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Motivation

Writing procedure to perform estimation or inference over complex
graphical models is often tedious and error-prone

Existing tools are unsatisfactory

C/C++/Fortran: low productivity
Research codes that come with papers: buggy and difficult to
extend/generalize
Generic engines (WinBUGs, VIBES, etc): overly slow

Our goal: greatly simplify the process of writing Bayesian inference
procedures, while maintaining competitive performance
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Example: Gaussian Mixture Model
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zi ∼ π

xi ∼ N (µzi ,Σzi)
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Estimating a GMM using EM

Optimize a variational objective function:

L(θ,x, q) =

n∑
i=1

Ezi∼qi [log p(xi|µ,Σ) + log p(zi|π)] +
n∑

i=1

Hqi(qi)

with

Ezi∼qi log p(xi|θzi ;µ,Σ) =

m∑
k=1

qik logN (xi|µk,Σk)

Ezi∼qi log p(zi|π) =
m∑
k=1

log qikπk

Hqi(qi) = −
m∑
k=1

qik log(qik)

Dahua Lin A Julia Framework for Bayesian Inference 4 / 16



Estimating a GMM using EM

The optimization procedure alternates the updates between
M-steps:
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Available choices

Use an existing GMM tools (e.g. MATLAB has one):

many are implemented in a way that runs 100x slower than it should
an experiment that should take two days to run now takes half a year –
miss an important conference deadline

Implement it yourself (refer to my implementation in PLI-toolbox)

several hundred lines of code to prepare the infrastructure
several hundred lines of code for the main procedure
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What if you want to extend the model

In pratice, you may want to

change the component from Gauss to something else
add an indicator to filter out outliers
add a prior to component parameters
add a MRF to connect between labels
some combination of the above, ...

Every time I want to adapt/extend the model to a new application, I
ended up

Re-deriving part or all of the updating formulas
Re-writing the main inference procedure
Going through again the debugging cycles
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A New Framework for Bayesian Inference

Key motivation: I am so tired of such tedious cycles, and decided to do
something to make my (and perhaps many others’) life easier.

I had unsuccessful tries of implementing this framework in MATLAB
and Python.

Such a framework inevitably requires lots of abstractions.
The overhead of introducing abstractions is so large that it often takes
up over 90% of the run-time.

I decided to resume this project after I found and were impressed by
Julia

Julia is a very young language (being developed at MIT)
It is the best combination of elegance and performance I have ever
seen.
It is as easy to use as MATLAB, but with a much more powerful type
system and much lower cost of introducing abstractions.
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Overview

I use the following modified version of GMM to illustrate what it would
look like.

⇡

µk

m
zi

xi
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⌃

⌫ �2
0

↵

π ∼ Dirichlet(α)

µk ∼ N (ν, σ20)

zi ∼ π

xi ∼ N (µzi ,Σ)

This is a simple and reasonable
modification, but most GMM
packages out there simply cannot
handle it.
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Factor Graph

We use a generic notion factor to represent the relations between variables.

⇡

µk

m

xi

n

⌃
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�2
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↵

qi

Convert to a factor graph
using mean-field approximation, zi is

replaced by a variational distribution qi here

Dirichlet factor: α,π

Categorical factor: π,qi

Gaussian factor: ν, σ20,µk

Mixture factor: µk,Σ,qi,xi

Entropy factor (hidden) for qi
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Codes: add variables

⇡

µk
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⌃
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�2
0

↵

qi

using BayesInference

model = ModelTemplate("MyGMM")

@add_consts model begin

n : Int

m : Int

d : Int

end

@add_vars model begin

alpha : RealVar

pi : RealVecVar(m)

q : RealMatVar(m, n)

x : RealMatVar(d, n)

nu : RealVecVar(d)

s0 : RealVar

mu : RealMatVar(d, m)

sig : RealMatVar(d, d)

end

Dahua Lin A Julia Framework for Bayesian Inference 11 / 16



Codes: add factors

⇡
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qi

@add_factors model begin

pi_fac : DirichletFactor(alpha, pi)

q_fac : CategoricalFactor(pi, q)

mu_fac : GaussFactor(nu, s0, mu)

mix : Mixture{GaussFactor}

((mu, sig), q, x)

q_ent : CategoricalEntropy(q)

end

model = compile(model)

Thanks to Julia’s multiple dispatch mechanism, a
factor type can handle different types of variables
(e.g. single variable, an array of variables, or a
variational distribution over them, etc)
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Codes: Inference planning

⇡
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An iteration comprises a sequences of
message passing steps

init = auto_init_scheme(model,

:x, :sig, :alpha, :nu, :s0)

# manual planning

updates = @set_iteration model begin

# M-steps

pi << (pi_fac, q_fac)

mu << (mu_fac, mix)

# E-steps

q << (q_fac, mix, q_ent)

end
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Codes: executing the inference/estimation

instance = instantiate(model,

{:x=>x, :sig=>xsig, :alpha=>a0, :nu=nu, :s0=s0})

init(instance)

opts = @options max_iter=50 tol=1.0e-6 display=:iter

iterative_update!(instance, updates, opts)

Every message passing step will be delegated to a specialized send message

function, which actually did the job.

Each factor is associated with a evaluate function to compute the factor value.
The iterative update! function combines these values to get the objective and
determine convergence.

Each factor may maintain some internal states for inference as well as references to

its incident variables.

Each time a variable is updated, it will notify all its neighboring factors,
which may then make according changes to their internal states.
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Design consideration

Using factor graph representation instead of the original model greatly
simplifies the back-end implementation.

Consider a factor/clique relating four variables a, b, c, d, then without
explicitly using factor, you have to implement a large number of
inference routines (e.g., a, b→ c, d; a, b, c→ d, etc) – this number
grow exponentially.

Using factor graph representation allows non-casual (i.e. undirected)
relations (e.g. those in Markov random fields)

With this framework, the design of updating steps and the planning
of iterations are decoupled.

In these ways, the updating functions can be easily reused under
different model settings
These two aspects are usually coupled in typical implementations,
making reuse of such codes difficult.
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Philosophy

This framework is for people who has basic understanding of machine
learning, graphical models, and probabilistic inference.

Our primary goal is to develop a domain-specific language to help
people to express their model and algorithm.

We give the users all control of how the inference is actually
performed, instead of encapsulating it into a magical blackbox.

There are some “inference engines” that claim to be able to
automatically perform the inference with only a model description – the
result is usually a sub-optimal procedure that runs much slower.

Users can design their own updating steps and incorporate them
easily by wrapping them into a specialized send message function.
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