/20 mild, 6/20 moderate, 4/20

severe) to evaluation on a larger, but still relatively small, dataset that has more

severe cases (HVSMR++: 60 subjects, 12/60 mild, 11/60 moderate, 37/60 severe).

We present results both for (1) cross-validation on the HVSMR+ dataset, which

was used for training and model selection, and for (2) inference on the 40 additional

subjects from HVSMR++, which act as held-out test subjects (40 subjects, 2/40

mild, 5/40 moderate, 33/40 severe).

∙ Train and Test on Subsets of HVSMR++: These experiments test an algo-

rithm’s accuracy when a larger and more balanced dataset is available.

We present results both for (1) cross-validation on a subset of the HVSMR++

dataset (48 subjects, 11/48 mild, 10/48 moderate, 27/48 severe), which was used for

training and model selection, and for (2) inference on 12 held-out test subjects from

the HVSMR++ dataset (12 subjects, 1/12 mild, 1/12 moderate, 10/12 severe).

To do this, the HVSMR++ dataset was split into a cross-validation group and a

test group by manually choosing test images that encapsulate the entire range of

potential congenital heart defects, based on each image’s cardiology codes. The 20

HVSMR+ cases all belong to the HVSMR++ cross-validation group, since they

had already been used for algorithm development.
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Each cross-validation dataset was split randomly into four folds (i.e., train on 15,

test on 5 for the 20 HVSMR+ cases, and train on 36, test on 12 for the 48 HVSMR++

cases). Each fold had an approximately equal number of mild, moderate and severe

cases. The resulting four models were then applied to the held-out test subjects. All

results are presented by grouping the results from all four models together.

4.4.2 Experimental Setup

We compared five segmentation approaches, which are depicted in Fig. 4-9. The first

two are fully automatic and the remaining three are interactive methods.

∙ U-Net-All: Conventional U-Net for multiclass segmentation of all 8 structures;

∙ U-Net: Conventional U-Net for binary segmentation of each anatomical structure;

∙ U-Net+S: Conventional U-Net for binary segmentation, also inputs the Euclidean

distance map to the user-specified seed [44];

∙ Iter-A: Iterative segmentation with automatic stopping; and

∙ Iter-U: The same model as Iter-A, but simulates a user who chooses the stopping

point by keeping the best segmentation from the first 40 iterations.

Figure 4-9: The five segmentation approaches to be compared, alongside representa-
tive inputs and outputs for left ventricle segmentation.
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Experimentally, we found that the best U-Net-All model had 4 levels, 𝐶 = 24

learned channels at the first level, 3× 3× 3 maxpooling after the first level, 2× 2× 2

maxpooling after the second and third levels, and ≈3,600,000 parameters. The best

architecture for all binary segmentations, whether U-Net, U-Net+S or iterative,

consistently had 3 levels, 𝐶 = 24 learned channels at the first level, 3 × 3 × 3 max-

pooling, and ≈870,000 parameters. Data augmentation varied slightly for each struc-

ture, as for example some structures are expected to vary in size more than others.

Additional details are provided in Appendix A.

We implemented our method using Keras1 [168] with a Tensorflow2 [169] back-

end. Model parameters were optimized using adadelta [170] with the default Keras

parameters, for 2000 epochs with a batch size of one.

All output segmentations were post-processed to keep only the island connected

to the seed. If the segmentation did not contain the seed, or if no seed is available

(U-Net-All, U-Net), the largest connected component was retained for each struc-

ture (or two largest connected components for cases with bilateral SVC or double

IVC). When computing the Dice score for segmentation evaluation, vessel segmen-

tations were not penalized for being slightly too long or too short compared to the

ground truth segmentation, as described in Chapter 2.

4.4.3 Qualitative Results

Fig. 4-10 shows example successes of iterative segmentation with automatic stopping.

Visual inspection revealed the most challenging structures: the PA, whose dif-

ficulty is corroborated by the results from a recent whole heart segmentation chal-

lenge [24], LA, as the faint pulmonary veins were often missed, RV, as the pointy

apex of this crescent-like structure were sometimes missed, bilateral SVCs, as these

are quite different from normal despite being in the moderate category, and IVC, as

the insertion of the IVC into an atrium is not defined by a valve, so this boundary is

subject to lower inter- and intra-rater reliability in the ground truth segmentation.

1http://keras.io
2http://www.tensorflow.org
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Our main experimental results are described below. Results from the mild and

moderate cases are combined because they were largely similar, especially compared

to those from the severe cases.

4.4.4 Train on HVSMR+, Test on HVSMR++

Fig. 4-11 summarizes segmentation accuracy when models trained using the 20 HVSMR+

cases are applied to 40 held-out HVSMR++ cases. Cross-validation on the HVSMR+

dataset follows similar trends, and is shown as Fig. A-1 in Appendix A.

Mild and Moderate Cases:

On average all methods performed well for mild and moderate cases, as shown in

Fig. 4-11 (Top). Iterative segmentation with user stopping had the best overall score,

albeit by a small margin. These anatomies are very well represented in the training

data and do not exhibit major cardiac malformations, and so good generalization is

possible despite the very small HVSMR+ dataset used for training.

Severe Cases:

User input was much more important for severe cases due to extreme anatomical vari-

ations, as shown in Fig. 4-11 (Bottom). Considering the direct methods, U-Net+S

outperformed U-Net-All and U-Net, which is expected since the object localiza-

tion provided by the user seed yields an important signal for segmentation. However,

all three direct segmentation methods had much lower accuracy than in mild and

moderate subjects.

In severe subjects, iterative segmentation with a user-determined stopping point

(Iter-U) had the best mean segmentation accuracy for all eight structures, and

achieved an overall Dice score of 81.0±15.1. The superiority of Iter-U over U-Net+S

is clearly seen in Fig. 4-12, which compares Iter-U and U-Net+S for all 253 data

points (i.e., 8 structures × 33 severe subjects, plus/minus some structures for sub-

jects with common atrium, single ventricle, bilateral SVC or double IVC). Visually,
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Figure 4-11: Results on 40 held-out HVSMR++ subjects after training using 20
HVSMR+ subjects: Summary statistics (Dice score). (Top) For mild and moderate
subjects, all methods except U-Net had comparable performance. (Bottom) For
severe subjects, the iterative segmentation methods (Iter-A and Iter-U) were supe-
rior, especially iterative segmentation with user stopping. For each method, the mean
and standard deviation of the overall Dice score is shown at the top of the graph,
with the best mean score in bold.

Iter-U had lower accuracy than U-Net+S in only 8/253 = 3% of structures, most

of which are PAs (the PA also had the lowest accuracy of all structures).

Iter-A requires the same level of user input as U-Net+S, namely a single click per

structure, but was more accurate on average (overall Dice score: 74.0±18.4 for Iter-A

versus 64.4±29.2 for U-Net+S). Moreover, Iter-A had a better mean segmentation

accuracy than U-Net+S for all eight structures. See Fig. 4-13 for a direct comparison

of Iter-A and U-Net+S.
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Figure 4-12: Iter-U outperformed U-Net+S on held-out subjects with severe heart
malformations when training with the very small HVSMR+ dataset. Points above
the dotted line (white zone) indicate where Iter-U is better.

Figure 4-13: Iter-A versus U-Net+S for held-out subjects with severe heart mal-
formations when training with the very small HVSMR+ dataset. Points above the
dotted line (white zone) indicate where Iter-A is better. For each structure, Iter-A
had a better average Dice score than U-Net+S, but there were some cases where
the iterative model needed user stopping to achieve the best performance.
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4.4.5 Train and Test on Subsets of HVSMR++

Next, we discuss the results from models trained using the larger HVSMR++ dataset

(60 subjects total), and compare to those from models trained using the smaller

HVSMR+ dataset (20 subjects total).

Figure 4-14: HVSMR++ cross-validation summary statistics (Dice score). (Top)
For mild and moderate subjects, all five methods except Iter-A had comparable
performance. (Bottom) For severe subjects, Iter-U had the best overall Dice score,
with better or similar accuracy compared to U-Net+S for all structures except the
SVC. For each method, the mean and standard deviation of the overall Dice score is
shown at the top of the graph, with the best mean score in bold.
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Mild and Moderate Cases:

For training using the larger HVSMR++ dataset, segmentation accuracy for mild and

moderate subjects cannot be assessed using the HVSMR++ test subjects because

there are too few of them (2/12 subjects). Therefore, we present the results from the

HVSMR++ cross-validation group (48 subjects). Mild and moderate cases still form

the largest cluster of subjects used for training (21/48 = 44%), but they are not as

predominant as they were in HVSMR+ (16/20 = 80%). Note that although there

are now more severe cases (27/48 = 56%), they still form a very heterogeneous group

that contains different types of heart defects and their combinations.

The cross-validation results for mild and moderate subjects are shown in Fig. 4-14

(Top). As we’ve seen before, the three direct segmentation methods performed well

for mild and moderate subjects. For HVSMR++ cross-validation, U-Net+S had the

best overall Dice score. Iter-U had relatively similar performance as U-Net+S for

all structures except the SVC and RV, which reduced its overall score, and Iter-A

had lower accuracy than U-Net+S for all structures.

Severe Cases:

First, we consider the results when models trained using the 48 HVSMR++ cases were

applied to the 12 held-out HVSMR++ test subjects, which showed similar trends to

the results for severe subjects for HVSMR++ cross-validation from Fig. 4-14 (Bot-

tom). Most of the test subjects are categorized as severe (10/12 subjects). The results

are shown in Fig. 4-15. In both cross-validation and held-out testing, Iter-U again

had the best overall Dice score. Iter-U was better or comparable to U-Net+S for

all cardiac structures except for the SVC (the SVC also had the lowest accuracy of

all structures).

Finally, we can directly compare the results on the 12 HVSMR++ test subjects

for models trained using 48 HVSMR++ subjects (Fig. 4-15) versus 20 HVSMR+

subjects (Fig. 4-16; these results are very similar to those in Fig. 4-11 (Bottom), in

which the same models were evaluated on even more severe subjects).
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Figure 4-15: Results on 12 held-out HVSMR++ test subjects after training using
48 HVSMR++ subjects: Summary statistics (Dice score). There are 2 mild and
moderate subjects and 10 severe subjects. Iter-U had the best overall Dice score,
with better or similar accuracy compared to U-Net+S for all eight structures except
the SVC. For each method, the mean and standard deviation of the overall Dice score
is shown at the top of the graph, with the best mean score in bold.

Figure 4-16: Results on 12 held-out HVSMR++ test subjects after training using 20
HVSMR+ subjects: Summary statistics (Dice score). There are 2 mild and moderate
subjects and 10 severe subjects. The iterative segmentation methods (Iter-A and
Iter-U) were superior, especially iterative segmentation with user stopping. For each
method, the mean and standard deviation of the overall Dice score is shown at the
top of the graph, with the best mean score in bold.
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4.4.6 Summary of Results

The main messages are as follows. Regardless of whether a smaller or larger dataset

is used, Iter-U had the best performance for severe subjects. Both Iter-U and

Iter-A outperformed U-Net+S for the smallest dataset. Overall, the two iterative

methods performed equally well regardless of whether training was done using a small

dataset biased towards more normal anatomy (HVSMR+) or a larger dataset with

more severe subjects (HVSMR++). In contrast, the direct segmentation methods

required more training data to achieve better performance, and even then did not

reach the accuracy of Iter-U.

4.4.7 User Interaction Mechanisms

Some examples in which iterative segmentation with user stopping outperformed au-

tomatic stopping are shown in Fig. 4-17. These illustrate that in our proposed setup,

a user can ask for more iterations if the object is under-segmented, or go back in the

Figure 4-17: Examples from subjects with severe heart malformations in which a
user can choose a better segmentation from the output sequence than that chosen via
automatic stopping. Ground truth segmentations are dark, Iter-A (top) and Iter-U
(bottom) segmentations are lighter.
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Figure 4-18: The number of iterations executed by automatic stopping (used by
Iter-A) is typically close to the ideal number of iterations (used by Iter-U). These
results are for 40 held-out HVSMR++ subjects after training using 20 HVSMR+
subjects. The median value for each structure is shown at the top of the graph.

sequence and pick an earlier segmentation if the segmentation has grown too much.

The error in the number of iterations selected by automatic stopping directly

causes any decrease in segmentation accuracy for Iter-A compared to Iter-U. How-

ever, Fig. 4-18 shows that this number was typically small (we did observe that some

finished segmentations can stop evolving without triggering the automatic stopping).

Finally, the benchmarking results in Figure 4-19 shows that inference is fast
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Figure 4-19: Number of iterations and runtime required for iterative segmentation
with user-directed stopping. These results are for 40 held-out HVSMR++ subjects
after training using 20 HVSMR+ subjects. The median value for each structure is
shown at the top of the graph.
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enough for our iterative segmentation method to be used interactively. Each iter-

ation required 0.65±0.15 seconds on an NVIDIA TITAN X GPU, and the median

time required to segment one structure ranged from 3-22 seconds, leading to a total

inference time of less than 2 minutes.

Failure Cases:

Fig. 4-20 shows some failure cases of iterative segmentation, even after simulating

user-based stopping. These are some representative cases in which the Iter-U Dice

score is relatively low, due to extreme stent artifacts, exceptionally narrow vessels,

very large ASDs, and difficulties in segmenting the RV apex. These types of errors are

easily observable by a human monitoring the segmentation process, who can resort

to manual segmentation in such very difficult cases.

Figure 4-20: Iterative segmentation with user stopping can have low accuracy in espe-
cially challenging cases. Ground truth segmentations are dark, Iter-U segmentations
are lighter.
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4.5 Discussion

The wide range of potential morphological deformations and topological variations

in congenital heart disease makes whole heart segmentation very difficult, especially

when training data is limited. Here, we have proposed a novel interactive segmen-

tation method that labels each chamber and great vessel using an iterative model

implemented as an RNN. The algorithm is initialized by a single user click per struc-

ture, and its stopping point can be automatically determined or user-defined. Notably,

our method evolves segmentations in a predictable way, as defined via training data,

since our loss function evaluates intermediate segmentations in addition to the final

segmentation result.

Our results show that the proposed iterative segmentation model can be learned

from a small dataset that does not necessarily include the same pathology present

in the test image, generalizing better to patients with the most severe heart malfor-

mations compared to conventional methods that directly segment an image in one

step. Direct segmentation methods required many more training images to reach the

same accuracy as Iter-A and Iter-U trained with an extremely small and imbal-

anced dataset (HVSMR+). Iterative segmentation with user stopping consistently

had the best segmentation accuracy for patients with severe heart defects. The only

circumstance in which Iter-U did not have the highest overall Dice score was in

mild and moderate subjects for models trained using the larger HVSMR++ dataset

(Fig. 4-14). In this case, U-Net+S was better for mild and moderate subjects (the

dominant group) but worse for severe subjects, while Iter-U was worse for mild and

moderate subjects but better for severe subjects.

After considering how a user would interact with our segmentation algorithm, we

chose to encourage the sequence of output segmentations to follow a predetermined

pattern. In this Chapter, we showed how this is useful when learned automatic stop-

ping does not choose the best segmentation from the output sequence. We envision

our iterative segmentation algorithm being used as follows. After the user clicks once

to place a seed point, the Iter-A result would be shown. Then, the user would have
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the option to either accept the segmentation, or to look forwards or backwards in the

sequence for another solution. This minimal amount of additional user interaction

yields a large performance improvements for severe subjects, as shown by our results

comparing Iter-U to Iter-A and U-Net+S.

There are several other potential benefits of a predictable segmentation evolution

for interactive segmentation. Additional user input may be desired for very high

accuracy, e.g., via clicks or scribbles [41–44]. Scanning through an entire 3D image to

look for errors is tedious and time consuming, whether the user evaluates a completed

segmentation or intermediate segmentations such as those in Fig. 4-2, since the user

cannot distinguish between areas that would be corrected in subsequent time steps

and those which require input. We anticipate that predictable segmentation evolution

would make user monitoring and error correction much more straightforward. The

user could mentally compare intermediate segmentations to the expected pattern,

allowing them to (1) interrogate more limited image regions (especially for vessel

segmentation), and (2) give more targeted inputs.

Our results corroborate previous studies in which direct segmentation was outper-

formed by iterative approaches, including coarse-to-fine network cascades [66,131–134,

137] and RNNs [154–158]. Previous authors have provided some intuition behind this.

While direct segmentation methods perform inference at each voxel independently,

iterative segmentation allows each voxel’s inferred label (or probability distribution

over labels) to influence the decisions at its neighbors. This allows the model to learn

short- and long-range relationships across voxel labels, and expands the model’s field

of view without increasing the number of model parameters [132, 154]. In contrast,

for compactly shaped structures (e.g., LV, RV, LA, RA, IVC), the distance map input

by U-Net+S is informative in areas close to the user seed or very far away it, but

may be less so at intermediate distances, especially considering variations in object

size. The distance map may also be suboptimal when distinguishing between long

vessels that are in close proximity (e.g., AO, PA). One unexplored option is to provide

a distance map for each input seed, i.e., 8 in total, as additional input channels in

U-Net+S or for our iterative segmentation method. This may improve the accuracy
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of automatic stopping by providing the rough locations of neighboring structures. Fi-

nally, we observed that our iterative segmentation typically expanded the connected

component attached to the user seed, which could be easily post-processed, while

the direct segmentation methods produced multiple islands located both inside and

outside the anatomical structure of interest.

Our iterative segmentation method could be applied to any number of growth

dynamics, as long as coherent input-output segmentation pairs can be generated for

training. For example, our method could be used to generalize spatial propagation

RNNs previously proposed to segment the cardiac ventricles slice-by-slice from base

to apex [162, 163]. For the four cardiac chambers, another option would be to grow

segmentations according to a distance map computed from the ground truth seg-

mentation boundary, which may perform better than spherical growth for elongated

structures like the RV. Finally, our iterative method’s flexibility could allow multi-

class iterative segmentation to be explored in future (i.e., iterative segmentation in

which the number of anatomical labels 𝐿 has 𝐿 > 2). Specifically, we found that

U-Net-All outperformed U-Net, which is to be expected because multiclass seg-

mentation uses training data that is labeled more explicitly and enjoys the benefits of

multi-task learning. Defining training data in which multiple segmentations grow at

the same time could allow the model to better learn the spatial relationships between

different structures (and not solely within them), and also eliminates the need to

resolve conflicts between overlapping binary segmentations. An initial investigation

could use the same procedure described above (Section 4.3.2) to create the multiclass

segmentations required for training by generating input and output segmentations for

each great vessel and cardiac chamber independently. Although this approach will

produce input segmentations unlikely to be seen during inference (e.g., having some

structures with nearly complete input segmentations and other structures which have

barely started to evolve), it may be sufficient to train an accurate model in practice,

and could be seen as an extreme form of data augmentation. If needed, a minor

extension could limit the randomization to produce more realistic combinations.

We acknowledge a few limitations of the study presented in this Chapter. A user
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study could be informative, both to resolve differences between actual users and the

simulated user used by Iter-U, and to evaluate different ways in which users can

interact with our iterative segmentation model. Second, although we do randomly

perturb the seed point when training our iterative model to segment cardiac cham-

bers, we have not yet investigated the impact of varying the seed point location on

the accuracy of segmenting the chambers and great vessels. Finally, future work to

improve the accuracy of automatic stopping would close the gap between Iter-A and

Iter-U. We did observe that on average, Iter-A can have worse performance than

direct segmentation for mild and moderate subjects, and was surpassed by U-Net+S

for severe subjects when the larger HVSMR++ dataset was used for training. How-

ever, we argue that the improved performance of our iterative segmentation method

for severe subjects was considerable, and much more clinically relevant, since subjects

with the most severe heart defects should benefit the most from patient-specific heart

models for surgical planning.
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Chapter 5

Discussion and Conclusions

This thesis work yielded some of the first whole heart segmentation methods for

congenital heart disease. However, the interactive segmentation tools that we have

developed could be applied to other image segmentation tasks in which anatomical

variability is high, regardless of the imaging modality or the organ of interest. Our

research therefore has wide potential impact on using images for medical diagnosis,

to monitor patients, and to plan interventions. In this chapter, we discuss potential

future technical directions and the potential clinical impact of our work.

5.1 Technical Directions

Here, we reflect upon our experience and explore possibilities for future research.

5.1.1 User Interaction for Whole Heart Segmentation

During the course of this work, it soon became apparent that carefully considered user

interaction can be extremely valuable to solve challenging image analysis problems.

Throughout this thesis, we have progressively reduced the amount of user interaction,

from dense segmentations on entire short-axis slices or regions within them (Chapter

3) to just eight clicks to localize each major cardiac structure (Chapter 4).

We note two important takeaways for interactive image segmentation. First, sev-
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eral options exist for spreading user information to the unannotated portions of the

image. One can directly provide the annotations as additional inputs to an algo-

rithm [41–44]; we do this in our patch-based interactive segmentation algorithm and

in the U-Net+S direct segmentation model. Or, one can spatially propagate user

inputs more explicitly, as we do in our learned iterative segmentation model. Our

results in Chapter 4 support the spatial propagation approach, which is also taken

by several classical interactive segmentation methods such as level sets [171], random

walker [172], GrowCut [173] and GeoS [36]. A second takeaway is that allowing the

estimated labels at distant voxels to inform inference at other voxels is very advan-

tageous. Traditional feedforward neural networks do not, and we believe that this is

a major contributor to the success of our learned iterative segmentation model.

To reduce user interaction for whole heart segmentation in congenital heart disease

even further, we could improve our learned iterative segmentation model by predicting

likely seed point locations automatically. This may prove challenging when faced

with uncertainties in the heart orientation, topology, and presence or absence of each

cardiac structure, but the annotation effort for this task is not high and a large training

dataset could be created more easily than for image segmentation. As discussed

in Chapter 4, the seed point locations were chosen to maximize their potential for

automatic detection in future. An iterative procedure could be taken here too, by

finding the easiest seed points, growing their structures, and using the results to

guide the localization of the next seed(s). This approach has been previously taken

for human pose estimation, in which previously predicted joint positions can guide

the localization of subsequent joints in the sequence [149]. In fact, segmenting each

cardiac structure sequentially mimics how clinicians tend to look at 3D cardiac MRI

scans, namely by identifying an easy-to-find structure in one 2D slice and tracking

the flow of blood through each connected piece of the anatomy.

5.1.2 Dynamic Heart Models

In this thesis, we developed new methods to segment ECG-gated 3D cardiac MRI

scans and create static patient-specific heart models. However, the heart’s motion is
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an important clinical factor, and “cine” data is routinely required to capture cardiac

anatomy over the entire cardiac cycle, either as videos from a slice through the heart

or as sequences of 3D images [174].

Segmenting each 3D image in a sequence would yield a series of 3D heart models

that can be rendered in quick succession to portray a patient-specific beating heart

model. Since the changes in heart shape due to cardiac motion are relatively small

compared to the large shape variability in CHD, simply applying our current models

to each image separately is likely to be quite successful. However, motion could be a

useful cue in discriminating between different cardiac structures, and our models could

be upgraded to input multiple 3D images and potentially output multiple different

segmentations. In addition, just as prior knowledge of expected organ shapes can be

used to improve a segmentation network’s output [175–177], regularization based on

prior knowledge of cardiac motion could also be developed in future.

5.1.3 Weak Supervision

The accuracy of our iterative segmentation model could potentially be improved in

future without additional annotation effort via weak supervision [178, 179]. Before

our developments, success in this endeavor would have been unlikely because the

accuracy of existing segmentation methods was too low for subjects with severe heart

malformations. In particular, we have access to thousands of 3D MRI scans, with

which we can associate diagnoses and related prior knowledge for each of the ∼30

types of heart defects listed in Table 2.1.

Multi-task learning could be used to train models that predict diagnoses for un-

segmented images alongside segmentation estimation for training images for which

ground truth segmentations are available [180, 181]. Encouraging the model to learn

features that discriminate between different diagnoses may be useful for segmenta-

tion, and the diagnoses will not need to be known in advance when a new image

is to be segmented. (Note that multi-task learning could also be helpful to learn

useful features when training classification models for CHD diagnosis tasks because

some CHD subtypes, e.g., ASD, common atrium, and inverted ventricles, may induce
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relatively small image differences but cause massive changes in the segmentation.

Alternatively, an inferred segmentation could be used directly as the sole input to

a diagnosis network, provided that it is accurate enough or segmentation errors are

discriminative).

In future, additional loss terms tailored for whole heart segmentation could also

be formulated based on prior knowledge. For example, this can include soft or hard

constraints on which objects should exist in the image, their expected sizes, and the

anticipated connectivity between them [182–185]. In our application, each subject’s

diagnoses informs the number of structures, their rough anatomical configuration,

and their expected size, shape and connectivity. Another useful loss term for semi-

supervised learning would be to encourage each structure’s segmentation to have a

single connected component [186], since we observed that this is a consistent problem

for the direct neural network models explored in Chapter 4.

5.1.4 Evaluation of Segmentation Accuracy

A final outstanding question is how segmentation accuracy should be assessed [187].

The accuracy required may vary across different areas of the heart; for example more

accurate boundaries may be necessary near heart defects. Crucially, evaluation met-

rics such as cross-entropy and the Dice score that operate on a voxel-by-voxel basis

are not sensitive to important shape changes (Figure 5-1). For example, an ASD

diagnosis depends on whether there is a gap in a wall that is only a couple of voxels

thick. This has consequences both for model training and when different methods

are compared. Although generative adversarial networks (GANs) [188, 189] can be

applied to image segmentation to assess whether an image-segmentation pair is real-

istic [190], it remains unclear how to train these models on very small datasets with

high variability. Whether the segmentation accurately reflects critical aspects of the

true anatomy might be assessed via similarity measures that are more sensitive to

global shape changes (e.g., [186, 191, 192]) or that evaluate the area of any shared

borders between structures that should or should not be connected. Another option

could be to derive accuracy measures from models trained to predict CHD subtypes

112



Figure 5-1: Comparing image segmentations of the heart’s two ventricles illustrates
the deficiencies of the Dice score and average surface distance, and the advantages of
a spectral shape similarity measure (nWESD [191, 192]). The segmentations in the
top and bottom rows have the same number of incorrect pixels, even though those on
the bottom are intuitively much better. For each column, bold scores indicate higher
similarity to the original segmentation on the left.

from input segmentations. However, such models would need to be trained using

ground truth segmentations, so that reproducible segmentation errors are not used

as a cue for classification, and such segmentations are limited in number. Ultimately,

any segmentation tool’s required accuracy must be defined by physicians, and its fun-

damental utility can only be judged after considering its impact on patient care and

clinical outcomes.

5.2 Clinical Outlook

Whole heart segmentation is chiefly performed to visualize cardiac anatomy or to

quantify cardiac function [10,23]. We discuss both of these aspects below.
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5.2.1 Visualization and Surgical Planning

The segmentation methods provided in this thesis offer great potential to create

patient-specific 3D heart models in the clinic, without extremely tedious manual

segmentation. As described in Chapter 1, many case studies indicate the power of

patient-specific heart models to support clinical decision making and/or pre-surgery

practice. Whether virtual display is sufficient or if 3D-printing offers benefits remains

an open question, and may vary from clinician to clinician according to personal pref-

erence and the degree to which they “see” with their hands. The extra time required

for 3D-printing is not a major concern in this debate, because imaging is typically

done a couple of days before surgery (for time-sensitive situations, about three hours

are available after imaging while the patient and operating room are prepared, which

would require fast 3D-printing). It is also not yet known whether it is preferable to

present a model of the cardiac blood pool, a shell model of the heart walls surrounding

it, or a model that separately colors each cardiac structure, nor if and how models

should be cut to reveal the interior.

5.2.2 Cardiac Function and Simulation

Automated whole heart segmentation can also be used to compute important func-

tional indices (e.g., volumes, ejection fraction, myocardial measurements and motion

analysis) that are traditionally derived from manual segmentations [21, 22]. Contour

representations of valves and defects could be derived from the segmentation bound-

aries that separate different cardiac structures, which if accurate enough could be

used for detailed measuring of the valve annuli [103] or septal defects [193]. Segmen-

tations could also be used to create patient-specific models that incorporate biophys-

ical properties [194, 195] or information from 4D flow MRI and computational fluid

dynamics [196]. An even more ambitious idea is virtual surgical simulation [197],

which would be aided by the fact that we provide separate segmentations of the dif-

ferent cardiac structures that could then be cut into and manipulated. Finally, it

may be possible to create longitudinal heart atlases and derived clinical biomarkers
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from CHD patients that are scanned over their lifetime, inspired by analysis that has

been applied to the brain [198,199]. Given a new patient, in future one may even be

able to predict the consequences of competing surgical approaches on their cardiac

anatomy and future outcome, after evaluating the histories of other subjects with the

most similar anatomy or based on outcome prediction models learned from data.

5.3 Conclusions

In this thesis, we have developed new interactive image segmentation methods for

clinical problems that involve extreme anatomical variability and little training data.

We have developed the first datasets and methods for whole heart segmentation

for patients with congenital heart disease. This includes a patch-based interactive

segmentation method that can incorporate active learning, and a learned iterative

segmentation model that can generalize from very small datasets to severe cardiac

pathologies. Our contributions have potential clinical impact on improving the util-

ity of preoperative imaging for surgical planning in congenital heart disease, and on

medical image analysis for highly variable diseases more generally.
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Appendix A

Learning Iterative Segmentation:

Supplemental Material

A.0.1 Network Architectures

Architectural parameters describing each network are provided in Table A.1. These

parameters were tuned independently, for each of the networks (U-Net-All, U-Net,

U-Net+S, Iter-A) and cardiac structures (LV, RV, LA, RA, AO, PA, SVC, IVC).

However, the best-performing network architecture was the same for all of the binary

U-nets and for all cardiac structures.

Table A.1: Network architectures

Method Input Size Levels 𝐶 Maxpool

U-Net-All 120×168×132 4 24 33, 23, 23

U-Net 126×180×144 3 24 33, 33

U-Net+S 126×180×144 3 24 33, 33

Iter-A 126×180×144 3 24 33, 33

Receptive field Parameters

U-Net-All 128 × 128 × 128 3,610,201

U-Net 68 × 68 × 68 872,162

U-Net+S 68 × 68 × 68 873,458

Iter-A 68 × 68 × 68 874,107
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A.0.2 Training Data Generation

The step sizes (𝑑𝑠) for each structure are given in Table A.2.

Table A.2: Step sizes 𝑑𝑠

LV RV LA RA AO PA SVC IVC

𝑑𝑠 3 3.5 3 2.5 10 5 3 3

Great Vessel Segmentations:

The seed points are not randomized during training, since the vessels are quite narrow

in cross-section, and slightly changing the seed point’s location along the centerline

does not impact accuracy. The complete segmentation y’s distance map 𝑑y(·) (from

fast marching) is randomly thresholded to form the input partial segmentation y𝑖𝑛,

which is then corrupted as described in Section A.0.3. The maximum value 𝑑1 is

found after intersecting the corrupted y𝑖𝑛 with 𝑑y(·), ignoring any new free-floating

blobs, and 𝑑(·) is thresholded at 𝑑2 = 𝑑1 + 𝑑𝑠 to form y𝑜𝑢𝑡. The stopping indicator

𝑠 = 1 if 𝑑2 is at least (100 − 1/2 · 𝑑𝑠)% finished compared to the maximum distance

in 𝑑y(·).

Chamber Segmentations:

For both U-Net+S and iterative segmentation, during training a seed point y0
′ is

randomized within 25% of the maximum possible distance (in the complete segmen-

tation y) from the example seed point y0. The input partial segmentation y𝑖𝑛 is

generated by intersecting a sphere that is centered on y0
′ and has random radius 𝑑1

with y, and then corrupting it as described in Section A.0.3. The partial output

segmentation y𝑜𝑢𝑡 is created by keeping only the island connected to the initial seed

y0
′, applying 𝑑𝑠 dilations, and masking with y. The stopping indicator 𝑠 = 1 if at

least (100 − 1/2 · 𝑑𝑠)% of the voxels in y𝑜𝑢𝑡 are finished as compared to y.
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A.0.3 Data Augmentation

Image Transformations:

The random affine transformations uses rotation uniformly distributed in [−7∘, 7∘],

translation uniformly distributed in [−5, 5] voxels, shear with shear factor uniformly

distributed in [0.9, 1.1], and scaling with scale factor uniformly distributed in [1 − 𝑠,

1 + 𝑠], where 𝑠 was tuned for each experiment (Table A.3) since different cardiac

structures are expected to vary in size more than others.

Table A.3: Scale factor 𝑠 bounds for affine transformations

Method LV RV LA RA AO PA SVC IVC

U-Net-All 0.2

U-Net 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.2

U-Net+S 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2

Iter-A 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.2

The nonlinear transformations are created by randomizing displacement vectors

on a 4 × 6 × 4 grid (approximately every 30 voxels). The maximum displacement

allowed in each direction, 𝑚, is chosen uniformly at random in [3, 6] voxels, so that

some images will be highly deformed and some will not. The coarse displacements

are sampled uniformly in [−𝑚,𝑚], the displacement field is resampled onto the orig-

inal image grid via bicubic interpolation, and the images are warped using linear

interpolation for images and nearest neighbor interpolation for segmentations.

The constant intensity shifts are uniformly distributed in [−1.0005, 0.7395]. These

bounds were chosen to ensure that, for each cardiac structure, an estimate of the

overall intensity histogram after data augmentation covered the intensity distribution

for each individual image well. The additive Gaussian noise has mean 0 and standard

deviation uniformly distributed in [0, 0.05], so that the resulting images have varying

amounts of noise.
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Random dark and bright blobs for AO and PA:

To mimic dark inhomogeneity artifacts caused by stents and the heterogenous back-

ground appearance, random dark blobs are created inside of the AO and PA, and

random dark or bright blobs are created just outside of the AO and PA. The prob-

ability of creating a blob inside a structure equals the probability of creating a blob

outside a structure (Table A.4). At most one blob can be created per structure. For

our iterative segmentation method, blobs are not created if the output segmentation

is 90% finished or more.

Table A.4: Probability of creating a random intensity-shifted blob

Train on HVSMR+, Train and Test on
Test on HVSMR++ Subsets of HVSMR++

Method AO PA AO PA

U-Net-All 0 0

U-Net 0 0 0.2 0.2

U-Net+S 0.1 0.2 0.2 0.1

Iter-A 0.2 0.1 0.2 0.2

All blobs are initialized as a cube. The cube’s radius is chosen uniformly at random

(in [3, 45] voxels for inside blobs and in [17, 45] voxels for outside blobs). For direct

segmentation methods (U-Net-All, U-Net and U-Net+S), the cube’s center is

chosen uniformly at random anywhere within the ground truth segmentation for inside

blobs, and anywhere in the border region outside of the ground truth segmentation for

outside blobs (at most 5 voxels from the boundary). For our iterative segmentation

method, coordinates close to the area in which the segmentation evolved (i.e., in

the difference region between the output and input segmentations) have a higher

probability of being chosen as the cube’s center. Finally, the cubes are deformed into

blobs, by randomizing displacement vectors on a 15 × 22 × 18 grid (approximately

every 8 voxels), with the maximum displacement allowed in each direction, 𝑚, chosen

uniformly at random in [5, 15] voxels.

All blobs created inside a structure are dark. If a blob is created outside a struc-

120



ture, it is dark with probability 0.5 and bright with probability 0.5. The intensity of a

dark blob is initially chosen uniformly at random between the minimum image inten-

sity and the minimum image intensity plus 40% of the difference between the average

and minimum intensities. The intensity of a bright blob is initially chosen uniformly

at random between the maximum image intensity minus 80% of the difference between

the maximum and average intensities, and the maximum image intensity minus 40%

of the difference between the maximum and average intensities. Additive Gaussian

noise with mean 0 and standard deviation 0.02 is applied, and average pooling with a

pool size of 11 is used to blur the blob’s initially binary representation. The ground

truth segmentation is subtracted from outside blobs such that no voxel in an outside

blob is within 2 voxels of the ground truth segmentation boundary. Finally, the blob

is averaged with the original image.

Corrupting Partial Input Segmentations:

When training our interactive segmentation model, partial input segmentations y𝑖𝑛

are corrupted in two ways:

First, the segmentations undergo random nonlinear transformations, without sim-

ilarly deforming the underlying image. Deformations are applied by randomizing dis-

placement vectors on a 9 × 12 × 10 grid (approximately every 15 voxels), with the

maximum displacement allowed in each direction, 𝑚, chosen uniformly at random in

[0.6, 6] voxels.

Second, we insert random foreground blobs that vary in number, location and size.

These blobs can be attached to the segmentation, or free-floating. They are created

by first randomizing the number of each type of blob uniformly in [0, 4]. Then for each

blob, a cube is created with a random center location, and radius chosen uniformly

at random from the bounds listed in Table A.5. Finally, the cubes are deformed into

blobs, by randomizing displacement vectors on a 15 × 22 × 18 grid (approximately

every 8 voxels), with the maximum displacement allowed in each direction, 𝑚, chosen

uniformly at random in [2.5, 10] voxels.
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Table A.5: Cube size bounds for foreground blobs (0 indicates no foreground blobs)

LV RV LA RA AO PA SVC IVC

Min 5 5 5 5 5 5 5 0

Max 60 60 60 60 35 35 35 0

A.0.4 Learning

The model’s weight and bias parameters were initialized using the default Keras

initializers.

Our loss function more strongly penalizes errors near segmentation boundaries, as

described in eq. (4.12). We used the segmentation boundary distance 𝑑0 = 5 and the

segmentation boundary weights 𝜔0 in Table A.6.

Table A.6: Segmentation boundary weights 𝜔0

Method LV RV LA RA AO PA SVC IVC

U-Net-All 10

U-Net 50 50 50 50 50 50 50 50

U-Net+S 10 10 10 10 20 20 20 20

Iter-A 30 30 30 30 50 50 50 50
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A.0.5 Additional Figures

Figure A-1: HVSMR+ cross-validation summary statistics (Dice score). (Top) For
mild and moderate subjects, all five methods had comparable performance. (Bottom)
For severe subjects, the iterative segmentation methods (Iter-A and Iter-U) were
superior, especially iterative segmentation with user stopping. For each method, the
mean and standard deviation of the overall Dice score is shown at the top of the
graph, with the best mean score in bold.
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