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Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect in which the

right ventricle and associated tricuspid valve (TV) alone support the circulation. TV failure

is thus associated with heart failure, and the outcome of TV valve repair are currently

poor. 3D echocardiography (3DE) can generate high-quality images of the valve, but

segmentation is necessary for precise modeling and quantification. There is currently no

robust methodology for rapid TV segmentation, limiting the clinical application of these

technologies to this challenging population. We utilized a Fully Convolutional Network

(FCN) to segment tricuspid valves from transthoracic 3DE. We trained on 133 3DE

image-segmentation pairs and validated on 28 images. We then assessed the effect

of varying inputs to the FCN using Mean Boundary Distance (MBD) and Dice Similarity

Coefficient (DSC). The FCN with the input of an annular curve achieved a median DSC of

0.86 [IQR: 0.81–0.88] and MBD of 0.35 [0.23–0.4] mm for the merged segmentation and

an average DSC of 0.77 [0.73–0.81] and MBD of 0.6 [0.44–0.74] mm for individual TV

leaflet segmentation. The addition of commissural landmarks improved individual leaflet

segmentation accuracy to an MBD of 0.38 [0.3–0.46] mm. FCN-based segmentation of

the tricuspid valve from transthoracic 3DE is feasible and accurate. The addition of an

annular curve and commissural landmarks improved the quality of the segmentations

with MBD and DSC within the range of human inter-user variability. Fast and accurate

FCN-based segmentation of the tricuspid valve in HLHS may enable rapid modeling and

quantification, which in the future may inform surgical planning. We are now working to

deploy this network for public use.
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INTRODUCTION

Hypoplastic left heart syndrome (HLHS) is a severe congenital
heart defect characterized by incomplete development of the
left heart, including the mitral valve, and a left ventricle
incapable of supporting the systemic circulation. HLHS would
be uniformly fatal without surgical intervention, but staged
surgical treatment allows children born with HLHS to survive
and grow into adulthood. In contrast to a normal heart with two
ventricles working in series, in HLHS, the single right ventricle
(RV) remains the only functional ventricle, and the tricuspid
valve (TV) is the single functional atrioventricular valve. TV
failure, defined as moderate or greater regurgitation, is thus
understandably associated with heart failure or death in patients
with HLHS (1). Repair of the regurgitant TV in HLHS remains
extremely challenging and results are suboptimal (2). Defining
the mechanisms of tricuspid regurgitation (TR) is difficult,
with both 2D echocardiography (2DE) and surgical inspection
having significant limitations in this complex population (3).
In particular, 2DE requires the echocardiographer to integrate
multiple planes into a 3Dmental reconstruction and to effectively
convey that construction to the surgeon (4).

In contrast, transesophageal (TEE) 3D echocardiography
(3DE) has transformed adult mitral valve surgery by capturing
the valve’s full, dynamic geometry in real time, providing an
intuitive view of the functioning valve directly to the surgeon.
However, clinical volume-rendering-based 3D visualization
alone is insufficient to allow quantitative assessment and
analysis of the valve’s 3D structure or creation of physical or
in silico models for simulation (5, 6). The development of
commercially available semi-automatic 3DE-based mitral valve
computer modeling tools has partially unlocked this potential,
allowing precise, quantitative comparison of normal valves to
dysfunctional valves, greatly informing the understanding of the
3D structural correlates of adult mitral valve dysfunction (7–10).
These insights, in turn, have allowed for specific tailored surgical
therapies, the development of mechanics based in silicomodeling
(6), and the simulation of patient-specific beating valve models
(5). Further, 3DE-based modeling has been proven to be more
accurate than 2D measurements and superior for predicting
repair durability and informing surgical decision making (11).
However, despite the necessity of precise information to guide
complicated repairs in children and preliminary work with basic
tools suggesting relationships between the 3D structure of the TV
(12–14) and patient survival (15), there is no readily available
methodology for the rapid 3D segmentation of the TV and, in
particular, the unique valves in HLHS.

Further, valve analysis in children presents multiple practical
challenges which may decrease the 3DE image quality relative
to the adult population. 3DE in pediatric patients must often
be acquired using transthoracic echocardiography (TTE) due to
the lack of pediatric sized 3D TEE probes, which often have
more artifact relative to TEE images. In addition, children are
more likely to be mobile during a 3DE TTE study, and less
likely to cooperate with maneuvers to increase the quality of
the study, such as breath holds for high-resolution EKG-gated
acquisitions. As such, studies of the TV in HLHS have primarily

relied on manual segmentation or more basic measurements, all
of which are subject to significant inter- and intra-user variability
(12, 13, 15, 16), and are prohibitively laborious and slow for
clinical use.

In the setting of these challenges, the investigation of
automatic and semi-automatic methods for the segmentation of
atrioventricular valves from 3DE of children has been limited
(17, 18). Atlas-based segmentation has shown promising results
for segmenting the adult mitral valve from TEE images and,
in a small series, was demonstrated to be feasible, but less
accurate for the segmentation of TV in HLHS from TTE images
(19). Notably, machine learning (ML)-based approaches to the
segmentation of medical images have expanded rapidly over
the last decade, including applications in echocardiography (20–
23), with notably increased accuracy and speed relative to other
methods. In particular, the use of shape related information
(landmarks, shape priors) has shown promising results (23–
25). However, the application of ML-based approaches to the
segmentation of atrioventricular valves (26, 27) is in its infancy.
For example, the ideal inputs for a ML-based segmentation
approach in a given cardiac phase are unknown. Although our
aim is to use ML to segment the TV of children with HLHS
in systole (TV closed), 3DE creates volume sequences which
include diastole (TV open). Human segmenters often play the
sequence of images to determine where the individual leaflets
coapt (come together). As such, other frames may be useful as
auxiliary inputs in addition to the mid-systolic (MS) frame (28).
Finally, previous atlas-based studies have shown the potential
for user-placed landmarks to improve the accuracy of otherwise
automatic image segmentation (29–31). It is currently unknown
whether such anatomical landmarks are necessary or beneficial to
inform ML-based segmentation of 3DE images.

This work explores a Deep Learning (DL)-based approach
using a Fully Convolutional Network (FCN) to rapidly segment
the individual leaflets of the TV from TTE images of patients
with HLHS. In addition, we investigate different FCN input
configurations by considering combinations of various 3DE
input frames and different user-provided landmarks to identify
the best configuration for accurate segmentation. To the best of
our knowledge, this is the first demonstration of DL-based leaflet
segmentation of the TV, the first demonstration of application
using TTE images, and the first application of ML to segment
valves in patients with congenital heart disease.

MATERIALS AND METHODS

Image Acquisition
In January 2016, acquisition of TTE 3DE images of the TV
became part of the standard clinical echocardiography lab
protocol for HLHS at the Children’s Hospital of Philadelphia
(14). An institutional database was utilized to retrospectively
identify patients with HLHS in whom transthoracic 3DE of the
TV had been previously performed. In addition, 3DE images
were obtained in children with HLHS undergoing surgery as
part of an institutional review board (IRB) approved research
protocol. 3DE images of the TVwere acquired with a field of view
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that captured the TV annulus and leaflets. EKG-gated, multi-beat
acquisitions were obtained when patient cooperation allowed.
Transthoracic X7 or X5 probes were used with the Philips IE33
and EPIQ 7 ultrasound systems (Philips Medical, Andover, MA).

In total, 161 existing TTE 3DE images in 129 unique
HLHS patients were identified. Exclusion criteria included the
presence of significant stitch artifacts, lack of inclusion of
the entire TV and sub-valvular apparatus in the acquisition,
and inability to manually delineate the TV. No patients had
significant arrhythmia (including atrial fibrillation) at the time
of acquisition. To complete experiments for the FCN input
configurations described below, each 3DE volume sequence was
required to have at least five adjacent frames before and five
adjacent frames after the mid-systolic (MS) frame. Thirty-one
images were from patients who were pre-stage 1 operation
(median age of 4 days; IQR 3–4 days), 28 images were from
patients who were post-stage 1 repair (median age of 4 months;
IQR 4–5 months), 19 images were from patients who were post-
stage 2 repair (median age of 34 months; IQR 18–41 months),
and 83 images were from patients who were post-stage 3 repair
(median age of 9 years; IQR 6–14 years). Training of the FCN
was performed on 133 datasets (image volume, TV segmentation,
auxiliary inputs) with pre-stage 1: 24/133 (18%), post-stage
1: 21/133 (16%), post-stage 2: 12/133 (9%), and post-stage 3:
76/133 (58%).

The remaining 28 datasets (7 at every stage of repair) were
reserved for testing FCN models after training. This study was
performed according to a protocol approved by the IRB at the
Children’s Hospital of Philadelphia.

Ground Truth TV Segmentation
3DE images in DICOM format were imported into Philip’s Qlab
(Philips Medical, Andover, MA) and exported in “Cartesian
DICOM” format (voxels) and then imported into 3D Slicer (32)
as previously described. A trained segmenter with at least 6
months of segmenting experience selected a single mid-systolic
(MS) frame for ground truth valve modeling. The segmenter
reviewed the 2D and 2D color Doppler images, as well as
the 3D volume-rendered images, to inform the segmentation
process. In particular, review of the color Doppler images
could help determine the difference between signal dropout and
leaflet defect.

Figure 1 shows an example of TV segmentation and all
annotated landmarks. First, an annular curve was manually
created, as previously described (14). The annular curve creation
takes an expert segmenter approximately thirty seconds for a
rough curve and approximately two min for a high-precision
curve. The three individual TV leaflets were manually segmented
using the SegmentEditor module in 3D Slicer, followed by
smoothing with a median filter and removal of any extraneous
islands created by the manual process. Time for manual TV
leaflet segmentation by an experienced segmenter varied from
2 to 4 h, depending on the complexity of the valve and quality
of the image. Finally, the segmenter manually identified valve
quadrant landmarks corresponding to the anterior, posterior,
septal, and lateral regions (A, P, S, L) of the annulus, which
took approximately 20 seconds. In addition, commissural

landmarks (boundaries between the leaflets near the valve
annulus) corresponding to the anterior-septal, posterior-septal,
and anterior-posterior commissures (ASC, PSC, APC) were
identified. These commissural landmarks were manually placed
between individual leaflets by selecting points restricted to the
annular curve. In this case, identification of the commissures was
trivial as the leaflets had already been segmented. However, in
de novo, unsegmented valve identification and point placement
at the commissures takes approximately a minute if the annular
curve has already been created, and several minutes without the
guidance of an annular curve.

The inter-user and intra-user reproducibility of manual
TV segmentation was assessed using images from ten HLHS
subjects. To determine inter-user variability, two different expert
segmenters (HN, PD) manually segmented the same 10 TVs.
To assess intra-user variability, one expert segmenter (HN)
segmented the same 10 TVs two times with at least one month
between the first and the second segmentation process. The
resulting segmentations were compared using the Dice Similarity
Coefficient (DSC) and the Mean Boundary Distance (MBD), as
described in the Evaluation Metrics section below.

Data Preprocessing
As a result of differences in patient age and size, the 3DE
images vary in physical voxel spacing (X: 0.21–1.02mm, Y: 0.21–
1.29mm, Z: 0.13–0.78mm) and image volume dimension (X:
112–288, Y: 112–304, Z: 208). Philips’s Qlab software exports
all volumes with the same extent of 208 voxels in Z-dimension
and no resampling or resizing was applied during import to 3D
Slicer. As such, we applied fully automatic image resampling and
reorientation in preparation for training the FCN.

Considering the TV leaflets’ thin structure, we performed
isotropic resampling with a maximum voxel spacing of 0.25mm
while enforcing a minimum leaflet segmentation height of 6
voxels. We did so to allow sufficient spatial fidelity to represent
the valve leaflets, even in the setting of transformations and
resampling. If the minimum leaflet segmentation height was not
met, voxel spacing was decreased accordingly. Forty three of 133
training images (32%) had a pixel spacing <0.25. In our testing
datasets, twelve out of 28 images (43%) had a pixel spacing <

0.25. Finally, a standard orientation was applied to each dataset
using the user-defined A and L landmarks and the center point
of all APSL landmarks to place it inside a region of interest (ROI)
with the dimensions 224×224× 224 (Figure 2).

Some of the experiments used the annular curve model, the
commissural landmarks, or both as additional FCN inputs. For
these experiments, the standard orientation was also applied
to the annular curve model and the commissural landmarks,
which were exported alongside the corresponding TV leaflet
segmentations. When needed, additional frames were exported
from the 3DE image sequences, as presented in the Input Frames
section below.

All ground truth leaflet segmentations were visually quality
checked for mislabeled leaflets by two users by plotting
multiple slices of the exported segmentations providing
information about a) the orientation of the valve (incorrect
orientation could indicate wrong landmark placement)
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FIGURE 1 | Manual segmentation and annotation of the tricuspid annulus and leaflets. (A) Apical 4-chamber view of 3D TTE MS frame showing the posterior (green)

and septal (blue) leaflet; (B) Apical 2-chamber view of 3D TTE MS frame showing the anterior (red) and septal (blue) leaflet. (C) Ventricular view of 3D TTE MS frame

with all three leaflets, the annular curve (light blue), and the quadrant landmarks (yellow): anterior (A), posterior (P), septal (S), and lateral (L). (D) 3D model of the

segmented TV and the annular curve with APSL quadrant landmarks (yellow) and commissural landmarks (orange): anterior-septal commissure (ASC), posterior-septal

commissure (PSC), and anterior-posterior commissure (APC). A heart avatar (red = left heart and aorta, blue = right heart, inferior and superior vena cava) is also

provided for orientation of the echocardiographic views.

and b) the correct label assignment. If any mismatch was
identified, it was corrected. Finally, all ground truth leaflet
segmentations were automatically checked for multiple islands
using the Insight Segmentation and Registration Toolkit
(ITK) (33) ConnectedComponentImageFilter. Only the largest
island was kept. Furthermore, any holes were filled using the
ITK VotingBinaryIterativeHoleFillingImageFilter.

Evaluation Metrics
We used twometrics to compare the ground truth segmentations
to the FCN-predicted segmentations: the Dice Similarity
Coefficient (DSC) (34) and the Mean Boundary Distance (MBD)
(35). The DSC coefficient can be used to quantify the overlap
of two segmentations (P and Q), where DSC = 1 indicates the
segmentations are identical. The DSC is defined as follows:
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FIGURE 2 | Registration and placement of the segmented TV leaflets inside a predefined Region of Interest (ROI). (A, B) 3D model of the segmented TV in the

preprocessed data’s valve coordinate system, created from the A and L landmarks and the APSL centerpoint. (C–E) Orthogonal 2D slices through the preprocessed

data.

DSC (P,Q) =
2 |P ∩ Q|

|P| + |Q|
.

Note that the DSC is very sensitive to segmentation errors for thin
structures such as the TV leaflets.

The MBD is the average of bi-directional distances measured
between the two segmentations (represented as surface meshes).
The MBD is defined as follows:

MBD =
1

2

(

d (P,Q) + d (Q, P)
)

,

where d(P,Q) measures the mean Euclidean distance between
vertex points in P and their closest corresponding vertices in Q.

We report DSC and MBD scores for (a) each of the three TV
leaflets individually, (b) the average of the three TV leaflets, and
(c) the valve segmentation as a single label (i.e., the individual
leaflets merged into a single segmentation to allow comparison
to prior published reports).

Fully Convolutional Neural Network
Architecture
We adopted the V-Net architecture introduced in (34), which
was inspired by the U-Net (36). Modifications were added,
as shown in Figure 3. The number of FCN input channels
ranged between 1 and 15, and always included the MS
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FIGURE 3 | V-Net Model, modified from (34). The model input includes one channel for the MS frame and additional channels with the same dimensions for any other

inputs (e.g., the annulus SDM). On the right-hand side, example 3D segmentations predicted by the FCN are displayed from the atrial view.

frame. While passing through the FCN, the number of
learned filters doubled at each stage, and the dimensionality
is halved, expanding the receptive field. Lastly, pixel-wise
probabilities were computed by applying the softmax activation
function (37) on the four-channel logits output of the FCN
(three leaflets + background). We used rectified linear unit
(ReLU) non-linearities instead of the Parametric ReLU (PReLU)
used by the original V-Net architecture. The use of ReLU
in preliminary experiments resulted in a better outcome.
In order to capture the structural features of the TV, the
convolution kernel size was reduced to 3 × 3 × 3 instead
of 5× 5× 5.

Comparison of Alternative FCN
Configurations
We evaluated the utility of several different FCN input
configurations when segmenting the three individual tricuspid
valve leaflets in the MS frame. A summary is shown
in Figure 4.

Input Frames
Our 3DE volume sequences contained a variable number of
frames (12 to 151 frames per sequence). To assess the potential
benefit of usingmultiple 3DE input frames on the FCN’s ability to

segment the targeted MS frame, we evaluated the following four
input configurations:

• For the Single-Phase approach, only the targeted MS frame
was used as the FCN input.

• The Two-Phase approach introduced the mid-diastolic (MD)
frame in addition to the MS frame. Providing a diastolic frame
(in which the TV is open) may introduce visual information
not present in the MS frame to separate the valve leaflets.

• The Four-Phase approach added the end-systolic (ES) and
end-diastolic (ED) frames, resulting in four frames (ES, ED,
MS, MD) as FCN inputs.

• The Consecutive Systolic Phases (CSP) approach introduced
the ten frames surrounding the MS frame in addition to the
MS frame. The MS frame and five adjacent frames before
and five adjacent frames after the MS frame were provided to
the FCN. Introducing consecutive frames could provide more
information regarding valve opening and closing.

Annular Curve Input
We investigated the benefit of adding a representation of the
TV annular curve as an additional FCN input. The annulus
segmentation mask was converted into a signed distance
map (SDM), which could be used as an additional input
channel. At each voxel, SDMs store the distance to the nearest
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FIGURE 4 | Summary of the FCN Input Variants. Each 3DE input (Single-Phase, Two-Phase, Four-Phase, and CSP) was performed with eight permutations created by

the optional addition of the resampling, annular curve input, and commissural landmarks input, as depicted in the binary combination of circles (unfilled: no; filled: yes).

boundary voxel, thus embedding shape information into a high-
dimensional space (29).

Commissural Landmarks Input
Next, we investigated the effect of adding the commissural
landmarks (ASC, APC, PSC) as additional FCN input channels.
We converted all landmark coordinates into discrete spherical
segmentations, each of which was converted into an SDM, as
in the annular curve segmentation, resulting in three additional
FCN input channels.

Resampling
Lastly, we investigated the effect of resampling the FCN input
data on the segmentation outcome. To this end, we trained
each of the aforementioned FCN input configurations a) after
enforcing a maximum voxel spacing and a minimum leaflet
segmentation height, as described in the Data Preprocessing
section above, and b) after keeping the original voxel spacing.
In both cases, the 3DE volume frames were oriented and placed
inside the predefined ROI.

Data Augmentation
Geometric and intensity-based data augmentation, including
random affine transformation, random contrast adjustment, and
histogram clipping, was performed during model training. The
random affine transformations were uniformly distributed and
included rotation on any axis in range [−30, +30] degrees,
translation in range [−50, 50] voxels, and scaling in range
[−0.3, 0.3]. Random contrast adjustment was applied in range
[−0.3, 0.3] and histogram clipping was applied at the 2nd and
99th percentile. An execution probability of 50% was used for
random affine transformation, random contrast adjustment, and
histogram clipping. Finally, intensity normalization was applied
to the input 3DE images and any input SDMs (annular curve
and/or commissural landmarks) so that all input voxels were in

the range [0, 1]. We did not use elastic deformations in data
augmentation as initial experiments showed no benefit.

Learning
FCN model parameters can be learned by minimizing the
empirical expected negative log-likelihood over a training dataset
of images with corresponding ground truth segmentations.
Often, semantic segmentation approaches only use the Soft Dice
loss (34), but for thin structures like TV in 3DE images, the
Soft Dice alone did not achieve satisfactory segmentation results.
The assumption that the label of each voxel is conditionally
independent of all other voxel labels, given the input image,
leads to the conventional voxel-wise cross-entropy loss. Building
upon this, we found the best results by using a loss term that
is a weighted sum between a Soft Dice loss and a cross-entropy
loss with spatially varying weights. We added spatially varying
weights to the voxel-wise cross-entropy loss to more strongly
penalize errors at voxels near the ground truth segmentation
boundary, so that segmentations better snap to the borders
(36, 38). In this loss, each voxel has a different weight, which can
be computed as a sum between two terms: a class rebalancing
weight (inverse label frequencies computed from the training
segmentations, which are then normalized to sum to one) and
a border weight (a constant boundary weight value ω0 for voxels
which are less than d0 voxels from the ground truth segmentation
boundary, and zero otherwise).

Implementation Details
All methods were implemented in Python 3.7.6 using PyTorch
1.4. The NVIDIA apex library for mixed-precision training
was used to speed up the training process. Model training
was executed on a machine with an Intel 9940X processor
simultaneously utilizing two NVIDIA Quadro RTX 8000 GPUs
running CUDA 10.2 and cuDNN 7.6.5.

The final loss used for training was the weighted sum of the
Soft Dice loss (34) with a weight of 1, and the earlier introduced
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cross-entropy loss with a weight of 0.02. We found that a higher
impact factor of the boundary loss during training did not
improve training results. The reason for this could be a missing
basic structure in early epochs in which the boundary-aware
loss results in a higher loss score. The parameters of the cross-
entropy loss were ω0 = 50 and d0 = 3. Preliminary experiments
showed that class rebalancing weights in the loss functions did
not improve prediction results. For model optimization, the
RAdam optimizer (39) was used which can be used for a broader
range of learning rates still leading to a similar performance.
We ran some preliminary testing on hyperparameters and found
that a learning rate α = 0.02 was optimal. In addition, for
suppression of model overfitting, we assigned a weight decay
of 1e-05. All aforementioned parameters were chosen based on
preliminary experiments.

The batch size varied depending on the FCN input
configuration between 2 and 8. We used a learning rate scheduler
that halves the learning rate after a given number of epochs
(n = 3) have elapsed without any validation performance
improvement. At training initialization, ten percent of the
training datasets were reserved for validation purposes. The
training process was stopped if validation performance did not
improve for 30 epochs, up to a maximum of 200 epochs.

Inference used the same inputs that were used during model
training. Lastly, inference results were post-processed using the
ITK ConnectedComponentImageFilter to keep only the largest
connected component for every leaflet segmentation.

Comparison FCN Configuration and
Statistical Analysis
We report the best performing FCN input configurations across
individual user input groups (images only, annular curve,
commissural landmarks, and the combination of annular curve
and commissural landmarks). Every group includes a total of
8 FCN input configurations with different image frame inputs
and with or without resampling. Within a group, each FCN was
ranked based on its average leaflet MBD across individual images
(n = 28 in all stages of repair combined) with the best FCN
variant having the rank of 1 and the worst having the rank of
8. The best performing (lowest average individual leaflet MBD)
FCN input configuration had the highest rank on average across
all images within its group. All ranking results can be found in
Supplementary Tables S17–S36.

We visualized our data and applied the Shapiro-Wilk test for
normality on pairwise differences between different groups and
found that our data was not normally distributed. Accordingly,
we used the Wilcoxon signed-rank test for the pairwise statistical
comparison of the differences in MBD and DSC across all
permutations of the best FCN input configurations. Data is
presented as median [IQR]. The test for normality and statistical
analysis was done using the SciPy Python library 1.5.0.

RESULTS

The segmentation accuracy for all the FCN input configurations
on the 28 unseen test images with all stages of repair

combined is pictured in Figure 5 for DSC and Figure 6 for
MBD and listed quantitatively in Tables 1–4. Additionally,
the segmentation accuracy at individual stages of repair
(pre-stage 1, post-stage 1, post-stage 2, post-stage 3) is
pictured in Supplementary Figures S1–S4 for DSC and
Supplementary Figures S5–S8 forMBD and listed quantitatively
in Supplementary Tables S1–S16.

FCN Segmentation Using Input Frames
Only
For all stages combined, when the images alone were provided,
the consecutive systolic phases (CSP) FCN input configuration
without resampling had the highest rank with the lowest MBD
on average (Table 1). However, the highest rank FCN varied
across images of patients at various stages of repair. For post
stage 3 images, the highest ranked FCN was the same as for the
whole population as noted above. However, at post-stage 1 and
post-stage 2, the CSP FCN variant with resampling performed
superiorly across the whole group. At pre-stage 1, the Two-Phase
FCN variant ranked best. Across all user input groups, the best
performing FCN variants of post-stage 3 repair and all stages of
repair combined were the only FCN variants performing superior
without resampling.

FCN Segmentation Using the Annular
Curve
After adding the annular curve as an input, for all stages
combined and individual stages (post-repair 1, post-repair 2), the
CSP FCN input configuration with resampling had the highest
rank with the highest DSC and lowest MBD on average. For
pre-stage 1 and post-stage 3, the Two-Phase FCN variant ranked
highest (Table 2).

FCN Segmentation Using the Commissural
Landmarks
When the commissural landmarks formed the only auxiliary
inputs, for all stages combined and individual stages (pre-stage
1, post-stage 1), the Single-Phase FCN input configuration with
resampling had the highest rank with the lowest MBD on average
(Table 3). For post-stage 2 repair and post-stage 3 repair, the
Two-Phase FCN variant and the CSP FCN variant, respectively,
ranked highest.

FCN Segmentation Using the Annular
Curve and Commissural Landmarks
When the annular curve and commissural landmarks combined
were used, for all stages combined and individual stages (post-
stage 1, post-stage 2) the CSP FCN input configuration with
resampling had the highest rank with the lowest MBD on average
(Table 4). For pre-stage 1 and post-stage 3, the Single-Phase FCN
variant ranked highest.

Comparison of FCN Inference Results to
Reproducibility of Manual Segmentation
Table 5 compares FCN segmentation accuracy metrics for the
best input configurations to each other and to those of expert
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FIGURE 5 | Dice Similarity Coefficient (DSC) for all stages combined for all Input Frame Combinations (Single-Phase, Two-Phase, Four-Phase and CSP) and all Binary

Combinations of the Annular Curve Input (Ann), Commissural Landmarks Input (Com) and Resampling (Res). FCN input configurations using more inputs performed

better than those with fewer inputs. The number of 3DE input frames suggested a less clear pattern, where more input frames did not necessarily improve the FCN

output segmentations. The number of input frames did not yield a large effect on the FCN segmentations compared to the introduction of other auxiliary FCN inputs

and the inclusion of resampling. Segmentation accuracy is presented for individual leaflets (anterior, posterior, septal) and the individual leaflet average. The boxes

represent median DSC with IQR. The whiskers present 1.5*IQR past the low and high quartiles. The diamonds indicate outliers.

human segmenters. In particular, the FCN using the annular
curve and commissural landmarks as inputs was superior to
the same expert segmenter repeating a given segmentation on
average. When using the annulus only or the commissures
only, the FCN performed nearly equivalently to the same expert
segmenter repeating a given segmentation, and superiorly to the
difference between two experts segmenting the same image. FCN
input of images alone resulted in a somewhat lower DSC and
greater MBD than the measurements of inter- and intra-rater
variability.

Comparison of FCN
The median DSC, median MBD, and corresponding p-values
for merged leaflets and averages across individual leaflets
are shown in Tables 6, 7, respectively. These values are
provided for individual stages of repair and for all stages of
repair combined.

For the merged leaflets, at all stages combined, significant
differences (p < 0.05) could be found in almost all pairwise
comparisons of the best ranked FCN variants. Notably, no
significant difference could be found in DSC and MBD
between annular curve input and the combined inputs of

annular curve and commissural landmarks. Similarly, in
individual stages, no significant difference could be found
in DSC and MBD (except post-stage 2 repair) between
annular curve input and the combined inputs of annular
curve and commissural landmarks. Furthermore, no significant
difference could be found for MBD and/or DSC between
using images only and the input of commissural landmarks.
At post-stage 1, the merged leaflets showed no significant
difference for DSC between the input of annular curve and
commissural landmarks.

For the individual leaflet averages in all stages combined,
almost all pairwise comparisons showed significant differences.
However, no significant difference could be found in DSC when
comparing annular curve only input and commissural landmarks
only input. In individual stages of repair, no significant difference
could be found for DSC and MBD (pre-stage 1, post-stage 1,
and post-stage 2) when comparing annular curve only input and
commissural landmarks only input. In addition, no significant
difference in DSC (post-stage 1 and post-stage 2) andMBD (post-
stage 2 and post-stage 3) could be found between using images
only and the annular curve input only. Finally, at post-stage 2
repair, no significant difference could be found for DSC between
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FIGURE 6 | Mean Boundary Distance (MBD) for all stages combined for all Input Frame Combinations (Single-Phase, Two-Phase, Four-Phase and CSP) and all Binary

Combinations of the Annular Curve Input (Ann), Commissural Landmarks Input (Com) and Resampling (Res). Segmentation accuracy is presented for individual

leaflets (anterior, posterior, septal) and the individual leaflet average. The boxes represent median MBD with IQR. The whiskers present 1.5*IQR past the low and high

quartiles. The diamonds indicate outliers.

TABLE 1 | Inference Results with Input Image(s) Only across all stages of repair.

Cropped, oriented, resampled Cropped, oriented, NOT resampled

Single-Phase Two-Phase Four-Phase CSP Single-Phase Two-Phase Four–Phase CSP

D
S
C

Anterior 0.71[0.63–0.75] 0.72[0.68–0.77] 0.73[0.68–0.78] 0.74[0.69–0.79] 0.72[0.66–0.76] 0.73[0.67–0.78] 0.74[0.68–0.77] 0.73[0.66–0.78]

Posterior 0.63[0.58–0.73] 0.66[0.61–0.73] 0.66[0.58–0.72] 0.69[0.65–0.76] 0.66[0.55–0.71] 0.67[0.57–0.72] 0.65[0.6–0.71] 0.64[0.57–0.71]

Septal 0.65[0.55–0.69] 0.67[0.57–0.71] 0.64[0.55–0.73] 0.69[0.58–0.75] 0.64[0.54–0.7] 0.67[0.58–0.71] 0.65[0.53–0.72] 0.68[0.53–0.72]

Merged 0.75[0.7–0.78] 0.77[0.73–0.8] 0.76[0.73–0.8] 0.77[0.72–0.81] 0.74[0.7–0.79] 0.77[0.73–0.81] 0.76[0.71–0.81] 0.76[0.71–0.8]

Average 0.64[0.61–0.7] 0.68[0.64–0.72] 0.67[0.63–0.72] 0.7[0.67–0.74] 0.65[0.61–0.7] 0.67[0.64–0.75] 0.68[0.63–0.73] 0.67[0.61–0.72]

M
B
D

Anterior 1.03[0.6–1.31] 0.92[0.55–1.36] 0.97[0.58–1.22] 0.85[0.49–1.15] 0.91[0.61–1.41] 0.95[0.55–1.49] 0.81[0.56–1.33] 0.96[0.53–1.26]

Posterior 0.72[0.55–0.97] 0.73[0.53–1.2] 0.72[0.53–1.03] 0.74[0.55–1.04] 0.81[0.53–1] 0.77[0.54–1.18] 0.88[0.61–1.04] 0.66[0.56–0.99]

Septal 0.79[0.64–1.01] 0.79[0.59–0.99] 0.8[0.63–0.99] 0.65[0.52–0.93] 0.88[0.66–1.28] 0.79[0.55–1.01] 0.75[0.57–0.98] 0.73[0.59–0.87]

Merged 0.67[0.56–0.82] 0.6[0.46–0.69] 0.62[0.52–0.81] 0.59[0.47–0.79] 0.72[0.58–1.09] 0.66[0.49–0.88] 0.65[0.49–0.9] 0.61[0.5–0.79]

Average 0.81[0.66–1.19] 0.84[0.64–1.14] 0.83[0.65–1.01] 0.75[0.61–1.14] 0.82[0.68–1.24] 0.81[0.56–1.27] 0.81[0.71–1.09] 0.78[0.6–1.12]

DSC and MBD measurements are presented for individual leaflets (anterior, posterior, septal), merged leaflets and average across individual leaflets. The columns represent different

image frame inputs with and without resampling. The column of the best ranked FCN input configuration in bold. Metric values are displayed as median [IQR].

using images only and the input of commissural landmarks
only. In all individual stages of repair (except post-stage 1)
the commissural landmarks alongside with the annular curve
performed superiorly compared to the annular curve alone or the
commissural landmarks alone.

Generally, for both the merged leaflets and the individual
leaflet averages, the annular curve input alone performed
superiorly to the input of commissural landmarks alone. Also,
additional user inputs always resulted in a higher DSC and a
lower MBD. See Tables 6, 7 for more details.
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TABLE 2 | Inference Results Using Annular Curve Input across all stages of repair.

Cropped, oriented, resampled Cropped, oriented, NOT resampled

Single-Phase Two-Phase Four-Phase CSP Single-Phase Two-Phase Four–Phase CSP

D
S
C

Anterior 0.79[0.74–0.82] 0.79[0.76–0.81] 0.79[0.75–0.81] 0.79[0.75–0.82] 0.74[0.71–0.79] 0.77[0.72–0.8] 0.75[0.72–0.79] 0.74[0.72–0.77]

Posterior 0.74[0.72–0.79] 0.74[0.68–0.79] 0.74[0.7–0.78] 0.75[0.73–0.8] 0.7[0.65–0.76] 0.74[0.69–0.76] 0.7[0.67–0.76] 0.7[0.64–0.74]

Septal 0.75[0.68–0.82] 0.76[0.7–0.82] 0.74[0.66–0.8] 0.77[0.7–0.82] 0.68[0.58–0.72] 0.73[0.65–0.79] 0.69[0.63–0.75] 0.7[0.63–0.74]

Merged 0.86[0.8–0.87] 0.85[0.8–0.88] 0.84[0.8–0.86] 0.86[0.81–0.88] 0.81[0.77–0.83] 0.83[0.8–0.85] 0.81[0.77–0.84] 0.8[0.74–0.82]

Average 0.76[0.7–0.81] 0.75[0.72–0.8] 0.75[0.71–0.78] 0.77[0.73–0.81] 0.7[0.66–0.74] 0.75[0.69–0.77] 0.7[0.68–0.76] 0.71[0.67–0.74]

M
B
D

Anterior 0.77[0.46–1.01] 0.7[0.4–0.96] 0.64[0.44–0.93] 0.63[0.48–0.89] 0.75[0.61–1.25] 0.7[0.45–1.21] 0.83[0.58–1.2] 0.78[0.64–1.09]

Posterior 0.59[0.46–0.8] 0.47[0.4–0.67] 0.59[0.45–0.74] 0.5[0.38–0.63] 0.68[0.54–0.77] 0.63[0.49–0.9] 0.59[0.47–1.04] 0.6[0.48–0.99]

Septal 0.58[0.43–0.77] 0.57[0.38–0.73] 0.56[0.44–0.71] 0.46[0.36–0.73] 0.8[0.65–1] 0.63[0.44–0.89] 0.63[0.47–1] 0.74[0.57–1]

Merged 0.34[0.26–0.39] 0.33[0.24–0.39] 0.38[0.29–0.44] 0.35[0.23–0.4] 0.48[0.38–0.58] 0.49[0.38–0.62] 0.44[0.28–0.57] 0.55[0.46–0.68]

Average 0.62[0.53–0.79] 0.55[0.46–0.86] 0.61[0.51–0.86] 0.6[0.44–0.74] 0.78[0.65–0.97] 0.7[0.53–0.86] 0.72[0.57–0.95] 0.71[0.62–0.89]

DSC and MBD measurements are presented for individual leaflets (anterior, posterior, septal), merged leaflets and average across individual leaflets. The columns represent different

image frame inputs with and without resampling. The column of the best ranked FCN input configuration in bold. Metric values are displayed as median [IQR].

TABLE 3 | Inference Results Using the Commissural Landmarks across all stages of repair.

Cropped, oriented, resampled Cropped, oriented, NOT resampled

Single-Phase Two-Phase Four-Phase CSP Single-Phase Two-Phase Four–Phase CSP

D
S
C

Anterior 0.81[0.76–0.83] 0.8[0.74–0.82] 0.76[0.72–0.8] 0.79[0.73–0.82] 0.77[0.73–0.81] 0.75[0.7–0.79] 0.77[0.71–0.79] 0.76[0.7–0.8]

Posterior 0.77[0.71–0.8] 0.75[0.71–0.78] 0.74[0.68–0.77] 0.76[0.71–0.78] 0.73[0.67–0.78] 0.72[0.65–0.76] 0.7[0.68–0.75] 0.73[0.66–0.75]

Septal 0.76[0.65–0.81] 0.74[0.62–0.78] 0.73[0.58–0.77] 0.76[0.66–0.8] 0.73[0.59–0.77] 0.7[0.56–0.74] 0.7[0.61–0.75] 0.71[0.61–0.75]

Merged 0.82[0.75–0.84] 0.81[0.75–0.83] 0.8[0.74–0.83] 0.81[0.77–0.84] 0.8[0.75–0.83] 0.78[0.74–0.81] 0.79[0.73–0.82] 0.79[0.73–0.81]

Average 0.78[0.68–0.81] 0.76[0.7–0.79] 0.72[0.68–0.78] 0.76[0.7–0.8] 0.75[0.66–0.78] 0.71[0.65–0.76] 0.72[0.66–0.76] 0.73[0.66–0.76]

M
B
D

Anterior 0.48[0.34–0.67] 0.56[0.36–0.74] 0.6[0.46–0.94] 0.53[0.37–0.73] 0.67[0.42–0.8] 0.79[0.59–1.29] 0.6[0.46–1] 0.72[0.48–0.97]

Posterior 0.45[0.35–0.57] 0.43[0.36–0.61] 0.46[0.38–0.68] 0.41[0.31–0.58] 0.55[0.46–0.63] 0.67[0.48–0.93] 0.62[0.43–0.84] 0.63[0.49–0.83]

Septal 0.51[0.37–0.67] 0.57[0.46–0.74] 0.63[0.45–0.82] 0.53[0.45–0.59] 0.61[0.49–0.77] 0.68[0.57–0.96] 0.59[0.47–0.79] 0.75[0.55–0.9]

Merged 0.49[0.4–0.63] 0.5[0.41–0.61] 0.46[0.39–0.66] 0.47[0.37–0.65] 0.59[0.45–0.81] 0.65[0.46–0.91] 0.58[0.49–0.8] 0.6[0.48–0.84]

Average 0.52[0.36–0.63] 0.56[0.4–0.63] 0.61[0.46–0.75] 0.54[0.42–0.69] 0.64[0.46–0.81] 0.77[0.58–1.05] 0.65[0.48–0.9] 0.71[0.52–0.93]

DSC and MBD measurements are presented for individual leaflets (anterior, posterior, septal), merged leaflets and average across individual leaflets. The columns represent different

image frame inputs with and without resampling. The column of the best ranked FCN input configuration in bold. Metric values are displayed as median [IQR].

TABLE 4 | Inference results using annular curve input and commissural landmarks across all stages of repair.

Cropped, oriented, resampled Cropped, oriented, NOT resampled

Single-Phase Two-Phase Four-Phase CSP Single-Phase Two-Phase Four–Phase CSP

D
S
C

Anterior 0.82[0.76–0.85] 0.81[0.78–0.84] 0.83[0.78–0.85] 0.84[0.77–0.86] 0.8[0.74–0.82] 0.81[0.75–0.84] 0.78[0.75–0.8] 0.81[0.76–0.84]

Posterior 0.8[0.74–0.83] 0.78[0.73–0.82] 0.8[0.76–0.83] 0.8[0.74–0.83] 0.77[0.72–0.79] 0.79[0.72–0.83] 0.76[0.71–0.8] 0.77[0.73–0.8]

Septal 0.82[0.73–0.85] 0.77[0.71–0.82] 0.79[0.72–0.84] 0.82[0.76–0.85] 0.73[0.64–0.82] 0.79[0.71–0.83] 0.74[0.69–0.8] 0.79[0.72–0.83]

Merged 0.86[0.81–0.88] 0.85[0.8–0.87] 0.86[0.81–0.87] 0.85[0.82–0.88] 0.83[0.79–0.86] 0.84[0.79–0.87] 0.82[0.79–0.85] 0.84[0.8–0.86]

Average 0.82[0.74–0.84] 0.79[0.74–0.83] 0.81[0.73–0.84] 0.81[0.75–0.84] 0.76[0.69–0.81] 0.79[0.71–0.83] 0.76[0.7–0.8] 0.79[0.71–0.82]

M
B
D

Anterior 0.38[0.29–0.48] 0.42[0.3–0.48] 0.39[0.28–0.51] 0.36[0.27–0.51] 0.5[0.46–0.72] 0.54[0.41–0.61] 0.47[0.42–0.68] 0.51[0.38–0.61]

Posterior 0.37[0.28–0.43] 0.4[0.28–0.49] 0.35[0.28–0.44] 0.37[0.31–0.4] 0.52[0.45–0.58] 0.45[0.27–0.59] 0.53[0.43–0.6] 0.44[0.39–0.62]

Septal 0.34[0.26–0.48] 0.41[0.3–0.51] 0.41[0.23–0.51] 0.37[0.26–0.48] 0.57[0.43–0.73] 0.49[0.34–0.6] 0.51[0.39–0.79] 0.52[0.3–0.64]

Merged 0.34[0.25–0.4] 0.36[0.24–0.42] 0.35[0.21–0.4] 0.33[0.26–0.4] 0.47[0.34–0.55] 0.43[0.29–0.64] 0.44[0.35–0.56] 0.43[0.31–0.5]

Average 0.38[0.28–0.46] 0.42[0.3–0.5] 0.4[0.3–0.46] 0.38[0.3–0.46] 0.56[0.44–0.69] 0.51[0.37–0.59] 0.56[0.39–0.65] 0.5[0.38–0.62]

DSC and MBD measurements are presented for individual leaflets (anterior, posterior, septal), merged leaflets and average across individual leaflets. The columns represent different

image frame inputs with and without resampling. The column of the best ranked FCN input configuration in bold. Metric values are displayed as median [IQR].
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TABLE 5 | Comparison of the best ranked inference results across all stages of repair to expert segmentation.

Input Config FCN Expert

Images Only Annulus Commissures Annulus + Commissures Inter–User Intra–User

Input Frames CSP CSP Single-Phase CSP

Resampling No Yes Yes Yes N/A N/A

D
S
C

Anterior 0.73[0.66–0.78] 0.79[0.75–0.82] 0.81[0.76–0.83] 0.84[0.77–0.86] 0.78[0.75–0.8] 0.84[0.83–0.86]

Posterior 0.64[0.57–0.71] 0.75[0.73–0.8] 0.77[0.71–0.8] 0.8[0.74–0.83] 0.73[0.69–0.76] 0.77[0.71–0.8]

Septal 0.68[0.53–0.72] 0.77[0.7–0.82] 0.76[0.65–0.81] 0.82[0.76–0.85] 0.72[0.68–0.78] 0.84[0.79–0.85]

Merged 0.76[0.71–0.8] 0.86[0.81–0.88] 0.82[0.75–0.84] 0.85[0.82–0.88] 0.81[0.79–0.84] 0.87[0.85–0.87]

Average 0.67[0.61–0.72] 0.77[0.73–0.81] 0.78[0.68–0.81] 0.81[0.75–0.84] 0.74[0.7–0.78] 0.82[0.79–0.83]

M
B
D

Anterior 0.96[0.53–1.26] 0.63[0.48–0.89] 0.48[0.34–0.67] 0.36[0.27–0.51] 0.83[0.52–1.05] 0.49[0.38–0.54]

Posterior 0.66[0.56–0.99] 0.5[0.38–0.63] 0.45[0.35–0.57] 0.37[0.31–0.4] 0.93[0.82–1.17] 0.59[0.46–0.7]

Septal 0.73[0.59–0.87] 0.46[0.36–0.73] 0.51[0.37–0.67] 0.37[0.26–0.48] 0.92[0.64–0.97] 0.62[0.41–1.07]

Merged 0.61[0.5–0.79] 0.35[0.23–0.4] 0.49[0.4–0.63] 0.33[0.26–0.4] 0.88[0.63–1.03] 0.39[0.32–0.49]

Average 0.78[0.6–1.12] 0.6[0.44–0.74] 0.52[0.36–0.63] 0.38[0.3–0.46] 0.92[0.77–0.96] 0.55[0.46–0.69]

DSC and MBD measurements are presented for individual leaflets (anterior, posterior, septal), merged leaflets and average across individual leaflets. All metric values are displayed as

median [IQR]. The best ranked FCN input configuration across individual user input groups are displayed on the left and the expert segmenter results (inter-user and intra-user) are shown

on the right. For individual leaflet averages, with providing more user input, the FCN results gradually improve. When providing the annulus contour, the FCN performs superior to the

inter–user and is on par with the intra-user segmentation results. When providing the annulus contour and commissural landmarks combined, the FCN outperforms expert segmentation.

Examples of FCN Inference
Example segmentations produced by FCN inference at the 95th,
75th, 50th, 25th, and 5th percentiles for MBD are shown in
Figure 7. High-quality segmentations closely approximated the
leaflet structure, and the overall configuration was correct down
to the 5th percentile. However, in some cases, signal dropout in
the image resulted in the FCN creating a hole in the leaflet, while
the expert segmenter filled the hole due to externally derived
knowledge of the valve function (review of 2D color Doppler
images). The time to run scripted inference on a single dataset
was under 6 seconds on a single GPU and approximately 30
seconds on a single CPU.

DISCUSSION

TV failure remains a critical factor in both the quality of
life and survival of patients with HLHS (1). Rapid, accurate
creation of valve models remains a roadblock to the application
of quantitative modeling and simulation of the tricuspid valve
in children with HLHS (6, 14, 16, 17). To the best of our
knowledge, this is the first description of a DL-based approach
to the segmentation of TV leaflets from 3DE, and to the
segmentation of valves in children with congenital heart disease.
Our work indicates that FCN-based segmentation may increase
the clinical feasibility of 3DE-derived patient-specific modeling
and quantification in HLHS and other challenging populations
with both congenital and acquired valve disease.

Previous work on the segmentation of valve leaflets in 3DE
has focused on TEE 3DE images of the mitral valve in adult
patients (40–45). In particular, Pouch et al. demonstrated mitral
valve segmentation by combining multi-atlas techniques with
deformable models in both semi-automatic (18, 40) and fully-
automatic workflows (41). Notably, the TEE probe’s proximity to
the mitral valve and excellent acoustic windows typically results

in higher quality (higher signal to noise) than those acquired by
TTE. However, at present, there is no 3D TEE probe suitable for
children less than 20 kg. Therefore, TTE is often used to generate
3DE images in pediatric cases. Transthoracic images have the
additional benefit of being able to be acquired without sedation
as part of routine clinical evaluations in children and adults.
However, children are often mobile during exams which makes
it more challenging to acquire high quality images. Children are
also less likely to cooperate for high temporal resolution, EKG-
gated, breath held acquisitions. These factors may contribute
to decreased image quality (decreased signal to noise, increased
artifact) in TTE images relative to TEE images. Given the
difficulty of the problem, there is relatively little experience
in the literature concerning segmentation of individual valve
leaflets from TTE, particularly in children and congenital heart
disease (16).

Segmentation of individual valve leaflets from 3DE in general
is also challenging due to relatively low contrast between the
leaflets and blood and the lack of a clear boundary of the
valve periphery (annulus) with the surrounding heart. Especially
challenging is the identification of all three individual leaflet
boundaries (anterior, posterior, and septal) in systole (valve
closed; leaflets apposed). As a result, the majority of existing
studies of the TV in HLHS have quantified the valve leaflets as
a single merged unit which does not clearly evaluate the ability
to separate individual leaflets (12, 13). Pouch et al. evaluated a
semi-automated atlas and deformable model-based framework
for the segmentation of TTE images of the TV in a handful of
pediatric patients with HLHS (19). Notably, this previous work
only describes the MBD for the merged leaflet structure, and
not the individual leaflets. As such, the merged MBD metric
forms the only basis for comparison between these studies and
our current study. This comparison is provided in Table 8. For
TV segmentation in HLHS subjects, Pouch et al. demonstrated
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TABLE 6 | Median DSC and Median MBD of merged leaflets, and p values for two–sided non–parametric Wilcoxon signed–rank test at individual stages and all stages

combined.

FCN Configuration A FCN Configuration B Med. DSC A Med. DSC B p Value Med. MBD A Med. MBD B p Value

P
re
–S

ta
g
e
1

(Two-Phase) Im-Only-Res (Two-Phase) Ann-Res 0.80 [0.77–0.81] 0.88 [0.87–0.89] 0.02* 0.44 [0.41–0.47] 0.19 [0.17–0.23] 0.02*

(Two-Phase) Im-Only-Res (Single-Phase) Com-Res 0.80 [0.77–0.81] 0.85 [0.84–0.86] 0.02* 0.44 [0.41–0.47] 0.39 [0.27–0.43] 0.22

(Two-Phase) Im-Only-Res (Single-Phase) Ann-Com-Res 0.80 [0.77–0.81] 0.89 [0.87–0.89] 0.02* 0.44 [0.41–0.47] 0.18 [0.16–0.21] 0.02*

(Two-Phase) Ann-Res (Single-Phase) Com-Res 0.88 [0.87–0.89] 0.85 [0.84–0.86] 0.02* 0.19 [0.17–0.23] 0.39 [0.27–0.43] 0.05*

(Two-Phase) Ann-Res (Single-Phase) Ann-Com-Res 0.88 [0.87–0.89] 0.89 [0.87–0.89] 0.94 0.19 [0.17–0.23] 0.18 [0.16–0.21] 0.16

(Single-Phase) Com-Res (Single-Phase) Ann-Com-Res 0.85 [0.84–0.86] 0.89 [0.87–0.89] 0.02* 0.39 [0.27–0.43] 0.18 [0.16–0.21] 0.05*

P
o
st
–S

ta
g
e
1

(CSP) Im-Only-Res (CSP) Ann-Res 0.70 [0.68–0.75] 0.83 [0.78–0.84] 0.03* 0.66 [0.45–0.84] 0.35 [0.26–0.38] 0.02*

(CSP) Im-Only-Res (Single-Phase) Com-Res 0.70 [0.68–0.75] 0.75 [0.74–0.76] 0.03* 0.66 [0.45–0.84] 0.54 [0.45–0.63] 0.08

(CSP) Im-Only-Res (CSP) Ann-Com-Res 0.70 [0.68–0.75] 0.83 [0.76–0.85] 0.02* 0.66 [0.45–0.84] 0.40 [0.33–0.42] 0.02*

(CSP) Ann-Res (Single-Phase) Com-Res 0.83 [0.78–0.84] 0.75 [0.74–0.76] 0.11 0.35 [0.26–0.38] 0.54 [0.45–0.63] 0.05*

(CSP) Ann-Res (CSP) Ann-Com-Res 0.83 [0.78–0.84] 0.83 [0.76–0.85] 0.47 0.35 [0.26–0.38] 0.40 [0.33–0.42] 0.22

(Single-Phase) Com-Res (CSP) Ann-Com-Res 0.75 [0.74–0.76] 0.83 [0.76–0.85] 0.08 0.54 [0.45–0.63] 0.40 [0.33–0.42] 0.08

P
o
st
–S

ta
g
e
2

(CSP) Im-Only-Res (CSP) Ann-Res 0.75 [0.74–0.78] 0.81 [0.77–0.83] 0.02* 0.57 [0.54–0.73] 0.37 [0.36–0.47] 0.03*

(CSP) Im-Only-Res (Two-Phase) Com-Res 0.75 [0.74–0.78] 0.76 [0.75–0.80] 0.08 0.57 [0.54–0.73] 0.54 [0.47–0.57] 0.05*

(CSP) Im-Only-Res (CSP) Ann-Com-Res 0.75 [0.74–0.78] 0.82 [0.79–0.84] 0.02* 0.57 [0.54–0.73] 0.34 [0.33–0.40] 0.02*

(CSP) Ann-Res (Two-Phase) Com-Res 0.81 [0.77–0.83] 0.76 [0.75–0.80] 0.02* 0.37 [0.36–0.47] 0.54 [0.47–0.57] 0.05*

(CSP) Ann-Res (CSP) Ann-Com-Res 0.81 [0.77–0.83] 0.82 [0.79–0.84] 0.11 0.37 [0.36–0.47] 0.34 [0.33–0.40] 0.02*

(Two-Phase) Com-Res (CSP) Ann-Com-Res 0.76 [0.75–0.80] 0.82 [0.79–0.84] 0.02* 0.54 [0.47–0.57] 0.34 [0.33–0.40] 0.03*

P
o
st
–S

ta
g
e
3

(CSP) Im-Only (Two-Phase) Ann-Res 0.80 [0.76–0.82] 0.87 [0.86–0.88] 0.02* 0.61 [0.47–1.37] 0.34 [0.30–0.37] 0.02*

(CSP) Im-Only (CSP) Com-Res 0.80 [0.76–0.82] 0.84 [0.82–0.85] 0.22 0.61 [0.47–1.37] 0.58 [0.47–0.67] 0.38

(CSP) Im-only (Single-Phase) Ann-Com-Res 0.80 [0.76–0.82] 0.88 [0.87–0.88] 0.02* 0.61 [0.47–1.37] 0.33 [0.32–0.37] 0.02*

(Two-Phase) Ann-Res (CSP) Com-Res 0.87 [0.86–0.88] 0.84 [0.82–0.85] 0.02* 0.34 [0.30–0.37] 0.58 [0.47–0.67] 0.03*

(Two-Phase) Ann-Res (Single-Phase) Ann-Com-Res 0.87 [0.86–0.88] 0.88 [0.87–0.88] 0.81 0.34 [0.30–0.37] 0.33 [0.32–0.37] 0.94

(CSP) Com-Res (Single-Phase) Ann-Com-Res 0.84 [0.82–0.85] 0.88 [0.87–0.88] 0.02* 0.58 [0.47–0.67] 0.33 [0.32–0.37] 0.02*

A
ll
S
ta
g
e
s

(CSP) Im-Only (CSP) Ann-Res 0.76 [0.71–0.80] 0.86 [0.81–0.88] <0.001* 0.61 [0.50–0.79] 0.35 [0.23–0.40] <0.001*

(CSP) Im-Only (Single-Phase) Com-Res 0.76 [0.71–0.80] 0.82 [0.75–0.84] <0.001* 0.61 [0.50–0.79] 0.49 [0.40–0.63] 0.004*

(CSP) Im-Only (CSP) Ann-Com-Res 0.76 [0.71–0.80] 0.85 [0.82–0.88] <0.001* 0.61 [0.50–0.79] 0.33 [0.26–0.40] <0.001*

(CSP) Ann-Res (Single-Phase) Com-Res 0.86 [0.81–0.88] 0.82 [0.75–0.84] <0.001* 0.35 [0.23–0.40] 0.49 [0.40–0.63] <0.001*

(CSP) Ann-Res (CSP) Ann-Com-Res 0.86 [0.81–0.88] 0.85 [0.82–0.88] 0.09 0.35 [0.23–0.40] 0.33 [0.26–0.40] 0.49

(Single-Phase) Com-Res (CSP) Ann-Com-Res 0.82 [0.75–0.84] 0.85 [0.82–0.88] <0.001* 0.49 [0.40–0.63] 0.33 [0.26–0.40] <0.001*

The best ranked FCN input configurations across individual user inputs were compared. Different stages are presented along the larger row blocks. Metric values are displayed as

median [IQR]. No additional user inputs (Im-Only), annular curve input (Ann), commissural landmarks input (Com) and resampling (Res). Significant p values (<0.05) marked with an

asteroid (*). Significant differences could be found in almost all pairwise combinations except when comparing the use of input images only with commissural landmarks input only and

when comparing the annular curve input only and the annular curve combined with the commissural landmarks. In addition, for post–stage 1 repair, no significant differences could be

found when comparing annular curve input only with commissural landmarks input only and when comparing commissural landmarks only with the combination of annular curve and

commissural landmarks.

segmentation with an MBD of 0.8 ± 0.2mm relative to the
TV ground truth expert segmentations. Our best current FCN
approach (CSP, annular curve and commissural landmarks, with
resampling) resulted in an average MBD of 0.34 ± 0.11mm
and a median MBD of 0.33 [0.26–0.4] mm, which outperforms
this previously published technique. Furthermore, this FCN
approach achieved ameanMBD of 0.38± 0.13mm and amedian
MBD of 0.38 [0.3–0.46] mm for individual leaflets, as opposed to
the merged valve. Our method also compares favorably to similar
techniques applied to segmentation of the mitral valve from TEE,
which may have benefited from the higher signal to noise typical
of mitral valve TEE images relative to TTE images (Table 3).

There are other meaningful differences between the DL-based
approach and the previously published multi-atlas/deformable
model techniques. The multi-atlas-based approach can create a

segmentation with only a few example atlases, while the DL-
based approach demonstrated here used a much larger number
of segmentations for training. Thus, in the situation where only
a few atlases are available, the multi-atlas-based methods may be
preferable. However, the atlases chosen are typically required to
be highly representative of the valve structure to be segmented or
risk biasing the segmentation.

Both atlas-based and DL-based methods require user
interaction in the form of landmark placement to roughly register
the images and initialize semi-automatic modeling. However,
the semi-automatic atlas-based approach required the placement
of 5 landmarks: an annular septal point, three commissural
landmarks, and a leaflet centerpoint where the three leaflets
come together. In our best DL-based technique, we provided
the annular curve and commissural landmarks to the FCN.
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TABLE 7 | Median DSC and MBD of the average across leaflets, and p values for two–sided non–parametric Wilcoxon signed–rank test at individual stages and all stages

combined.

FCN Configuration A FCN Configuration B Med. DSC A Med. DSC B p Value Med. MBD A Med. MBD B p Value

P
re
–S

ta
g
e
1

(Two-Phase) Im-Only-Res (Two-Phase) Ann-Res 0.72[0.69–0.76] 0.81[0.76–0.83] 0.02* 0.59[0.49–0.66] 0.41[0.34–0.48] 0.03*

(Two-Phase) Im-Only-Res (Single-Phase) Com-Res 0.72[0.69–0.76] 0.81[0.80–0.81] 0.02* 0.59[0.49–0.66] 0.30[0.26–0.33] 0.02*

(Two-Phase) Im-Only-Res (Single-Phase) Ann-Com-Res 0.72[0.69–0.76] 0.85[0.82–0.86] 0.02* 0.59[0.49–0.66] 0.21[0.21–0.27] 0.02*

(Two-Phase) Ann-Res (Single-Phase) Com-Res 0.81[0.76–0.83] 0.81[0.80–0.81] 0.81 0.41[0.34–0.48] 0.30[0.26–0.33] 0.08

(Two-Phase) Ann-Res (Single-Phase) Ann-Com-Res 0.81[0.76–0.83] 0.85[0.82–0.86] 0.02* 0.41[0.34–0.48] 0.21[0.21–0.27] 0.03*

(Single-Phase) Com-Res (Single-Phase) Ann-Com-Res 0.81[0.80–0.81] 0.85[0.82–0.86] 0.02* 0.30[0.26–0.33] 0.21[0.21–0.27] 0.02*

P
o
st
–S

ta
g
e
1

(CSP) Im-Only-Res (CSP) Ann-Res 0.59[0.57–0.69] 0.74[0.65–0.79] 0.08 0.63[0.48–1.11] 0.44[0.38–0.60] 0.05*

(CSP) Im-Only-Res (Single-Phase) Com-Res 0.59[0.57–0.69] 0.67[0.63–0.70] 0.05* 0.63[0.48–1.11] 0.52[0.46–0.67] 0.05*

(CSP) Im-Only-Res (CSP) Ann-Com-Res 0.59[0.57–0.69] 0.76[0.70–0.79] 0.02* 0.63[0.48–1.11] 0.46[0.32–0.53] 0.02*

(CSP) Ann-Res (Single-Phase) Com-Res 0.74[0.65–0.79] 0.67[0.63–0.70] 0.38 0.44[0.38–0.60] 0.52[0.46–0.67] 0.81

(CSP) Ann-Res (CSP) Ann-Com-Res 0.74[0.65–0.79] 0.76[0.70–0.79] 0.05* 0.44[0.38–0.60] 0.46[0.32–0.53] 0.03*

(Single-Phase) Com-Res (CSP) Ann-Com-Res 0.67[0.63–0.70] 0.76[0.70–0.79] 0.08 0.52[0.46–0.67] 0.46[0.32–0.53] 0.22

P
o
st
–S

ta
g
e
2

(CSP) Im-Only-Res (CSP) Ann-Res 0.70[0.69–0.72] 0.74[0.70–0.75] 0.22 0.72[0.70–0.90] 0.67[0.64–0.74] 0.38

(CSP) Im-Only-Res (Two-Phase) Com-Res 0.70[0.69–0.72] 0.70[0.69–0.75] 0.22 0.72[0.70–0.90] 0.60[0.58–0.65] 0.05*

(CSP) Im-Only-Res (CSP) Ann-Com-Res 0.70[0.69–0.72] 0.76[0.73–0.80] 0.02* 0.72[0.70–0.90] 0.42[0.41–0.45] 0.02*

(CSP) Ann-Res (Two-Phase) Com-Res 0.74[0.70–0.75] 0.70[0.69–0.75] 1.00 0.67[0.64–0.74] 0.60[0.58–0.65] 0.30

(CSP) Ann-Res (CSP) Ann-Com-Res 0.74[0.70–0.75] 0.76[0.73–0.80] 0.03* 0.67[0.64–0.74] 0.42[0.41–0.45] 0.02*

(Two-Phase) Com-Res (CSP) Ann-Com-Res 0.70[0.69–0.75] 0.76[0.73–0.80] 0.02* 0.60[0.58–0.65] 0.42[0.41–0.45] 0.02*

P
o
st
–S

ta
g
e
3

(CSP) Im-Only (Two-Phase) Ann-Res 0.69[0.64–0.76] 0.79[0.78–0.80] 0.03* 0.98[0.74–1.54] 0.73[0.58–1.04] 0.38

(CSP) Im-Only (CSP) Com-Res 0.69[0.64–0.76] 0.80[0.78–0.82] 0.02* 0.98[0.74–1.54] 0.54[0.44–0.64] 0.02*

(CSP) Im-Only (Single-Phase) Ann-Com-Res 0.69[0.64–0.76] 0.84[0.83–0.85] 0.02* 0.98[0.74–1.54] 0.36[0.32–0.37] 0.02*

(Two-Phase) Ann-Res (CSP) Com-Res 0.79[0.78–0.80] 0.80[0.78–0.82] 0.30 0.73[0.58–1.04] 0.54[0.44–0.64] 0.02*

(Two-Phase) Ann-Res (Single-Phase) Ann-Com-Res 0.79[0.78–0.80] 0.84[0.83–0.85] 0.02* 0.73[0.58–1.04] 0.36[0.32–0.37] 0.02*

(CSP) Com-Res (Single-Phase) Ann-Com-Res 0.80[0.78–0.82] 0.84[0.83–0.85] 0.02* 0.54[0.44–0.64] 0.36[0.32–0.37] 0.02*

A
ll
S
ta
g
e
s

(CSP) Im-Only (CSP) Ann-Res 0.67[0.61–0.72] 0.77[0.73–0.81] <0.001* 0.78[0.60–1.12] 0.60[0.44–0.74] <0.001*

(CSP) Im-Only (Single-Phase) Com-Res 0.67[0.61–0.72] 0.78[0.68–0.81] <0.001* 0.78[0.60–1.12] 0.52[0.36–0.63] <0.001*

(CSP) Im-Only (CSP) Ann-Com-Res 0.67[0.61–0.72] 0.81[0.75–0.84] <0.001* 0.78[0.60–1.12] 0.38[0.30–0.46] <0.001*

(CSP) Ann-Res (Single-Phase) Com-Res 0.77[0.73–0.81] 0.78[0.68–0.81] 0.67 0.60[0.44–0.74] 0.52[0.36–0.63] 0.02*

(CSP) Ann-Res (CSP) Ann-Com-Res 0.77[0.73–0.81] 0.81[0.75–0.84] <0.001* 0.60[0.44–0.74] 0.38[0.30–0.46] <0.001*

(Single-Phase) Com-Res (CSP) Ann-Com-Res 0.78[0.68–0.81] 0.81[0.75–0.84] <0.001* 0.52[0.36–0.63] 0.38[0.30–0.46] <0.001*

The best ranked FCN input configurations across individual user inputs were compared. Different stages are presented along the larger row blocks. Metric values are displayed as

median [IQR]. No additional user inputs (Im-Only), annular curve input (Ann), commissural landmarks input (Com) and resampling (Res). Significant p values (<0.05) marked with an

asteroid (*). At individual stages of repair and all stages combined, the combination of annular curve input and commissural landmarks is significantly different from both the images only

input and the annular curve only input. No significant difference could be found when comparing the annular curve only input and commissural landmarks only input.

TABLE 8 | Comparison of MBD of the merged leaflet structure between

previously published techniques and our current FCN approach.

MBD

Mitral

Pouch et al. (semi-automatic) (18) 1.3 ± 0.7

Pouch et al. (fully-automatic) (41) 0.6 ± 0.2

Tricuspid

Pouch et al. (semi-automatic) (19) 0.8 ± 0.2

This FCN method (semi-automatic) 0.3 ± 0.1

When comparing results for a merged valve, providing the
annular curve alone was superior to using only the commissural
landmarks as input. On the contrary, when comparing results

for the average over separate individual leaflets, providing the
commissures alone was superior to using only the annulus as
input. It appears that the annular curve may inform restriction of
the segmentation to the valve region, whereas the commissures
help define the boundaries between individual leaflets.

Another difference between prior atlas-based modeling and
our FCN-based modeling is that the atlas-based modeling was
applied in concert with a deformable model. Application of a
deformable model provides a basic structure and ensures leaflet
topology even in the presence of signal dropout in the 3DE image.
Unlike the previous atlas-based approaches, our FCN based
method does not use any prior knowledge of leaflet topology.
Signal dropouts pose a major challenge for valve segmentation
algorithms involving 3DE datasets (46), as demonstrated in
Figure 7. As such, signal dropout can result in holes in the FCN
segmented leaflets. When manually segmenting the TV leaflets,
a human user integrates prior knowledge of leaflet topology
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FIGURE 7 | Examples of Segmentations predicted by the FCN. From Left to Right: 2D view of the MS frame (including MBD displayed at the bottom) and 3D

segmentation model (ventricular view including indicator of 2D slice location) for Manual Segmentation, FCN + Annulus (Ann), and FCN + Ann + Commissures (Com).

From Top to Bottom: 95th, 75th, 50th, 25th, and 5th percentile for MBD based on the best ranked CSP FCN with Ann + Com. The bottom row (5th percentile)

shows an example of ultrasound signal dropout (indicated by arrows) that influenced the inferred segmentation using the annular curve only relative to the manual

segmentation in which the user enforced the topology. When using the commissural landmarks in addition to the annular curve as FCN inputs, individual leaflet

boundary detection improved and FCN segmentation was less sensitive to signal dropouts.

derived from 2D, 2D color, and 3D volume-rendered images
of the TV, and may fill in dropout areas using this extraneous
information. For example, color Doppler imaging both by 2D and
3D can determine the difference between dropout and a real leak
(regurgitation). If there is no color Doppler signal in a dropout
region, the human user knows that the “hole” represents a deficit
of image quality, rather than an actual hole and a source of
regurgitation. Notably, the addition of commissural landmarks as
inputs to the FCN seemed to facilitate removal of false holes due
to signal dropout (Figure 7). However, this was not effective in all
cases. Application of a deformable template could be beneficial,
but may also “overstep”, and fill holes that are actually present
due to regurgitation. In the future, 2D and 3DE color Doppler
information, which human observers utilize to reliably tell the

difference, could be incorporated into the input data to improve
erroneous interpretation of signal dropout.

Incorporation of a shape prior can bring atlas-like information
into an FCN-based framework (23–25). Kervadec et al. tackle
highly unbalanced segmentation by introducing a weighted
loss using embedded shape information of ground truth
segmentation distance maps (25). Medley et al. introduced a
DL-based network for segmentation of the left ventricle (LV) in
cardiac magnetic resonance images using landmarks of active
shape models for object fitting (24). Oktay et al. proposed a
framework for DL-based segmentation of the left ventricle (LV)
in 3DE images using shape priors to follow global anatomical
properties (23). The proposed framework consists of a two
stage segmentation. First, an autoencoder (AE) is trained with
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ground truth segmentation masks to learn a latent representation
embedding global information. Secondly, an FCN is trained
optimizing toward the AE learned latent representation. In
early experiments we trained an AE as introduced in (23), but
segmentation quality did not improve and resulted in overly
homogenized TV leaflet segmentations. One reason for this could
be the large variability in shape of TV leaflets when compared
to the relatively uniform shape of the LV. Finally, in comparison
to DL-based approaches, atlas-based segmentation can be time
consuming. The DL-based segmentation is performed in a
fraction of the time needed for the atlas-based approach on GPU
or more basic CPU hardware.

We explored multiple FCN variants, and the optimal
configuration varied depending on the FCN inputs. FCN variants
which incorporated user input performed better than those with
user input alone. In FCN variants that utilize user inputs, the FCN
variants with resampling generally outperformed no resampling.
This trend extended to both all stages of repair combined and
individual stages of repair.

For the merged leaflet models, no significant difference could
be found between using the annular curve input and the
combination of annular curve and commissural landmarks. The
commissural landmarks are located along the annular curve to
highlight the location at which leaflet separation occurs. As such,
when evaluating the merged TV segmentation, the commissural
landmarks may not add any additional utility given that precise
leaflet separation that would be evaluated by the merged metrics,
and any information they may provide for the border of the valve
is redundant with the annular curve. In contrast, FCN variants
with commissural landmarks show significant improvement
when compared against the FCN variant with images only (and
not annular curve input) suggesting that, in the absence of
the annular curve, commissural landmarks may provide useful
information to the FCN (e.g. provision of region of interest) in
merged leaflets as well as individual leaflets.

Providing additional image frames other than the segmented
MS frame was generally helpful for the more challenging task
of segmentation of individual leaflets. The best performing CSP
FCN input configuration provides consecutive phase frames,
which may provide an indicator about the separation between
leaflets as the leaflets open and close throughout the cardiac
cycle. However, more frames are not always better; the Single-
Phase or Two-Phase approach often performed better than the
Four-Phase or the CSP approach which provided additional
input frames.

The optimal FCN and performance also varied by stage
of repair. As noted, the best performing network for the
complete population was the FCN utilizing consecutive systolic
phases (CSP) with resampling and input of annular curve
and commissural points which provided a MBD of 0.38 [0.3–
0.46] mm and a DSC of 0.81 [0.75–0.84]. For pre-stage 1 and
post-stage 3 repair images, the highest ranked FCN variants
performed best across all stages of repair with an average MBD
of 0.21 [0.21–0.27] mm and 0.36 [0.32–0.37] mm, respectively.
In contrast, the post-stage 1 and post stage 2 performed less
than ideal with an MBD of 0.46 [0.32–0.53] mm and 0.42
[0.41–0.45] mm, respectively. Notably, the majority of our

training images were post-stage 3 repair (57%) and pre-stage
1 repair (18%) which might be the reason for their better
performance and for requiring less input image frames. In
contrast, only 15% of our training images stem from post-stage
1 repair and only 9% of our training data originated from post-
stage 2.

Further optimization of the FCN and the optimal input to
the FCN is an important area for future work. In particular, the
number of frames in a cardiac cycle depends on the acquisition’s
frame rate and the patient’s heart rate. A higher 3DE frame
rate may allow the FCN to resolve more frames during valve
opening and closing, which may inform recognition of leaflet
boundaries. Lastly, the current approach may be optimized by
further exploration of shape-aware techniques (23–25).

DEPLOYMENT OF MODEL

We are actively working to deploy this evolving model for
open translational research use. To accomplish this, we plan on
integrating pretrained models into our 3D Slicer segmentation
workflow. On the client side, the user will provide minimal
inputs (i.e., annular contour). Fully automatic pre-processing
including reorientation, resampling and cropping will be applied,
and associated with additional user inputs (e.g. commissural
landmarks), which will then be sent to the remote server.
The remote server will run inference and provide a rapid
segmentation of the TV from 3DE images to the client
application. Our current efforts are based on the MONAI
framework (47) with networks and their implementation detailed
at https://github.com/JolleyLabCHOP/DeepHeart.

LIMITATIONS

The availability of 3DE images of TV in HLHS (training data)
is relatively small compared to large adult populations. There is
currently no extension of our approach to images of the mitral
or tricuspid valves of normal children or adults as we do not
currently have a large cohort of segmented tricuspid valve/image
pairs in those populations, or the availability of 3DE images
to segment.

In comparison of human segmentation intra/inter-user
variability to DL-based segmentation, the trained FCN model
received a cropped volume based upon the ground truth annular
curve created by a human user. The human user neither
received an annular curve nor a cropped volume for creating the
TV segmentation.

CONCLUSION

Accurate and efficient DL-based semi-automatic segmentation
of the tricuspid valve in HLHS from 3DE images is feasible
and results in an average accuracy on par with a single human
observer, with less variability than that seen between two expert
observers. The most accurate FCN configuration overall utilized
consecutive systolic image phases with resampling as well as
user annotated annular curve and commissural landmarks to
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inform individual leaflet separation. Further development may
enable rapid TV modeling and quantification, which in turn may
inform surgical planning in this complex population. However,
signal dropout remains a challenge, and further development and
optimization are needed.
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