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@ Writing procedure to perform estimation or inference over complex
graphical models is often tedious and error-prone

@ Existing tools are unsatisfactory

e C/C++/Fortran: low productivity

o Research codes that come with papers: buggy and difficult to
extend/generalize

o Generic engines (WinBUGs, VIBES, etc): overly slow

@ Our goal: greatly simplify the process of writing Bayesian inference
procedures, while maintaining competitive performance
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Example: Gaussian Mixture Model
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Estimating a GMM using EM

@ Optimize a variational objective function:
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Estimating a GMM using EM

The optimization procedure alternates the updates between
M-steps:

t = t—1
o =Sl

=1
0 _ 1 (-1
k =1
1
25? o 20— ) e )"
=1
k)/”
E-steps:
o N (il z“’)
=
' Zl:l”l/\[(xi‘l‘z ) lt))
Dahua Lin

A Julia Framework for Bayesian Inference 5/ 16



Available choices

@ Use an existing GMM tools (e.g. MATLAB has one):

e many are implemented in a way that runs 100x slower than it should

e an experiment that should take two days to run now takes half a year —
miss an important conference deadline

e Implement it yourself (refer to my implementation in PLI-toolbox)

o several hundred lines of code to prepare the infrastructure
e several hundred lines of code for the main procedure
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What if you want to extend the model

@ In pratice, you may want to
e change the component from Gauss to something else
add an indicator to filter out outliers
add a prior to component parameters
add a MRF to connect between labels
some combination of the above, ...

@ Every time | want to adapt/extend the model to a new application, |
ended up
o Re-deriving part or all of the updating formulas
o Re-writing the main inference procedure
e Going through again the debugging cycles
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A New Framework for Bayesian Inference

Key motivation: | am so tired of such tedious cycles, and decided to do
something to make my (and perhaps many others’) life easier.

@ | had unsuccessful tries of implementing this framework in MATLAB
and Python.

e Such a framework inevitably requires lots of abstractions.
e The overhead of introducing abstractions is so large that it often takes
up over 90% of the run-time.

o | decided to resume this project after | found and were impressed by
Julia
o Julia is a very young language (being developed at MIT)
o It is the best combination of elegance and performance | have ever
seen.
o It is as easy to use as MATLAB, but with a much more powerful type
system and much lower cost of introducing abstractions.
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Overview

| use the following modified version of GMM to illustrate what it would

look like.

4

7 ~ Dirichlet(«)
py, ~ N (v, )
Ziy ~ TC

Xi ~ N(I"’Z,;? 2)

©

This is a simple and reasonable
modification, but most GMM
packages out there simply cannot
handle it.
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Factor Graph

We use a generic notion factor to represent the relations between variables.

Convert to a factor graph
n @ using mean-field approximation, z; is

replaced by a variational distribution q; here

Dirichlet factor: o,
120%

4@

Categorical factor: m, q;

Gaussian factor: v, 03,

Mixture factor: p, X, q;, X;

Entropy factor (hidden) for q;
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Codes: add variables

using BayesInference

e a model = ModelTemplate ("MyGMM")
[] Q@add_consts model begin
n Int
° [] @ m : Int
d : Int
4 end
ke
m Q@add_vars model begin
@ alpha : RealVar
pi : RealVecVar (m)
q : RealMatVar(m, n)
[ 4@ x : RealMatVar(d, n)
nu : RealVecVar(d)
@ s0 : RealVar
n mu : RealMatVar(d, m)
sig : RealMatVar(d, d)
end
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Hi

4@

IDELITERET

Qadd_factors model begin
pi_fac : DirichletFactor(alpha, pi)

g_fac : CategoricalFactor(pi, q)

mu_fac : GaussFactor(nu, sO, mu)

mix :  Mixture{GaussFactor}
((mu, sig), q, x)

g_ent : CategoricalEntropy(q)

end
model = compile(model)

Thanks to Julia’s multiple dispatch mechanism, a
factor type can handle different types of variables
(e.g. single variable, an array of variables, or a
variational distribution over them, etc)
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Inference planning

An iteration comprises a sequences of
G message passing steps
init = auto_init_scheme(model,
L :x, :sig, :alpha, :nu, :s0)
# manual planning
H updates = @set_iteration model begin
m # M-steps

pi << (pi_fac, q_fac)

: mu << (mu_fac, mix)

# E-steps
q << (g_fac, mix, g_ent)
end
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Codes: executing the in ce/estimation

instance = instantiate(model,
{:x=>x, :sig=>xsig, :alpha=>al, :nu=nu, :s0=s0})

init(instance)
opts = Qoptions max_iter=50 tol=1.0e-6 display=:iter
iterative_update! (instance, updates, opts)

@ Every message passing step will be delegated to a specialized send_message
function, which actually did the job.

@ Each factor is associated with a evaluate function to compute the factor value.

The iterative_update! function combines these values to get the objective and
determine convergence.

@ Each factor may maintain some internal states for inference as well as references to
its incident variables.

e Each time a variable is updated, it will notify all its neighboring factors,
which may then make according changes to their internal states.
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Design consideration

o Using factor graph representation instead of the original model greatly
simplifies the back-end implementation.

o Consider a factor/clique relating four variables a, b, ¢, d, then without
explicitly using factor, you have to implement a large number of
inference routines (e.g., a,b — ¢,d; a,b,c — d, etc) — this number
grow exponentially.

e Using factor graph representation allows non-casual (i.e. undirected)
relations (e.g. those in Markov random fields)

@ With this framework, the design of updating steps and the planning
of iterations are decoupled.
o In these ways, the updating functions can be easily reused under
different model settings
e These two aspects are usually coupled in typical implementations,
making reuse of such codes difficult.
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Philosophy

@ This framework is for people who has basic understanding of machine
learning, graphical models, and probabilistic inference.

@ Our primary goal is to develop a domain-specific language to help
people to express their model and algorithm.

o We give the users all control of how the inference is actually
performed, instead of encapsulating it into a magical blackbox.

@ There are some “inference engines” that claim to be able to
automatically perform the inference with only a model description — the
result is usually a sub-optimal procedure that runs much slower.

@ Users can design their own updating steps and incorporate them
easily by wrapping them into a specialized send message function.
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