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a b s t r a c t 

Training deep learning models that segment an image in one step typically requires a large collection 

of manually annotated images that captures the anatomical variability in a cohort. This poses challenges 

when anatomical variability is extreme but training data is limited, as when segmenting cardiac struc- 

tures in patients with congenital heart disease (CHD). In this paper, we propose an iterative segmentation 

model and show that it can be accurately learned from a small dataset. Implemented as a recurrent neu- 

ral network, the model evolves a segmentation over multiple steps, from a single user click until reach- 

ing an automatically determined stopping point. We develop a novel loss function that evaluates the 

entire sequence of output segmentations, and use it to learn model parameters. Segmentations evolve 

predictably according to growth dynamics encapsulated by training data, which consists of images, par- 

tially completed segmentations, and the recommended next step. The user can easily refine the final 

segmentation by examining those that are earlier or later in the output sequence. Using a dataset of 3D 

cardiac MR scans from patients with a wide range of CHD types, we show that our iterative model offers 

better generalization to patients with the most severe heart malformations. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Congenital heart disease (CHD) includes all heart defects exist- 

ng at birth, encompassing a wide array of potential cardiac malfor- 

ations and topological changes ( Frescura et al., 2010 ). The heart 

f each CHD patient is unique, with different combinations of orig- 

nal heart defects, new atypical connections and implants from 

rior surgeries, and shape changes from long-term cardiac remod- 

ling ( Pandya et al., 2016 ). Fig. 1 illustrates the wide variability of

eart anatomy in CHD. Strong anatomical priors are hard to en- 

orce, and relating information across subjects with dramatically 

ifferent heart configurations or simulating realistic images is dif- 

cult. 

Treating severe CHD requires multiple surgeries throughout in- 

ancy, childhood and adult life. For surgical planning, clinicians 
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ust understand each patient’s unique heart anatomy, evaluat- 

ng the size and location of defects and determining their rela- 

ionships with other cardiac structures. MR is an attractive pre- 

perative modality ( Ntsinjana et al., 2011; Arafati et al., 2019 ) 

s it produces high quality images and, unlike CT imaging, does 

ot require ionizing radiation, which is particularly important for 

hildren. 

However, cardiac MR suffers from (1) low signal-to-noise ra- 

io and spatial resolution ( Zhuang et al., 2019 ), (2) no contrast at 

any of the valves, thin walls and “holes in the heart” that sep- 

rate neighboring cardiac chambers and great vessels, and (3) ar- 

ifacts, especially those surrounding implanted stents. Fig. 2 illus- 

rates these challenges. 

There is great interest in patient-specific 3D heart surface mod- 

ls for surgical planning for CHD, whether rendered on a screen 

r 3D-printed. Using 3D heart surface models promises to yield 

 greater appreciation of the true locations and sizes of intrac- 

rdiac structures, aid decision making and consensus, and even 

ead doctors to alter original surgical plans made based on images 

https://doi.org/10.1016/j.media.2022.102469
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102469&domain=pdf
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Fig. 1. Example 3D heart surface models of congenital heart disease, which manifests as size and shape changes in the chambers or vessels; abnormal connections , e.g., DORV 

(double outlet right ventricle), TGA (transposition of the great arteries), VSD (ventricular septal defect), ASD (atrial septal defect) and Fontan surgery; duplicated structures , 

e.g., bilateral SVC; missing structures , e.g., single ventricle; and/or abnormal structure locations , e.g., dextrocardia, mesocardia, inverted ventricles and left IVC/SVC. 

Fig. 2. Example scans illustrating challenges of cardiac MR segmentation for CHD 

that go beyond anatomical variability. These include noise (green arrow), no con- 

trast at the boundaries of adjacent structures (gold arrows), different structures that 

locally appear very similar (red arrows), and dark inhomogeneity artifacts from pre- 

viously implanted stents (blue arrow). 
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 Lau and Sun, 2018; Valverde et al., 2017a; Bhatla et al., 2017; 

arekar et al., 2016; Riesenkampff et al., 2009 ). However, manual 

egmentation requires many hours per image. The lack of accurate 

hole heart segmentation methods for CHD patients currently pre- 

ludes widespread adoption of 3D heart surface models for surgical 

lanning ( Lau and Sun, 2018; Byrne et al., 2016 ). 

To support surgical planning in CHD patients, we focus on 

hole heart segmentation for CHD patients, which requires out- 

ining the left ventricle (LV), right ventricle (RV), left atrium (LA, 

ncluding the pulmonary veins), right atrium (RA), aorta (AO), pul- 

onary artery (PA), superior vena cava (SVC) and inferior vena 

ava (IVC) ( Zhuang, 2013; Zhuang et al., 2019; Peng et al., 2016 ).

e do not focus on segmenting the myocardium. The input to our 

ethods is a 3D cardiac MR scan that captures the heart at a single

oint in the cardiac cycle (and not a time-series of images), plus a 

ingle user click per structure. We propose to support image seg- 

entation via a deep learning model that progressively evolves the 

egmentation of each structure. Our approach also opens up user 

pportunities to interact and adjust. 

.1. Prior work 

Most whole heart segmentation methods have been devel- 

ped for patients with relatively normal anatomy, including de- 

ormable models ( Ecabert et al., 2008; 2011; Peters et al., 2010; 

heng et al., 2008 ) and atlas-based segmentation ( Zhuang et al., 

010; Zhuang and Shen, 2016 ). More recent convolutional neu- 

al network (CNN) investigations include two-step network cas- 

ades, multi-planar CNNs, deep supervision, and/or integration of 

tatistical shape priors ( Payer et al., 2017; Yang et al., 2018; Wang 

nd Smedby, 2017 ). The public Multi-Modality Whole Heart Seg- 

entation (MM-WHS) dataset does include CHD images, but these 

re relatively few (16/120 images), cover a limited number of 
2

HD subtypes, and remain recognized as very difficult to seg- 

ent ( Zhuang et al., 2019 ). For CHD patients, segmentation of MR 

mages has largely been limited to labeling the blood pool and 

yocardium ( Wolterink et al., 2017; Yu et al., 2017; Dou et al., 

017; Pace et al., 2015 ). Segmenting each chamber and great ves- 

el as separate labels offers several advantages: it facilitates au- 

omatic computation of quantitative metrics of cardiac function 

hat for CHD patients are typically based on manual annotations, 

uch as chamber volumes, ejection fraction and aortic dimensions 

 Seraphim et al., 2020; Petersen et al., 2019 ), it yields a more vi-

ually intuitive surface model, and the shape variability of each 

natomical structure is reduced compared to that of the entire car- 

iac blood pool. Previously demonstrated methods to segment in- 

ividual heart structures for CHD either operated on CT images ( Xu 

t al., 2019; Liu et al., 2020b ), or only segmented the ventricles in

pecific CHD subtypes ( Zhang et al., 2010; Mansi et al., 2011 ). 

Example interactive segmentation methods include in- 

elligent scissors ( Mortensen and Barrett, 1998 ), graph cuts 

 Boykov and Jolly, 2001 ), random walks ( Grady, 2006 ), GrowCut 

 Vezhnevets and Konouchine, 2005 ), GraphCut ( Rother et al., 2004 ) 

nd GeoS ( Criminisi et al., 2008 ). These methods are not ideal for 

hole heart segmentation because the homogeneous blood pool 

ust be partitioned into its component cardiac chambers and 

reat vessels, which are not separated by strong edges or have 

istinctive intensity distributions. However, interactive segmen- 

ation methods based on deep learning can learn more complex 

eatures and reduce user interaction. For example, user clicks or 

cribbles can be transformed into binary, Euclidean distance or 

eodesic distance maps, and concatenated as additional input 

hannels in a segmentation network ( Xu et al., 2016; Sakinis et al., 

019; Wang et al., 2019; Amrehn et al., 2017 ), or used to update 

 network’s weights to better segment a test image ( Wang et al., 

018 ). Many of these methods focus on back-and-forth interaction 

ith a user to iteratively refine a segmentation. In contrast, we 

im to estimate a high-quality segmentation from more limited 

ser interaction, namely one click per structure plus an optional 

tep of choosing amongst a sequence of candidate segmentations. 

State-of-the-art segmentation methods train a feedforward CNN 

o segment an image in one step ( Long et al., 2015; Ronneberger 

t al., 2015; Dalca et al., 2018 ). An alternative is to iteratively seg- 

ent an image over multiple steps, at each step conditioning on 

 previous partial solution to make progress towards the final an- 

wer. This is reminiscent of traditional active contours, level sets, 

idden Markov models and particle filters ( Sonka et al., 2008; 

alca et al., 2011 ). More recently, deep learning approaches that 

se iterative segmentation include network cascades ( Wachinger 

t al., 2018; Payer et al., 2017; Valverde et al., 2017b; Havaei et al., 

017 ), instance segmentation using an internal memory or atten- 
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Fig. 3. Results of our iterative segmentation model that evolves segmentations in a predictable way that is defined via training data. Visualizations show 3D surface models 

in the context of a representative image slice. The variable t refers to the time step of the iterative segmentation model’s output segmentations. 

t

2

c

m

s

n

r

o

u

f

w

o

2

S

a

2

1

i

t

a

t

h

g

p

p

d

a

g

f

b

g

(

(

f

c

t

w

f

fi

t

(

m

e

i  

t

a

W

g

i

A

m

h

b

q

t

p

t

e

e

t

fi

e

i

v

p  

e  

n

r

s

w

m

a

t

t

d

r

f

o

i

m

l

A

t

m

s

e

ion mechanism ( Ren and Zemel, 2017; Romera-Paredes and Torr, 

016; Lessmann et al., 2019 ), and, most relevant to this paper, re- 

urrent neural networks (RNNs). 

RNNs are popular for modeling sequential data. They imple- 

ent the repeated application of a recursive function, using the 

ame learned parameters at each iteration. At each step, the 

etwork inputs include information from the previous step via 

ecurrent connections, which can link analogous hidden layers 

f consecutive iterations or directly connect outputs to hidden 

nits ( Goodfellow et al., 2016 ). Notably, previously proposed RNNs 

or image segmentation produce unpredictable growth patterns, 

hether they progressively refine an initially coarse segmentation 

f the entire object ( Pinheiro and Collobert, 2014; McIntosh et al., 

018 ), model level sets ( Le et al., 2018a; 2018b; Chakravarty and 

ivaswamy, 2019 ) or sequentially segment small areas pulled from 

n internal list of potential regions of interest ( Januszewski et al., 

018 ). 

.2. Approach and contributions 

In this paper, we demonstrate a novel segmentation strategy, 

nitialized by a single click per structure, which also enables addi- 

ional intuitive user interaction that is valuable in our challenging 

pplication. Our major contributions are enumerated within the 

ext below. 

1. To the best of our knowledge, our work provides the first whole 

eart segmentation to individually label each cardiac chamber and 

reat vessel in cardiac MR for patients with congenital heart disease. 

2. We develop an iterative segmentation model (and RNN im- 

lementation) that is trained to evolve a segmentation over multi- 

le steps, until reaching a stopping point that can be automatically 

etermined or defined by a user. See Fig. 3 . Vessel segmentations 

re trained to grow along centerlines and chamber segmentations 

row outwards towards the boundary. The model can be trained to 

ollow any desired evolution pattern that is implicitly represented 

y training data. The algorithm operates directly on the 3D image 

rid, unlike approaches that learn to progressively trace a contour 

 Mo et al., 2018; Zhang et al., 2018 ), perform slice-by-slice analysis 

 Zheng et al., 2018; Poudel et al., 2017 ) or propagate information 

rom 2D image patches ( Pace et al., 2015 ). 

3. To encourage the output segmentations to grow in a predi- 

able way, we develop a novel loss function that evaluates the en- 

ire sequence of output segmentations, adopting a learning frame- 

ork known as teacher forcing ( Williams and Zipser, 1989; Good- 

ellow et al., 2016 ). This approach differs from evaluating the 

nal segmentation alone or encouraging every segmentation in 

he sequence to match the complete ground truth segmentation 

 Pinheiro and Collobert, 2014; McIntosh et al., 2018 ). The maxi- 
3 
um likelihood loss function factors into a sum over time steps, 

liminating the need to back-propagate through time and mak- 

ng training easier than e.g., LSTMs ( Shi et al., 2015 ). We show

hat this proposed loss can be optimized using a dataset of images 

longside input-output pairs of partially completed segmentations. 

e construct these pairs on-the-fly during training from complete 

round truth segmentations. 

Due to the challenges of our task, we optionally enable users to 

nteract with the system to intuitively fine-tune the segmentation. 

fter the user clicks once to place a seed, the result from our seg- 

entation with automatic stopping will be shown. The user will 

ave the option to either accept the segmentation, or look for a 

etter segmentation result by looking backwards in the output se- 

uence or asking for more iterations. Our experiments indicate that 

his minimal amount of additional user interaction may yield large 

erformance improvements. Compared to previous RNN segmenta- 

ion methods, we anticipate that a user using our model can more 

asily interact with and edit the segmentation. A user can more 

asily find a high quality result because the output sequence con- 

ains diverse yet automatically-sorted solutions. It is also more ef- 

cient to monitor progress, because the region in which growth is 

xpected is spatially limited, which is especially important for 3D 

mages. Finally, if interactive editing of intermediate segmentations 

ia foreground or background clicks or scribbles were to be incor- 

orated in future ( Wang et al., 2019; 2018; Xu et al., 2016; Sakinis

t al., 2019 ), our RNN can be restarted at any point (since it does

ot rely on a memory) and the user can anticipate which areas 

equire input and which would be corrected in subsequent time 

teps (since it grows segmentations with a predictable pattern). 

4. Using a dataset of 3D cardiac MR scans from patients with a 

ide range of CHD types, we show that existing state-of-the-art seg- 

entation methods fail to handle the extraordinary anatomical vari- 

bility of CHD, and demonstrate that our iterative model offers bet- 

er generalization to patients with the most severe heart malforma- 

ions. In particular, we show advantages when learning from small 

atasets, in which specific anatomical configurations are often rep- 

esented by a single sample and hence can be present during in- 

erence but not during training. These advantages may go beyond 

ur particular clinical application, as access to limited training data 

s a very common setting in practice, and efficient interactive seg- 

entation is valuable for direct use or in the process of generating 

arger training datasets. 

This paper expands our preliminary work on segmenting the 

O and LV ( Pace et al., 2018 ), arguably the easiest cardiac struc- 

ures to segment. Here, we extend the method to whole heart seg- 

entation, improve the data augmentation, training and inference 

trategies, and provide detailed derivations. We present extensive 

valuation of the binary segmentation model and demonstrate its 
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Fig. 4. Probabilistic model: given image x , we assume that pairs of segmentations 

and stopping indicators { y t , s t } follow a first order Markov chain. Shaded nodes in- 

dicate observed variables. 
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xtension to multiclass iterative segmentation. Finally, we perform 

 more comprehensive validation in a significantly expanded pa- 

ient cohort. 

. Iterative segmentation model 

Given image x : � → R and initial segmentation seed y 0 : 

→ { 0 , . . . , L − 1 } , we seek a segmentation label map y :

→ { 0 , . . . , L − 1 } that parcellates the image into L label

aps. In practice, the initial segmentation y 0 is created by cen- 

ering a small sphere around a seed point placed by the user for 

ach anatomical structure. 

.1. Probabilistic model 

We model the segmentation label map y as the final element 

n a sequence of segmentations y 0 , . . . , y T that captures a growing 

nd evolving portion of the anatomy of interest, where y t : � → 

 0 , . . . , L − 1 } for time steps t = 0 , . . . , T . To capture the variable

ength of the segmentation sequence, we introduce a sequence of 

topping indicators s 0 , . . . , s T , where s t ∈ { 0 , 1 } and s t = 1 indicates

hat the segmentations should finish evolving at y t . Hence, in prac- 

ice s 0 = 0 . 

Given an image x , we assume that pairs of segmentations and 

topping indicators { y t , s t } follow a first order Markov chain, as 

hown in Fig. 4 : 

p( y t , s t | x , y 0 , . . . , y t−1 , s 0 , . . . , s t−1 ) = p( y t , s t | x , y t−1 , s t−1 ) , (1)

or t = 1 , . . . , T , leading to the recursion 

p( y t , s t | x , y 0 , s 0 ) 

= 

∑ 

y t−1 

∑ 

s t−1 

p( y t , s t | x , y t−1 , s t−1 ) ︸ ︷︷ ︸ 
transition probability 

· p( y t−1 , s t−1 | x , y 0 , s 0 ) ︸ ︷︷ ︸ 
recursive definition 

, (2) 

or t = 1 , . . . , T , where p( y 0 , s 0 | x , y 0 , s 0 ) = 1 . 

.2. Transition probability model 

To complete the recursion in Eq. (2) , the transition probabil- 

ty p( y t , s t | x , y t−1 , s t−1 ) must be defined. We consider s t−1 = 1 and

 t−1 = 0 separately. 

When s t−1 = 1 , the segmentation y t−1 is the final segmenta- 

ion. The transition model ensures the segmentation remains un- 

hanged: 

p ( y t , s t | x , y t−1 , s t−1 = 1 ) = 1 [ y t = y t−1 ] · 1 [ s t = 1 ] , (3) 

here 1 
[

·
]

denotes the indicator function. 

When s t−1 = 0 , the segmentation’s evolution is not yet finished. 

e introduce a deterministic latent representation 

 t = h (x , y t−1 ) (4) 

hat captures all necessary information from the given image x and 

revious segmentation y t−1 to make inferences about y t and s t : 

p( y t , s t | x , y t−1 , s t−1 = 0) = p( y t , s t | h t ) . (5)
4

e model the segmentation y t and stopping indicator s t as condi- 

ionally independent given the latent representation h t : 

p( y t , s t | x , y t−1 , s t−1 = 0) = p( y t | h t ) · p( s t | h t ) . (6)

his conditional independence assumption is justified because de- 

iding whether y t is the final segmentation is equivalent to de- 

iding whether y t−1 is one step from completion, due to the pre- 

ictable segmentation evolution. Hence, y t is not informative for 

nferences about the stopping indicator s t given h t that captures 

ll necessary information about the image x and previous segmen- 

ation y t−1 . 

Finally, we model h (x , y t−1 ) , p( y t | h t ) and p( s t | h t ) as stationary

unctions, i.e., they do not depend on the time step t . 

.3. Learning 

We use manually segmented images to learn the parame- 

ers θ∗ = argmin θ L (θ) of a model for the transition probability 

p( y t , s t | x , y t−1 , s t−1 = 0 ; θ) . We use θ = { θh , θy , θs } to denote the

arameters of the learned functions h (x , y t−1 ; θh ) , p( y t | h t ; θy ) and

p( s t | h t ; θs ) , respectively. 

First we consider a training dataset D containing im- 

ges { x } and variable-length ground truth sequences of seg- 

entations { y 0 , . . . , y T (x ) −1 , y T (x ) } and stopping indicators 

 s 0 , . . . , s T (x ) −1 , s T (x ) } = { 0 , . . . , 0 , 1 } , such that the final seg-

entation is the sole complete segmentation. The segmen- 

ation sequences capture the desired segmentation evolution 

ynamics. 

Adopting the teacher forcing approach ( Williams and Zipser, 

989; Goodfellow et al., 2016 ), we develop a novel loss function 

hat seeks the parameter values which minimize the expected neg- 

tive log-likelihood over the sequences of segmentations and stop- 

ing indicators, conditioned on the image and the initial condi- 

ions: 

 (θ) = E D 

[ 
− log p( y 1 , . . . , y T (x ) , s 1 , . . . , s T (x ) | x , y 0 , s 0 ; θ) 

] 
, 

= E D 

[ T (x ) ∑ 

t=1 

− log p( y t , s t | x , y t−1 , s t−1 ; θ) 
] 
, (7) 

= E D 

⎡ 

⎢ ⎣ 

T (x ) ∑ 

t=1 

− log p 
(
y t | h (x , y t−1 ; θh ) ; θy 

)
︸ ︷︷ ︸ 

segmentation loss 

− log p 
(
s t | h (x , y t−1 ; θh ) ; θs 

)
︸ ︷︷ ︸ 

stopping indicator loss 

⎤ 

⎥ ⎦ 

. (8) 

In Eq. (7) , teacher forcing leads to a sum over decou- 

led time steps, due to the Markov property in Eq. (1) . This 

reatly simplifies training, by eliminating the need for back- 

ropagation through time. Eq. (8) is an expectation over a seg- 

entation loss and a stopping indicator loss. The segmentation 

 t and stopping indicator s t are predicted jointly, and both of 

heir losses influence the parameters used to compute the la- 

ent representation h t = h (x , y t−1 ; θh ) . This multi-task approach of- 

en improves learning, and requires fewer parameters compared 

o training two separate networks ( Caruana, 1997; Liu et al., 

020a ). 

Since the loss is a sum over decoupled time steps, training data 

f entire predefined output sequences is unnecessary. The loss can 

e equivalently minimized using a simplified dataset D 

′ consisting 

f tuples { x , y in , y out , s } , where segmentations y in and y out corre-

pond to consecutive time steps and s denotes whether y out is a 
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omplete segmentation: 

 (θ) = E D ′ 

⎡ 

⎢ ⎢ ⎣ 

− log p 
(
y out | h (x , y in ; θh ) ; θy 

)
︸ ︷︷ ︸ 

segmentation loss 

− log p 
(
s | h (x , y in ; θh ) ; θs 

)
︸ ︷︷ ︸ 
stopping indicator loss 

⎤ 

⎥ ⎥ ⎦ 

. 

(9) 

hese input-output pairs can be generated on-the-fly during train- 

ng (more details are provided in Section 3.2 ). 

In the rest of this section, we make typical modeling 

hoices to define the segmentation and stopping indicator 

osses. 

.3.1. Segmentation loss 

We assume that the label of each voxel in the segmentation y out 

s conditionally independent of all other voxels given h (x , y in ) . Pre-

icted segmentations can therefore be represented as probability 

aps, at each voxel storing the parameters of a categorical distri- 

ution over L labels. Let y out be a one-hot ground truth segmenta- 

ion and 

ˆ y out be a predicted segmentation probability map, i.e., we 

se ˆ y out as a shorthand for p( y out | h (x , y in ; θh ) ; θy ) . The segmenta-

ion loss in Eq. (9) is a voxel-wise categorical cross-entropy loss 

ith spatially varying weights ω y out ,l 
(v ) : 

 seg 

(
y out , ̂  y out 

)
= 

∑ 

v ∈ �

L −1 ∑ 

l=0 

−ω y out ,l ( v ) · y out ,l ( v ) · log ̂  y out ,l ( v ) , 

ω y out ,l ( v ) = ω l + ω y out ( v ) . (10) 

e use spatially varying weights with two goals in mind. The 

rst term addresses class rebalancing, where each weight ω l = 

1 / f l ) / 
∑ 

l ′ (1 / f l ′ ) is a normalized inverse label frequency in the 

raining data’s target segmentations. The second goal is to en- 

ourage segmentations to “snap” to image boundaries, by more 

trongly penalizing errors near ground truth segmentation bor- 

ers, hence the dependence on the ground truth segmenta- 

ion y out ( Ronneberger et al., 2015; Roy et al., 2017 ). We intro- 

uce a weight map ω y out : � → { 0 , ω 0 } that contains a constant

oundary weight ω 0 > 0 for voxels located within d 0 voxels of 

ny boundary in the ground truth segmentation y out , and zero 

therwise. 

.3.2. Stopping indicator loss 

The distribution of the stopping indicator s is Bernoulli. The 

topping indicator loss in Eq. (9) is a binary cross-entropy loss, 

hich we again weight for class rebalancing. Let s be a ground 

ruth binary stopping indicator and ˆ s be a predicted stopping prob- 

bility, i.e., we use ˆ s as a shorthand for p(s | h (x , y in ; θh ) ; θs ) . We

ave 

 stop (s, ̂  s ) = −(1 − ω s ) · s log ̂  s − ω s · (1 − s ) log (1 − ˆ s ) , (11)

here the class rebalancing weight ω s is the estimated pro- 

ortion of training instances in which the stopping indicator 

quals 1. 

.4. Inference 

Since the recursion in Eq. (2) is computationally intractable 

ue to the summation over all possible segmentations y t−1 , we 

ollow the widely accepted practice of using point estimates 

 Iglesias et al., 2013 ) to infer y t and s t directly from the most likely

revious binary segmentation y ∗
t−1 

and binary stopping indicator 
5 
 

∗
t−1 : 

( y t , s t | x , y 0 , s 0 ; θ) 

= 

∑ 

y t−1 

∑ 

s t−1 

p( y t , s t | x , y t−1 , s t−1 ; θ) · p( y t−1 , s t−1 | x , y 0 , s 0 ; θ) 

≈ p( y t , s t | x , y ∗t−1 , s 
∗
t−1 ; θ) , 

here y ∗t−1 , s 
∗
t−1 = argmax 

y t−1 , s t−1 

p( y t−1 , s t−1 | x , y 0 , s 0 ; θ) . (12) 

q. (12) is a mode approximation of Eq. (2) . It is accurate 

henever p( y ∗t−1 , s 
∗
t−1 | x , y 0 , s 0 ; θ) ≈ 1 , i.e., when the distribution

p( y t−1 , s t−1 | x , y 0 , s 0 ; θ) ≈ δ( y t−1 − y ∗
t−1 

) · δ( s t−1 − s ∗
t−1 

) , where δ is

he Dirac delta function, as the non-maximal members of the sum 

n Eq. (2) are negligible compared with the maximal one. 

When s ∗t−1 = 1 , Eqs. (3) and (12) yield the approximation 

p( y t , s t | x , y 0 , s 0 ; θ) ≈ 1 
[
y t = y ∗t−1 

]
· 1 ( s t = 1) . (13) 

e adopt the maximum a posteriori (MAP) approach and continue 

he recursion until p( s ∗t = 1 | x , y 0 , s 0 ; θ) > 0 . 5 , at which point the

egmentation y ∗t is deemed the final segmentation and iterative 

egmentation stops. While here we use the MAP criterion for stop- 

ing, one could also choose a different threshold of the posterior 

robability of the stopping indicator based on domain knowledge 

r empirical results. A user can override this automatic stopping 

rediction by choosing an earlier segmentation or asking for more 

terations. 

. Recurrent neural network 

Our RNN implements the recursion 

 t = h (x , y ∗t−1 ; θh ) , 

 

∗
t = argmax 

y t 

p( y t | h t ; θy ) , 

s ∗t = argmax 
s t 

p( s t | h t ; θs ) , (14) 

ntil s ∗t = 1 , at which point y ∗t is the final solution. 

.1. RNN architecture 

Our RNN is depicted in Fig. 5 . It is constructed by joining copies

f a 3D U-Net architecture ( Ronneberger et al., 2015 ) that we mod- 

fy to model p( y t , s t | x , y t−1 , s t−1 = 0 ; θ) . The U-Net has L + 1 input

hannels for the image to be segmented and a binary mask for 

ach of the anatomical labels in the input segmentation y ∗
t−1 

(in- 

luding the background). There are two outputs: the output seg- 

entation y ∗t , which becomes the input segmentation in the next 

ime step via a recurrent connection, and the stopping indicator s ∗t . 
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Fig. 6. Input and output partial segmentations and binary stopping indicators 

( y in , y out , s ) are generated on-the-fly during training from ground truth complete 

segmentations y and seeds y 0 . 
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Fig. 7. Data augmentation creates corrupted inputs y in and uncorrupted outputs y out 

so the trained RNN is robust to errors in its intermediate results. 

t

m

a

r

m

a

p

3

r

o

a

s

r

f

s

s

i

d

d

n

m

r

t

w

3

d

t

b

t

n

n

m

s

i

a

b

t

c

a

t

Recall that in the U-Net architecture, a final bank of learned 

eature maps is used to produce the output segmentation proba- 

ility map. In our RNN, these learned feature maps form the latent 

epresentation h t = h (x , y ∗
t−1 

; θh ) . Note that the size of h t equals 

he dimensions of image x multiplied by the number of channels 

(i.e., this is not a bottleneck layer). 

.2. Training data generation 

The training data D 

′ = { x , y in , y out , s } should capture the

pplication-dependent segmentation evolution pattern that the 

NN should learn to produce. There are many ways in which this 

raining data can be generated. In our case, every training im- 

ge has a ground truth complete segmentation y and an example 

eed y 0 for each anatomical label. We consider binary segmenta- 

ion in this section, and discuss extensions to multiclass segmen- 

ation in Section 3.4 . During each epoch, we automatically generate 

ne sample from D 

′ for each training image ( Fig. 6 ) using a differ-

nt mechanism for great vessels and cardiac chambers. 

We train models for great vessel segmentation that grow along 

heir centerline at a constant rate. Before training, we precom- 

ute a distance map that can be randomly thresholded to sam- 

le the partial segmentations used for training. We use fast march- 

ng ( Sethian, 1996 ) to create a geodesic distance map that is zero

n the background (and hence embeds the ground truth complete 

egmentation), and for each foreground voxel stores the distance of 

he shortest path to the seed point that remains within the ground 

ruth segmentation. During training, we threshold at a distance d 1 
hosen uniformly at random to form y in , and then at d 2 = d 1 + d s 
o form y out , where d s is the desired step size. Note that this pre-

omputed distance map relies on the ground truth segmentation 

nd therefore is unavailable during inference. 

Chamber segmentations are trained to dilate outward at a con- 

tant rate. During training, we first randomly perturb the seed 

oint by moving y 0 within the chamber’s center region, and then 

enerate two concentric spheres centered on it: the radius d 1 of 

he smaller sphere is chosen uniformly at random, and the larger 

adius is d 2 = d 1 + d s . Both spheres are intersected with y to form

 y in , y out ) . 

Finally, the ground truth binary stopping indicator s is com- 

uted by comparing y out with y . 

The seed points to be clicked by the user 1 were chosen to max- 

mize the potential for automatic detection in future. For example, 
1 LV, RV, LA, RA: center region; AO: bottom of descending aorta; PA: bottom of 

ain PA trunk; SVC: superior end; IVC: center of hepatic segment. 

m

c

b

c

6 
he aortic seed could have been placed at the aortic valve, and seg- 

entations grown away from the heart. However, the descending 

orta is more salient, so we grow segmentations in the opposite di- 

ection, towards the aortic valve. For all but the PA, segmentations 

ust grow towards one of the inter-structure boundaries that sep- 

rate the global blood pool. The lack of contrast at these borders 

rovides a challenging test case for automatic stopping. 

.3. Data augmentation 

We apply random affine and nonlinear transformations, left- 

ight and anterior-posterior flips (relevant due to dextrocardia and 

ther cardiac malpositions in CHD), constant intensity shifts and 

dditive Gaussian noise. 

Cardiac MR has inhomogeneity artifacts around implanted 

tents and a heterogeneous background due to inconsistent sur- 

ounding vasculature. We perform additional data augmentation 

or the AO and PA by adding random dark regions inside the ves- 

els and random dark or bright regions next to them. 

Finally, if our modified U-Net is trained using error-free input 

egmentations y in , then it may not operate well when perform- 

ng inference on its own imperfect outputs at test time. We ad- 

ress this by corrupting each label of y in using random nonrigid 

eformations and also add random foreground blobs that vary in 

umber, location and size ( Fig. 7 ). The output segmentation y out re- 

ains unchanged. During training, the network must learn to cor- 

ect errors in its input while simultaneously growing the segmen- 

ation appropriately. Hence, the trained model will be more robust 

hen it operates recursively. 

.4. Multiclass learned iterative segmentation 

Although we primarily focus on binary segmentation, we also 

emonstrate the application of our framework to multiclass itera- 

ive segmentation (i.e., L > 2 ). Multiclass segmentation enjoys the 

enefits of multi-task learning, requires training only one model 

hat segments multiple anatomical structures, and eliminates the 

eed to subsequently resolve conflicts between overlapping bi- 

ary segmentations. Moreover, an iterative model that learns to si- 

ultaneously grow multiple segmentations might better learn the 

patial relationships between them. For the most part, the train- 

ng data generation for multiclass iterative segmentation can be 

chieved by separately processing the data for each anatomical la- 

el as described above for binary segmentation, with a few addi- 

ional considerations. In our implementation, each multiclass y in 
ontains input partial segmentations of each structure that are 

pproximately the same (random) percentage complete. We con- 

inue to use a single binary stopping indicator s . During data aug- 

entation, corrupting the segmentation of a structure in y in often 

hanges the segmentations of neighboring structures, so we avoid 

iasing the degree to which each anatomical label is distorted by 

orrupting the foreground channels of y in a random order and 
in 
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Fig. 8. Size and composition of the 20–HVSMR and 48–HVSMR+ training datasets. 
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aking a structure’s label map immutable after it has been cor- 

upted. 

. Evaluation 

We evaluated our iterative segmentation model for the task of 

hole heart segmentation in patients with CHD, comparing to sev- 

ral automatic and interactive learning-based methods that directly 

egment an image in one step. 

.1. Data 

The first 20 cardiac MR scans come from our group’s public 

VSMR challenge dataset ( http://segchd.csail.mit.edu , ( Pace et al., 

015 )). We retrospectively retrieved 40 additional images from the 

linical archive for this study, thus creating a larger dataset of 60 

mages with manual segmentations of the LV, RV, LA, RA, AO, PA, 

VC and IVC. This is a unique dataset acquired during clinical prac- 

ice, and reflects the substantial manual labeling effort required for 

hole heart segmentation in CHD. 

All images were acquired at Boston Children’s Hospital on a 

.5T scanner (Philips Achieva) using ECG and respiratory naviga- 

or gating, the vast majority using a free-breathing SSFP pulse se- 

uence (TR ∼3.4-4.7 ms, TE ∼1.7-2.4 ms, α ∼60-90 ◦) ( Moghari et al., 

017 ). A few images were acquired using alternate MR protocols; 

mage appearance differences are relatively minor. Gadolinium- 

ased contrast agent (Ablavar or Gadovist) was used in some pa- 

ients at the discretion of clinicians. The image resolution averaged 

 . 9 × 0 . 9 × 0 . 85 mm. All images were cropped around the heart and

esized to 126 × 180 × 144 . Intensity normalization was performed 

sing estimates of the blood pool and lung intensity that were 

utomatically derived from intensity histograms within predeter- 

ined image bounding boxes (see Supplementary Material). Sub- 

ect age ranged from < 1 to 55 years old. 

Ground truth segmentation required many hours per image. 

he original HVSMR dataset included segmentations of the blood 

ool and myocardium only. Trained raters manually divided each 

lood pool surface model using 3D Slicer ( Fedorov et al., 2012 ) 

y fitting local separating planes at the interfaces between struc- 

ures. The 40 new images were segmented by combining manual 

ontours of the interfaces between different heart structures made 

sing a valve annotation module ( Scanlan et al., 2018; Nguyen 

t al., 2019 ) with segmentations from a 3D U-Net trained using the 

VSMR dataset, and performing extensive manual cleanup to fix 

rrors and avoid bias towards the network’s output. All segmenta- 

ions were validated by hospital experts when the correct segmen- 

ation was ambiguous. For each cardiac structure, a simulated user 

lick was created using morphological and center-of-mass calcula- 

ions. 

Under the advice of a cardiologist, all images were categorized 

s mild, moderate or severe, according to each heart’s anatomical 

alformations (not clinical prognosis) 2 Note that even moderate 

ases have significant defects. Most subjects have a unique combi- 

ation of heart defects (45% of moderate subjects and 89% of se- 

ere subjects). 
2 Mild : Roughly normal anatomy, prior CHD surgery with restoration of normal 

natomy, and/or a mildly or moderately dilated chamber or vessel, Moderate : Sep- 

al defect (VSD, ASD), abnormal connectivity (DORV, D-Loop TGA), bilateral SVC, 

everely dilated chamber/vessel, and/or connective tissue disorder causing tortuous 

essels, Severe : Heart malpositions or situs inversus (dextrocardia, mesocardia, in- 

erted ventricles or atria, left/central IVC or SVC), L-loop TGA, common atrium, sin- 

le ventricle, and/or major prior reconstructive surgery resulting in highly abnormal 

natomy (atrial switch, Rastelli, Glenn, Fontan). Note: A dilated chamber or vessel 

as counted only if it was the sole diagnosis. 
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7

.2. Experimental setup 

We compared seven segmentation approaches, including five 

nteractive and two fully-automatic methods. All of the interac- 

ive methods generate a full segmentation from a single user click 

er structure (i.e., there is no iterative back-and-forth with a user). 

1) Iter–A is our iterative binary segmentation with automatic 

topping. (2) Iter–U uses the same trained model as Iter–A but 

imulates a user who chooses the stopping point (by keeping the 

est segmentation from the first 40 iterations), included to eval- 

ate how a slight increase in user interaction may improve seg- 

entation accuracy. (3) Iter–A–All is our multiclass iterative seg- 

entation with automatic stopping, and (4) Iter–U–All is our mul- 

iclass iterative segmentation with simulated user stopping (by 

eeping the segmentation from the first 40 iterations that has the 

est mean accuracy over all eight cardiac structures). (5) U–Net–

ll is a U-Net for fully-automatic multiclass segmentation of all 

 structures, included as a state-of-the-art reference. (6) U–Net is 

 U-Net for fully-automatic binary segmentation of each anatom- 

cal structure, included as a benchmark for binary segmentation. 

7) U–Net+S is a U-Net for interactive binary segmentation which 

lso inputs a Euclidean distance map to the user seed, included 

o evaluate the value of input seed points. We emphasize that U–

et+S is an interactive method as it relies on a distance map to 

 user-specified seed, and is nearly identical to prior state-of-the- 

rt methods when generating an entire segmentation from a single 

ser click ( Xu et al., 2016; Sakinis et al., 2019 ). We also note that

lthough the training data for the multiclass iterative segmentation 

odels Iter–A/U–All is generated on-the-fly for each anatomical 

abel separately, these are true multiclass models that input L + 1 

nput channels and produce L output channels in a single forward 

ass for each iteration. 

In total, we trained 26 models (1 U–Net–All model, 1 Iter–A–

ll model, plus 8 structures × 3 models for Iter–A, U–Net and U–

et+S . Note Iter–U uses the trained model from Iter–A and Iter–

–All uses the trained model from Iter–A–All ). All models used 

he same data augmentation procedures for image transformations, 

ntensity adjustments and MR artifact simulation. User interaction 

as simulated in our experiments, including the clicks to place the 

eed points required by U–Net+S, Iter–A/U and Iter–A/U–All and 

he user stopping required by Iter–U and Iter–U–All . In particu- 

ar, U–Net+S used the same procedures as Iter–A/U to simulate in- 

ut seeds, after which the Euclidean distance map is computed. 

or more details on network architectures, training data genera- 

ion, data augmentation and learning procedures, including chosen 

arameters, please see the Supplementary Material. 

We evaluated the impact of training dataset size as follows (see 

ig. 8 ). First, we trained 20–HVSMR models on the original HVSMR 

cans, and tested on the 40 new images. These experiments evalu- 

te generalization from a very small dataset, which is biased to- 

ards more normal anatomy, to more severe cases. Second, we 

rained 48–HVSMR+ models using the 20 HVSMR images and 28 

ew images, and tested on 12 new images. These 12 images repre- 

http://segchd.csail.mit.edu
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Table 1 

Overall Dice scores for held-out test images. For mild / moderate subjects, all methods have comparable performance. For severe subjects, our binary iterative segmentation 

is superior, and our multiclass iterative segmentation is superior to the baselines when the training dataset is small and imbalanced ( 20–HVSMR ). Dice scores are averaged 

over all 8 cardiac structures and shown as mean ± standard deviation. Where shown, p-values indicate statistically significant differences between the given iterative 

method and U–Net+S ( ∗ p) or U–Net–All ( ∗∗ p) in a paired t-test with a threshold of 0.05. Table S1 of the Supplementary Material gives results for each cardiac structure in 

detail. 

Mild / Moderate Subjects Severe Subjects 

20-HVSMR 48-HVSMR + 20-HVSMR 48-HVSMR + 

U-Net-All 87.7 ±14.6 90.7 ±7.5 64.6 ±31.9 84.9 ±18.0 

U-Net 87.3 ±9.5 90.5 ±5.3 55.8 ±36.1 75.6 ±28.0 

U-Net + S 85.4 ±17.3 89.7 ±7.7 68.2 ±27.8 82.0 ±19.7 

Iter-A 88.1 ±7.7 90.4 ±4.3 79.0 ±17.2 ∗ p < 10 −11 , ∗∗ p < 10 −12 85.1 ±15.6 

Iter-U 91.1 ±4.1 ∗ p < 10 −2 92.6 ±3.0 85.3 ±12.8 ∗ p < 10 −22 , ∗∗ p < 10 −22 88.2 ±14.0 ∗ p < 10 −2 

Iter-A-All 85.6 ±14.3 88.2 ±9.0 77.3 ±22.6 ∗ p < 10 −7 , ∗∗ p < 10 −9 85.2 ±17.8 

Iter-U-All 87.4 ±13.6 90.3 ±7.3 78.9 ±22.0 ∗ p < 10 −10 , ∗∗ p < 10 −11 86.8 ±18.1 
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ent 20% of the total dataset size and also focus on generalization 

o severe subjects, but include one mild and one moderate subject 

s sanity checks. These experiments assess an algorithm’s accuracy 

hen a larger and more balanced dataset is available for training, 

lthough we note that the dataset of 48 images is still small. All 

raining was done using 4-fold cross validation, where each fold 

ad an approximately equal number of mild, moderate and severe 

ases. An ensemble of the resulting four networks yielded the final 

rediction on the test images. 

We implemented our method using Keras ( Chollet et al., 2015 ) 

ith a Tensorflow backend ( Abadi et al., 2015 ). Optimization was 

one using Adam ( Kingma and Ba, 2015 ), with a learning rate of

0 −4 and a batch size of 1, for 20 0 0 epochs. Inference was fast

nough for our iterative segmentation method to be used inter- 

ctively. For binary iterative segmentation, each iteration required 

.65 ±0.15 seconds on an NVIDIA TITAN X GPU and the mean time 

equired to segment one structure ranged from 2 to 18 seconds, 

eading to a total inference time of approximately 1 minute for 

hole heart segmentation. For binary iterative segmentation, we 

xpect users to interact with the algorithm as each structure is 

egmented sequentially. 

.3. Evaluation metrics 

We employ the Dice score to quantify the volume overlap be- 

ween the ground truth and predicted segmentations. 

All segmentations were post-processed to keep the island con- 

aining the user seed if the given method inputs a seed and the 

egmentation contained it, or the largest connected component 

therwise. For the iterative segmentation methods, this is done af- 

er every step of inference. Vessel segmentations that are slightly 

oo long or too short are no less clinically useful ( Zhuang et al.,

019 ). Hence, we included “optional zones” for the AO, PA, SVC, IVC 

nd pulmonary veins, which specified both a minimum required 

essel length and a permitted continuation. Optional areas were 

ubtracted from both the ground truth and algorithm segmenta- 

ions before computing the Dice score, so that only the required 

egions were compared. 

.4. Segmentation accuracy 

Table 1 and Fig. 9 report segmentation accuracy on held-out 

est images. Our proposed binary iterative segmentation with user 

topping ( Iter–U ) consistently had the highest accuracy. 

Mild and Moderate Subjects: We combine results from mild and 

oderate subjects because they were very similar: Welch’s t-tests 

or independent samples with a threshold of 0.05 showed no sig- 

ificant differences between the overall Dice scores on mild ver- 

us moderate test images for any combination of segmentation al- 

orithm and training dataset. All seven models performed well in 
8

ild/moderate subjects. Despite the small dataset sizes, good gen- 

ralization is possible with or without user interaction since these 

earts exhibit low variability and are well represented in both 

atasets. 

Severe Subjects : Extreme cardiac malformations make segment- 

ng severe subjects a much more challenging task. First, the user 

eed provides a signal for object localization that proved very 

seful since CHD often involves abnormal positioning of cardiac 

tructures in the body, and U–Net+S outperformed U–Net for both 

raining datasets. 

Binary iterative segmentation had the highest accuracy. Note 

hat Iter–A requires the same level of user input as U–Net+S , but 

ad a better mean segmentation accuracy. The multiclass segmen- 

ation baseline ( U–Net–All ) did show some advantages compared 

o binary segmentation, but nevertheless had lower mean accuracy 

han Iter–A and Iter–U . In addition, Iter–A and Iter–U had smaller 

ice score variances and suffered from fewer catastrophic failures 

ompared to the baselines. In cases where Iter–A does not identify 

he ideal stopping point, we have evidence that iterative segmenta- 

ion may be improved by a small additional amount of user inter- 

ction to choose the final segmentation ( Iter–U ). Including this in- 

eraction brought the mean Dice score in severe subjects to greater 

han 85, within ∼6 Dice points of the mean performance in mild 

nd moderate subjects. As expected, accuracy improved with more 

raining data, but the accuracy of binary iterative segmentation 

as less sensitive to the training dataset size than the three di- 

ect segmentation methods ( U–Net–All, U–Net and U–Net+S ). The 

enefits of iterative segmentation were especially pronounced in 

he smaller 20–HVSMR dataset, in which paired t-tests with a 

hreshold of 0.05 showed statistically significant differences be- 

ween Iter–U and U–Net+S for all 8 cardiac structures, and be- 

ween Iter–A and U–Net+S for all structures except the AO and 

VC. Similarly, there were statistically significant differences be- 

ween Iter–U and U–Net–All for all structures except the AO, and 

etween Iter–A and U–Net–All for the LV, LA, RA, SVC and IVC. For 

oth training datasets, the PA was the most difficult structure to 

egment, as corroborated by the results from a recent whole heart 

egmentation challenge ( Zhuang et al., 2019 ). For 20–HVSMR , the 

V, RA and SVC were also relatively difficult to segment. 

Multiclass iterative segmentation shows similar trends. Most 

mportantly, for the 20–HVSMR dataset both Iter–A–All and Iter–

–All showed statistically significant improvements over all three 

aseline algorithms, including the multiclass U–Net–All . However, 

or multiclass iterative segmentation simulated user stopping did 

ot improve the results as much as it did for binary iterative seg- 

entation. Regarding individual cardiac structures, paired t-tests 

ith a threshold of 0.05 showed significantly significant differ- 

nces between Iter–U–All and U–Net+S for all structures except 

he AO and IVC, and between Iter–A–All and U–Net+S for the LV, 

V, LA, PA and SVC. Similarly, there were statistically significant 
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Fig. 9. Overall and structure-specific Dice scores for held-out test images. For mild / moderate subjects, all methods have comparable performance. For severe subjects, 

our binary iterative segmentation is superior, and our multiclass iterative segmentation is superior to the baselines when the training dataset is small and imbalanced 

( 20–HVSMR ). 
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ifferences between Iter–U–All and U–Net–All for the LV, RV, LA, 

A and SVC, and between Iter–A–All and U–Net–All for the LV, 

V, LA and SVC. We again found that accuracy improved when us- 

ng the larger 48–HVSMR+ dataset. Here, the overall Dice scores of 

ter–A–All and Iter–U–All were similar to or better than those of 

he three baselines, although no statistically significant improve- 

ents were found. For multiclass iterative segmentation, the PA 

as again difficult to segment for both training datasets. For 20–

VSMR , the RA and IVC had the lowest accuracy. 

Finally, we compare multiclass to binary iterative segmenta- 

ion. Although the binary iterative segmentation methods most of- 

en have a higher mean Dice score than their corresponding mul- 

iclass iterative segmentation methods, the difference is typically 

ot statistically significant in paired t-tests with a threshold of 

.05. The exception is between Iter–U and Iter–U–All for models 

rained with the smaller 20–HVSMR dataset in both mild / mod- 

rate and severe subjects. In severe subjects, for the 20–HVSMR 

ataset, Iter–U–All was significantly better than Iter–U for the RV 

ut significantly worse for the LA, AO, SVC and IVC, and Iter–A–All 

as significantly better than Iter–A for the RV and AO but signifi- 

antly worse for the LA and IVC. For the 48–HVSMR+ dataset, Iter–

–All showed statistically significant advantages for the LV and AO, 

nd Iter–A–All showed statistically significant advantages for the 

O. No significant disadvantages were found for severe subjects 

n 48–HVSMR+ between corresponding binary and multiclass al- 

orithms. 

In the remaining evaluations, we focus on the performance of 

ter–U using the 48–HVSMR+ training dataset, since it had the best 

ccuracy. 

.5. Example segmentations and failure cases 

Example Iter–U segmentations are shown in Fig. 10 . The bot- 

om rows illustrate some failure cases.In the LV, RV, LA and RA, 

he Iter–U segmentation sometimes grew through a septal defect 

r an adjoining valve, with a coincident under-segmentation of the 

asal and apical ventricles, the main LA chamber or the pulmonary 

eins. Chamber segmentations could also be under-segmented near 

eptal defects. LA segmentations sometimes suffered from pul- 
9 
onary veins that were missing or excessively long, while RA seg- 

entations were sometimes mis-segmented at the IVC boundary. 

he AO surface models were highly accurate, but could be too 

umpy near dark inhomogeneity artifacts. The main failure case for 

he PA was a segmentation that could not grow through a narrow 

ain PA (MPA) trunk for patients with a PA band, PA stenosis, or 

hose images had artifacts in the MPA region. The left or right PA 

ranch sometimes grew past the maximum length specified by the 

optional zones”. Finally, slight differences compared to the ground 

ruth could be found at the interface between the SVC/IVC and the 

A, or between the SVC/IVC and the attached PA for patients with 

rior Glenn or Fontan surgeries. 

.6. User interaction: automatic versus user stopping 

Some examples in which Iter–U outperformed Iter–A are 

hown in Fig. 11 . Recall that in our proposed setup, the Iter–A re- 

ult is initially shown, and the user can accept it or look forwards 

r backwards in the output sequence for a better result. The er- 

or in the number of iterations predicted via automatic stopping 

irectly causes the decrease in accuracy for Iter–A compared to 

ter–U , as well as the number of additional clicks required of the 

ser. However, Fig. 12 shows that this number was typically small 

nd often zero, i.e., a user would not have to search far, if at all,

rom the automatically proposed solution. 

.7. Do the iterative models learn the desired trajectories? 

Our iterative segmentation algorithm is trained to produce se- 

uences of output segmentations that follow a prescribed growth 

attern. To evaluate this evolution, for each cardiac structure in the 

est images we compared each intermediate segmentation in the 

redicted output sequence y ∗
1 
, . . . , y ∗t , . . . (for all t up to and includ- 

ng the stopping point chosen by the simulated user in Iter–U ) to 

hose in the ground truth sequence that begins with the same ini- 

ial segmentation y 0 and grows according to the desired step size 

as described in Section 3.2 ). Results are shown in Fig. 13 . High

ice scores (approximately 80) over all subjects indicates good cor- 

espondences between the generated and ideal output sequences. 
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Fig. 10. Inspection of representative Iter–U segmentations of severe subjects predominantly shows good overlap (gray), with some examples of under-segmentation (blue) 

and over-segmentation (orange). Results are from test subjects after training using 48–HVSMR+ . Subjects were chosen for visualization according to the Dice score at the 

95th, 75th, 50th, 25th and 5th percentiles. 

Fig. 11. Examples from severe subjects for which our iterative segmentation al- 

lowed the simulated user to choose a better segmentation than that predicted by 

automatic stopping. The user can select an earlier segmentation if the automatic 

segmentation is too large, or ask for more iterations if is under-segmented. 
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Fig. 12. The automatically detected number of iterations (used by Iter–A ) was typ- 

ically close to the ideal number of iterations (used by Iter–U ). Results are from all 

12 test subjects after training using 48–HVSMR+ . The mean error for each structure 

is shown at the top of the graph. 
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his adds further support for the accuracy of the learned iterative 

rocess, in addition to the improved accuracy of the final output 

egmentations. 

.8. Impact of input seed location 

We used cardiac chamber segmentation to evaluate the robust- 

ess of Iter–U and Iter–A to the location of the input seed. For 

ach test image, we varied the ideal “center” seed point loca- 

ion (derived from morphological and center-of-mass calculations 

s described above), sampling 20 “moving” seed points uniformly 

t random within a spherical region whose radius was set to 25%, 

0%, 40% and 50% of the maximum possible distance to the ground 

ruth boundary. Note that 25% is the same amount of perturbation 

s was used when randomly varying the seed point location dur- 

ng training. Results are shown in Fig. 14 . Varying the input seed 

ocation within the 25%, 30%, 40% and 50% regions decreased the 
10 
ean Dice score for the cardiac chambers by 1.4, 1.6, 2.2 and 2.7 

oints for Iter–U , respectively, and by 1.5, 2.2, 3.2 and 4.2 points 

or Iter–A . RA segmentation was the most sensitive. For Iter–U , 

elch’s t-tests for independent samples with a threshold of 0.05 

howed no significant differences between the results for moving 

s. center seed point locations for any cardiac chamber or moving 

eed region size. For Iter–A , the only significant differences were 

or the RV’s 50% region and the RA’s 25%, 30%, 40% and 50% re- 

ions. 

.9. Impact of congenital heart defects 

A detailed examination of the impact of different heart defects, 

rior surgeries and MR artifacts on segmentation accuracy is given 

y Fig. 15 . The PA was the most difficult structure to segment in

he presence of cardiac malformations. Counterintuitively, segmen- 

ation accuracy increased in the LA for severe subjects compared to 
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Fig. 13. The distribution of Dice scores between predicted and ground truth inter- 

mediate segmentations in Iter–U ’s output sequences show high overlap. Results are 

from all 12 test subjects after training using 48–HVSMR+ . The mean Dice score for 

each group of subjects is shown at the top of the graph. 

Fig. 14. Perturbing the input seed had a minor impact on segmentation accuracy 

for Iter–U for all cardiac chambers and for Iter–A for all cardiac chambers except 

the RA. Results are from all 12 test subjects after training using 48–HVSMR+ . 
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Fig. 15. Comparing the mean Dice score for patients with heart defects, prior surg- 

eries and MR artifacts to that of normal subjects shows that these conditions var- 

iously impact the accuracy of Iter–U . Green squares indicate higher accuracy than 

in normal subjects, pink squares indicate lower accuracy. The darkest pink inten- 

sity is set to -20% of the overall Dice score in normal subjects. The left vertical 

line indicates mild (green), moderate (yellow), severe (red) and coincident (black) 

abnormalities. Boxes indicate which structures are expected to be affected by each 

cardiac abnormality, but additional structures may be impacted if other conditions 

co-occur with the given abnormality. On the right, gray and black horizontal bars 

indicate prevalence in the 48–HVSMR+ cross validation and test splits, respectively. 

Results are from all 12 test subjects after training using 48–HVSMR+ . 
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ormal subjects. Segmentation accuracy in the SVC and IVC were 

he least impacted by heart defects, while the LV, RV, RA and AO 

ere moderately impacted. These results indicate where more data 

r specialized data augmentation schemes might be helpful in fu- 

ure, e.g., to address difficulties in segmenting the PA (under var- 

ous conditions) and subjects with L-Loop TGA or prior arterial 

witch. 

.10. Additional ablation studies 

The results of additional ablation studies examining the impact 

f (1) the step size d s , (2) the new data augmentation step com-

ared to ( Pace et al., 2018 ), and (3) segmentation post-processing 

an be found in the Supplementary Material. 

. Discussion 

We show that it is possible to learn a whole heart segmentation 

odel for cardiac MR images from patients with congenital heart 

isease, despite limited labeled data and high anatomical variabil- 

ty. The proposed iterative segmentation method provides a new 

pproach for very difficult segmentation problems in which some 

ser interaction remains necessary, for example when creating new 

abeled datasets. 
11 
Iterative segmentation with simulated user stopping consis- 

ently had the best overall segmentation accuracy in our experi- 

ents. Moreover, iterative segmentation with automatic stopping 

utperformed all of the direct segmentation methods for subjects 

ith severe cardiac malformations. All algorithms were highly ac- 

urate for patients with mild or moderate heart defects. This is be- 

ause they make up a large proportion of both training datasets 

hile exhibiting lower anatomical variability. However, the direct 

egmentation methods broke down in severe subjects, especially 

hen the training dataset was very small and imbalanced ( 20–

VSMR ). The much improved performance of Iter–A/U and Iter–

/U–All in this situation is impressive since only 4 severe subjects 

ere available for training. Iterative segmentation was less sen- 

itive to dataset size, produced output segmentations whose pre- 

ictability enables simpler user interaction, coped well with vari- 

bility in the input seed location, and binary iterative segmentation 

omputed a whole heart segmentation in less than one minute 

ith just a few seconds per structure. 

We envision that our iterative segmentation RNN can be used 

ithin a complete solution to interactive segmentation as follows: 

1. The user places one seed click per structure. 

2. Run Iter–A , which produces a segmentation with automatic 

stopping. 

3. In rare cases of significant Iter–A failures (e.g., a PA doesn’t 

grow through a stent or MR artifact region): the user can go 

back in the output segmentation sequence to identify the first 
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point of failure and fix it (e.g., draw the PA through the dif- 

ficult region) using existing interactive segmentation methods 

( Wang et al., 2018; 2019; Xu et al., 2016; Sakinis et al., 2019 )

or manual editing. Our iterative segmentation RNN can then be 

easily restarted to continue growing the segmentation, since at 

each step it requires only an image and a partially completed 

segmentation (without relying on a memory). 

4. If the Iter–A result is not ideal, the user can look a few steps 

forward or backward in the segmentation, yielding the Iter–U 

result. 

5. Finally, as for any algorithmic segmentation, the user can make 

any final required edits using existing interactive segmentation 

methods ( Wang et al., 2018; 2019; Xu et al., 2016; Sakinis et al., 

2019 ). 

In this way, user effort is minimized because s/he knows what 

he segmentation should look like as it progresses, and can make 

inimal corrections at intermediate phases if needed. In addition, 

he user does not have to look at the entire image to monitor 

rogress, since updates are limited in spatial extent, which is es- 

ecially important for 3D images. 

Our results corroborate previous studies in which direct seg- 

entation was outperformed by iterative approaches ( Pinheiro and 

ollobert, 2014; McIntosh et al., 2018; Le et al., 2018a; 2018b; 

hakravarty and Sivaswamy, 2019; Januszewski et al., 2018 ). Con- 

entional feedforward neural networks perform inference at each 

oxel independently. In contrast, iterative segmentation models can 

earn both local structure and long-range dependencies in the out- 

ut domain ( Havaei et al., 2017; Pinheiro and Collobert, 2014 ), 

ince inference at each pixel is informed by label estimates from 

ts surroundings, perhaps more effectively propagating information 

rom distant landmarks. Binary iterative segmentation can learn 

patial correlations between subparts of a single anatomical struc- 

ure, while multiclass iterative segmentation can learn correlations 

etween them. Iterative segmentation also implicitly expands the 

odel’s field of view without increasing its complexity. Finally, 

e observed that our iterative segmentation model successfully 

earned to slowly expand a single connected component connected 

o the user seed, leading to simple post-processing, while the di- 

ect segmentation methods produced multiple islands inside and 

utside the anatomical structure of interest. In particular, the dis- 

ance map used by U–Net+S encodes the same user click as Iter–

/U , but may be less informative at intermediate distances from 

he seed point for compact structures that vary in size (e.g., LV, 

V, LA , RA , IVC), or when distinguishing between long vessels that 

ie in close proximity (e.g., AO vs. PA). 

Our iterative segmentation method could be applied to any 

umber of growth dynamics, as long as appropriate input-output 

egmentation pairs can be generated for training. For example, our 

ethod could be used to generalize spatial propagation RNNs pre- 

iously proposed to segment the cardiac ventricles slice-by-slice 

rom base to apex ( Zheng et al., 2018; Poudel et al., 2017 ). For the

our cardiac chambers, a possible alternative is to train the net- 

ork to grow segmentations according to a distance map com- 

uted from the ground truth segmentation boundary, which may 

erform better than spherical growth for elongated structures like 

he RV. 

We acknowledge a few limitations of this study and ideas for 

uture research. Additional investigations into automatic stopping 

ould close the gap between Iter–A / Iter–A–All and Iter–U / Iter–U–

ll . Our experiments show that some structures remain difficult 

o segment, including the PA in general and the LV, RV, RA and 

VC for certain pathologies. In our experiments, the multiclass it- 

rative segmentation models generally performed worse than the 

inary models, and did not realize as large an advantage from sim- 

lated user stopping versus automatic stopping. They were also 
12 
ometimes outperformed by U–Net–All in mild / moderate sub- 

ects. This may indicate that there exists a good stopping point 

or each structure in the sequences of binary segmentations for 

he simulated user to select, but that the multiclass output se- 

uences may not necessarily have a segmentation that simultane- 

usly contains the best segmentation for each structure. Develop- 

ng variants that further extend the multiclass iterative segmen- 

ation method to predict a separate stopping point for each car- 

iac structure is hence a promising area for future research. All 

rocedures and parameters for training data generation, data aug- 

entation, and learning were tuned for binary iterative segmenta- 

ion and then subsequently applied to multiclass iterative segmen- 

ation, and might be further optimized for the multiclass setting. 

hat said, from a user interaction perspective is possible that seg- 

enting each structure sequentially may be simpler than interact- 

ng with a multiclass segmentation. Incorporating additional input 

hannels, for example containing geodesic distance maps to fore- 

round and background user annotations ( Wang et al., 2019 ), may 

urther improve accuracy for U–Net+S, Iter–A/U and Iter–A/U–All . 

 variable step size for iterative segmentation could be tuned by 

he user as an additional input parameter or automatically adapted 

y the network itself, which could reduce the required number of 

teps for easy cases. An empirical study that evaluates different 

NN architectures is an interesting direction for future research. 

inally, a user study would be informative to quantify any differ- 

nces in segmentation accuracy between actual users versus the 

ser simulation used in our experiments. A user study could also 

nvestigate our hypothesis that interaction with the sequence of 

redictably evolving segmentations output by our iterative model 

s faster and more intuitive than interactive segmentation meth- 

ds that require substantial back-and-forth with the user over the 

ntire 3D volume. 

In addition to enabling 3D visualization of cardiac anatomy for 

urgical planning, automated whole heart segmentation could also 

e used to compute important functional indices that are cur- 

ently derived from manual segmentations in CHD patients. Ap- 

lied to 3D+time imaging in future, fast and accurate segmenta- 

ion would also enable research into dynamic heart surface mod- 

ls for surgical planning and into simulating post-surgical hemo- 

ynamics, assessing joint atrio-ventricular function, and quantify- 

ng vessel wall stiffness, perhaps via patient-specific models that 

ncorporate biophysical properties ( Weese et al., 2013; Suinesiapu- 

ra et al., 2016 ) or information from 4D flow MRI and computa- 

ional fluid dynamics ( Lawley et al., 2018 ). Finally, once patient- 

pecific anatomy and function can be captured and summarized, 

t may be possible to learn outcome prediction models from data 

o forecast the consequences of competing surgical approaches 

n CHD. 

. Conclusions 

We propose a learned iterative segmentation model, imple- 

ented as a recurrent neural network, that inputs a single user 

lick and evolves a segmentation over multiple steps. We develop 

 novel loss function and use it to learn the model’s parameters so 

hat the growth pattern of its output segmentations corresponds 

o that defined by training data. The final output segmentation can 

e inferred automatically, or can be easily adjusted by the user. We 

se our iterative model to demonstrate the first whole heart seg- 

entation in cardiac MR for patients with congenital heart disease, 

nd use this challenging application to show our model’s superior- 

ty over conventional feedforward neural networks when anatomi- 

al variability is wide and training datasets are small. The resulting 

ethod enables patient-specific 3D heart surface models for surgi- 

al planning for CHD. 
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