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Abstract— Recent work [1], [2] has shown promising results
in enabling robotic manipulation of deformable objects through
learning from demonstrations. Their method computes a reg-
istration from training scene to test scene, and then applies an
extrapolation of this registration to the training scene gripper
motion to obtain the gripper motion for the test scene. The
warping cost of scene-to-scene registrations is used to determine
the nearest neighbor from a set of training demonstrations.
Then once the gripper motion has been generalized to the
test situation, they apply trajectory optimization [3] to plan
for the robot motions that will track the predicted gripper
motions. In many situations, however, the predicted gripper
motions cannot be followed perfectly due to, for example, joint
limits or obstacles. In this case the past work finds a path that
minimizes deviation from the predicted gripper trajectory as
measured by its Euclidean distance for position and angular
distance for orientation.

Measuring the error this way during the motion plan-
ning phase, however, ignores the underlying structure of the
problem—namely the idea that rigid registrations are preferred
to generalize from training scene to test scene. Deviating from
the gripper trajectory predicted by the extrapolated registration
effectively changes the warp induced by the registration in the
part of the space where the gripper trajectories are.

The main contribution of this paper is an algorithm that
considers this effective final warp as the criterion to optimize
for in a unified optimization that simultaneously considers the
scene-to-scene warping and the robot trajectory (which were
separated into two sequential steps by the past work). This
results in an approach that adjusts to infeasibility in a way that
adapts directly to the geometry of the scene and minimizes the
introduction of additional warping cost. In addition, this paper
proposes to learn the motion of the gripper pads, whereas past
work considered the motion of a coordinate frame attached
to the gripper as a whole. This enables learning more precise
grasping motions.

Our experiments, which consider the task of knot tying,
show that both unified optimization and explicit consideration
of gripper pad motion result in improved performance.

I. INTRODUCTION

Robotic manipulation of deformable objects is challenging
due to high-dimensional, continuous state-action spaces and
the complicated dynamics of deformable objects. Neverthe-
less, recent work has shown promising results in enabling
robotic manipulation of deformable objects through learning
from demonstrations [1], [2]. In the first phase, non-rigid
registration is used to register a given demonstration scene
onto a new test scene, and this registration is extrapolated
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Fig. 1: The overhand knot manipulation task considered in
our experiments. A standard knot tie takes three steps, as
shown in this particular execution.

to perform trajectory transfer of the demonstration’s robot
gripper trajectory. Then in the second phase, trajectory
optimization is used to generate a feasible sequence of joint
angles that produces a gripper trajectory as close as possible
to the desired gripper trajectory. The effectiveness of this
approach was validated through experiments in knot-tying
and suturing.

For complex tasks often demonstrations correspond to
steps in the task rather than the entire task itself. Figure 1
shows an example for tying an overhand knot. In general,
a single demonstration for a step in the task cannot be
expected to cover all possible scenarios that arise during
execution. The natural solution to this is to use a library of
demonstrations with multiple demonstrations for each step.
The trajectory segment from the demonstrations library with
the lowest warping cost onto the current scene is chosen.

While experiments with this approach have been promis-
ing, thus far they have primarily considered the scenario
where the transferred gripper trajectory is feasible and thus
executable by the robot. However, the transferred gripper
trajectory can often be infeasible, especially in the presence
of joint limits or obstacles. When the transferred gripper
trajectory is infeasible, past work tries to minimize deviation
from this trajectory as measured by Euclidean distance for
position and angular distance for orientation.



Separately optimizing for a feasible trajectory in this way,
however, effectively changes the warp induced by the regis-
tration in the part of the space where the gripper trajectories
are. This ignores the preference for rigid registrations in
generalizing from training scene to test scene. To address
this, the main contribution of this paper is a unified op-
timization that simultaneously considers the scene-to-scene
warping and the robot trajectory (which were separated into
two sequential steps by the past work). This results in an
approach that adjusts to infeasibility in a way that minimizes
the introduction of additional warping cost. In addition,
this paper proposes to transfer the motion of the gripper
pads, whereas past work considered transferring the motion
of a coordinate frame attached to the gripper as a whole.
Considering the gripper pads explicitly is advantageous be-
cause it enables learning more precise grasping motions. Our
experiments, which consider the task of knot tying, show
that both unified optimization and explicit consideration of
gripper pad motion result in improved performance.

II. RELATED WORK

Related work for our contribution stems from learning
from demonstrations and from manipulation of deformable
objects, in particular knot tying.

The problem of learning from demonstrations deals with
the generalization of expert demonstrations to new scenar-
ios [4], [5]. In particular, Calinon et al. [6], [7] developed
a method for learning to perform manipulation tasks in
different starting scenes. They learn a mixture of Gaussians
to represent the environment state and joint angles of the
robot across multiple demonstrations, and infer the trajectory
for a new environment state by conditioning on that state.
Their approach assumes access to a feature representation
of the environment, so it is not directly applicable to tasks
in environments without fixed feature representations. In
contrast, our approach can work directly with point clouds.

In robotics, it is challenging to manipulate deformable ob-
jects due to their non-linearity and because the configuration
spaces of such objects may be infinite-dimensional [8]. Wada
et al. [9] model textile fabric and sponge blocks coarsely and
then apply a control method that is robust to discrepancies
between the coarse model and the object. Howard et al. [10]
present a more general approach for grasping 3D deformable
objects that does not assume prior knowledge of the object.
They model particle motion of the object using nonlinear
partial differential equations, and train a neural network for
determining the minimum force required for manipulating
the object.

We demonstrate the effectiveness of using unified opti-
mization within trajectory transfer for knot tying, a com-
monly studied deformable object manipulation task in
robotics. Previous approaches to knot tying have demon-
strated the utility of rope-specific knowledge and assump-
tions. For instance, in knot planning from observation (KPO),
knot theory is used to recognize rope configurations and
define movement primitives from visual observations of
humans tying knots [11], [12]. Existing motion planning

approaches for knot tying use topological representations of
rope states (i.e., sequences of rope crossings and their proper-
ties) and define a model for transitioning between topological
states [13], [14], [15]. Robust open loop execution of knot
tying has also been explored [16].

Similar to these approaches, our registration will consider
transfer only from scenes where the demonstration rope is
in the same topological configuration.

III. TECHNICAL BACKGROUND

A. Thin Plate Splines

The thin plate spline (TPS) approach [17] finds a function
f mapping between pairs of correspondence points that
minimizes the bending cost of f :

min
f

||f ||2TPS

subject to yi = f(xi) (1)

where xi and yi, i = 1, ..., N , refer to pairs of cor-
respondence points in the demonstration and test scenes,
respectively. We also refer to this bending cost as warping
cost in this paper. For notational convenience, we concatenate
the points of the demonstration scene into X = [x1 . . .xN ]>

and the points of the test scene into Y = [y1 . . .yN ]>.
The objective ||f ||2TPS is the TPS energy function,

||f ||2TPS =

∫
dx||D2f(x)||2F, (2)

which is a measure of the curvature of the function f .
We can trade off between matching correspondence points

and the smoothness of our spline with the following regular-
ized objective

f = argmin
f

N∑
i=1

||yi − f(xi)||22 + λ1||f ||2TPS, (3)

where the parameter λ1 controls this trade-off.
Duchon showed the minimizer f in Equation (1) can be

expressed as a weighted sum of basis functions centered
around the data points xi, in addition to an affine part [18].
As shown in [17], Equation (3) can be efficiently solved
analytically.

B. Learning from Demonstrations with Thin Plate Splines

Schulman et al.’s approach to learning from demonstra-
tions [1] calculates the new trajectory by first using a
modified thin plate spline robust point matching (TPS-RPM)
algorithm [19] to calculate a non-rigid scene registration that
maps points from the demonstration scene to the new scene.
TPS-RPM alternates between (1) estimating correspondences
between the two scenes’ point clouds and (2) fitting the opti-
mal thin plate spline transformation based on these estimated
correspondences. Then, the mapping function is applied to
the demonstration trajectory in order to obtain a potential tra-
jectory for the new scene. This potential trajectory does not
incorporate collision avoidance and joint limits, so trajectory
optimization [3] is then used to incorporate these constraints.
The hope is that the resulting trajectory will incorporate



variations in the environment and thus succeed in performing
the desired manipulation. In practice, this method has been
shown to be effective at generalizing expert demonstrations
to new, unseen scene configurations.

IV. TPS IMPROVEMENTS AND UNIFIED OPTIMIZATION

In this section, we present improvements on standard TPS
trajectory transfer and describe an algorithm for trajectory
transfer that directly incorporates feasibility and collision
constraints.

A. Improvements on TPS Trajectory Transfer

We propose two changes to the trajectory transfer al-
gorithm from Schulman et al. [1]: an alteration to the
TPS optimization that prioritizes matching key points and
a change to the way gripper poses are transferred.

In trajectory transfer, not all points need to be transferred
with the same accuracy. For points that are close to the
demonstration trajectory (e.g., grasping points on an object)
we require high accuracy and, in exchange, will accept less
rigid mappings in those regions. However, for points far away
from the gripper trajectory, high accuracy is not as important
and it can make sense to give up accuracy on those points
in exchange for performing better on the other terms in the
objective. To achieve this, we modify the matching to include
explicit constraints on the tightness of fit at points that fall
within a minimum distance of the demonstration trajectory.

We also transfer gripper poses from demonstration to test
scenes differently from Schulman et al [1]. They use f
to transfer the gripper position and use the Jacobian of f
to transfer the corresponding gripper orientation for each
point in the demonstration trajectory. This can be sensitive
to local changes or errors in the mapping function. Instead,
we propose to represent gripper poses with a collection of
points on the gripper surface. This allows us to transfer the
demonstration trajectory by applying f to these represen-
tative points, and to then use trajectory optimization to find
feasible gripper poses whose representative points best match
the warped points. For our experiments, we represent the
PR2 gripper pose with a set of points on the finger pads.
This change also obviates the need to discretize our gripper
into being either open or closed, and potentially applies to
more complex gripper demonstration trajectories.

In addition to these two fundamental changes, we use
known and fixed correspondences between the two scenes’
point clouds to avoid confounding factors when comparing
the different trajectory transfer methods. In principle, TPS-
RPM could be used to estimate the correspondences, as was
done in the previous work [1].

B. Unified TPS and Trajectory Optimization

1) Motivation: The motivation behind learning from
demonstrations with thin plate splines is that finding a
trajectory that minimizes TPS bending cost between the
training and test scenes will typically preserve the success of
manipulations. In the learning from demonstrations method

from Schulman et al [1] (hereafter referred to as the two-
phase method), the result of trajectory transfer may be
infeasible, so it is then passed through trajectory optimiza-
tion. For the manipulation to succeed, the implicit warp
of the demonstration trajectory onto the result of trajectory
optimization should have low bending cost. However, this
is not necessarily the case in the presence of obstacles or
underactuated dynamics.

Our goal is to find a feasible trajectory that minimizes
the bending cost of this implicit warp. The cost we propose
includes correspondences between both points in the demon-
stration and new scenes, and points in the demonstration and
new trajectories. The two-phase method can be viewed as
performing only one round of block-coordinate descent on
this cost in a unified optimization over TPS parameters and
robot controls.

2) Optimization Formulation: To account for the presence
of substantial feasibility constraints, we propose directly
minimizing the unified objective. We optimize simultane-
ously over both the new trajectory, τ , and the transfer
function, f :

min
τ,f

α CTPS(X,Y, f) + β Ctransfer(τd, τ, f)

+γ Ctrajectory(τ)

subject to τ collision-free and feasible

||IY − f(IX)||22 < ε

where τd is the demonstrated trajectory, CTPS is the regular-
ized TPS objective, Ctransfer is a cost on the error between
the current trajectory τ and the demonstration trajectory τd
transferred under f , and Ctrajectory is a cost that encodes
desired properties of the new trajectory. The variables α, β
and γ are constants and they trade off the different costs in
the objective. The points IX , which are a subset of the points
X , are points that are required to fall within a given radius
of the demonstration trajectory and their correspondences, as
discussed in Section IV-A. IY consists of the subset of the
points Y that correspond to IX .
CTPS is the thin plate spline cost from Schulman et al.,

CTPS(X,Y, f) =
1

N

N∑
i=1

||yi − f(xi)||22 + λ1||f ||2TPS

+ λ2r(f)

where r(f) is a regularizer on the affine part of the transfor-
mation f .

The Ctransfer cost is the error between the representative
points of the gripper pads of the current trajectory, qt,k, and
the warped representative points of the demonstration trajec-
tory, pt,k, for every time step t and for every representative
point k on the gripper:

Ctransfer(τd, τ, f) =
1

T

T∑
t=1

K∑
k=1

||qt,k − f(pt,k)||22

where qt,k and pt,k are deterministic functions of τ and τd,
respectively.



Ctrajectory encodes desired properties of the trajectory. In
our case, we penalize for changes of each joint angle j to
encourage shorter paths:

Ctrajectory(τ) =
1

T − 1

T−1∑
t=1

J∑
j=1

(θt+1,j − θt,j)2 .

We minimize this objective with the penalty SQP method
described in [3]. This is slower than standard trajectory
optimization, but a customized algorithm could improve on
these results. We will explore this in future work.

V. EXPERIMENTS AND RESULTS

Our quantitative experiments evaluate the impact of using
improved TPS trajectory transfer and unified optimization
on the performance of tying an overhand knot when the
robot’s degrees of freedom (DOF) are reduced. We use the
Willow Garage PR2 robot in a simulation environment that
uses Bullet Physics [20] as the physics engine, with the rope
represented as a linked chain of capsules with constraints on
bending and torsion.

We also illustrate the intuition behind our approach on a
simple example with a holonomic car, in which the original
warped trajectory is infeasible due to a new obstacle in the
test scene. Unified optimization finds a qualitatively better
trajectory for the test scene than the two-phase method.

A. Knot Tying with the PR2

1) Demonstration Library: We use a set of 148 demon-
strations collected by Schulman et al. [1] to generalize from.
Each demonstration step consists of a gripper trajectory
and a point cloud of the state of the rope at the start of
the step. Demonstration gripper trajectories were collected
kinesthetically, capturing the pose of the grippers at each
time step as a human moves them in tying a knot. The
point clouds were collected by an RGBD camera, filtering
out all points that are not part of the rope (e.g., points of the
table). This dataset consists of demonstrations corresponding
to steps of a three-step method of tying an overhand knot
(Figure 1) and demonstrations of recovery from common
failure cases.

2) Benchmark: Our benchmarks are drawn from a dis-
tribution of initial rope states, generated by perturbing the
initial rope states of the demonstration library. Perturbing a
rope consists of selecting five uniformly spaced points along
an original initial rope state, and dragging each in a random
direction within a specified radius. In our experiments, we
use a benchmark with a perturbation radius of 10 cm and a
harder benchmark with a radius of 15 cm.

Each benchmark consists of 100 initial rope states. A
task is considered successful if the robot ties an overhand
knot within five or fewer steps, starting from the given
initial test state. Aside from the rope configuration, the test
environment is identical to the demonstration environment:
the rope is on a table with no obstacles. However, in the test
scenarios we impose stricter angle limits for the arms’ joints,
to increase the likelihood of scenarios where the original
warped trajectory is infeasible. We reduce the range of each

arm’s joint angle limits by several factors; the reduced range
is centered around the midpoint between the original lower
and upper limits.

At each step in tying an overhand knot, the demonstration
with the lowest warping cost is selected to generalize from.
Sometimes the trajectory optimization results in trajectories
where some robot parts collide with the robot itself or
the table, even though trajectory optimization has a cost
for avoiding collisions with a safety distance of 2.5 cm.
This can occur because the trajectory optimization reached
an undesirable local optima, or it may occur because the
collision cost was outweighed by the other costs in the
objective. When this happens, we try generalizing from the
demonstration with the next lowest warping cost, and repeat
until either the trajectory is feasible or a maximum of 10
demonstrations have been tried. The trajectory is feasible if
the joint angle trajectory upsampled to 100 time steps is
collision free at each of those time steps. We consider all
these trials as part of the same step, since collision checking
can be done without executing the trajectory.

3) Experiments: On these two benchmarks, we evaluate
(1) the improved TPS trajectory transfer method and (2) the
unified optimization method. As a baseline, we compare our
results against the original trajectory transfer method intro-
duced by Schulman et al. [1], with some minor differences.

Their method uses a modified robust point matching
algorithm, TPS-RPM, to estimate correspondences and fits a
bidirectional thin plate spline between the demonstration and
test scene’s rope point clouds, regardless of the underlying
topological rope configuration.

In contrast, we use known and fixed correspondences,
fit a unidirectional thin plate spline, and only consider
registrations from demonstration scenes where the starting
configuration of the rope is topologically equivalent to the
rope configuration of the current test scene. For this, our
point clouds have an underlying structure: the rope points are
ordered and evenly spaced points along the rope’s backbone.
These points were manually labeled from the RGBD images
of demonstration scenes, and they were available from the
simulation in the test scenes. The fixed correspondences were
determined by matching topological rope segments between
the ropes of both scenes and resampling the number of
points in each segment of the test rope to match that of
the corresponding segment of the demonstration rope. More
concretely, given a point cloud Ŷ with N̂ points in the test
scene, the correspondence and resampling can be represented
by a N × N̂ matrix M , such that Y = MŶ and there is a
one-to-one correspondence between points xi and yi.

In our experiments, IX are the set of points in X that are
within 5 cm of the gripper’s fingers when they grasp the rope
in the demonstration. We used an ε of 5mm, which is also
the radius of the simulated rope.

4) Results: The success rates of these three trajectory
transfer methods are shown in Tables Ia and Ib for the bench-
marks with 10 cm and 15 cm perturbations, respectively.

As expected, we see that in general the improved TPS
trajectory transfer and unified optimization perform better



than the previous method. In addition, unified optimization
does significantly better than the other two methods in cases
where the original warping function generalizes to target
gripper poses or finger pad points that are infeasible due to
joint angle constraints. This is especially apparent when the
range of the degrees of freedom has been reduced by a factor
of 0.4. Beyond a factor of 0.4, the trajectory optimization of
all the three methods becomes significantly harder to solve,
and most tasks can no longer be executed successfully.

The time taken to select among the 148 demonstrations
per step across all the experiments was 0.89 s on average
with a standard deviation of 0.41 s. The execution times
for optimizing the transferred trajectory and simulating it
per step across all the experiments are shown in Table II.
The computation time performance was evaluated using a
combination of Python and C++ implementations running on
a single 3.5 GHz Intel i7 processor core. The reported times
are real times. Although single experiments were run on
single cores, multiple experiments were run simulataneously
on a single machine, so the reported real times are just an
upper bound on the computation CPU times.

B. Holonomic Car

To provide intuition for why our unified optimization
leads to improved performance, we consider a toy example
involving a 2D holonomic car. The demonstration trajectory
is a driving path from left to right in a straight line. An
obstacle is introduced in the middle of the new scene,
blocking the trajectory. Figure 2a shows the ground-truth
warp from the demonstration to the new scene, given pre-
defined correspondence points between the two scenes. The
trajectory is warped upward, but is blocked by the obstacle.

The two-phase approach (shown in Figure 2b) poorly
navigates around the obstacle, following its boundary closely.
On the other hand, the unified optimization approach (shown
in Figure 2c) smoothly navigates around the obstacle. This
occurs because unified optimization can influence the warp
to direct the trajectory above the obstacle, rather than col-
liding with it. This qualitatively demonstrates that unified
optimization produces better-conditioned trajectories.

VI. CONCLUSION

We considered the problem of generalizing demonstrated
motions to new, yet similar, situations. We built on prior
work that consists of a two-phase approach: in the first phase
a registration between training and test scene is computed,
and this registration is extrapolated to transfer the gripper
motion from training situation to test situation. In the second
phase optimization-based motion planning finds a motion for
the robot to follow the transferred gripper motion.

In this paper we described an algorithm for performing a
unified optimization that simultaneously considers the scene-
to-scene warping (from the first phase) and the robot trajec-
tory (from the second phase). This results in an approach that
adjusts to trajectory infeasibility in a way that adapts directly
to the geometry of the scene and minimizes the introduction
of additional warping cost. In addition, this paper proposed

DOF Range
Reduction

Factor

Schulman
et al.

[1]

Improved TPS
Trajectory
Transfer

(Section IV-A)

Unified TPS
and Trajectory
Optimization

(Section IV-B)

1.0 87% 99% 99%
0.9 84% 96% 98%
0.8 82% 96% 99%
0.7 83% 96% 100%
0.6 87% 98% 100%
0.5 88% 88% 98%
0.4 62% 51% 83%

(a) Success rates for the benchmark with 10 cm initial
state perturbations.

DOF Range
Reduction

Factor

Schulman
et al.

[1]

Improved TPS
Trajectory
Transfer

(Section IV-A)

Unified TPS
and Trajectory
Optimization

(Section IV-B)

1.0 88% 91% 92%
0.9 85% 93% 94%
0.8 87% 93% 92%
0.7 91% 93% 93%
0.6 85% 93% 92%
0.5 80% 83% 93%
0.4 55% 47% 71%

(b) Success rates for the benchmark with 15 cm initial
state perturbations.

TABLE I: Success rates of tying a knot using different
approaches for transferring the demonstration trajectory. The
approach of Schulman et al. registers the demonstration scene
onto the new scene using a TPS and then uses trajectory op-
timization to minimize the error between a feasible sequence
of gripper poses and the warped demonstration gripper poses.
The improved TPS trajectory transfer approach registers both
scenes using a TPS that constrains the scene points near
the grasping point and then uses trajectory optimization to
minimize the error between the points of the gripper pads
and the warped points of the demonstration. The unified opti-
mization approach penalizes for the same TPS and trajectory
objectives as in the last method, but jointly optimizes for both
the TPS and the trajectory in the same optimization problem.

Schulman
et al.

[1]

Improved TPS
Trajectory
Transfer

(Section IV-A)

Unified TPS
and Trajectory
Optimization

(Section IV-B)

Mean Time 3.81 s 6.89 s 25.2 s
Standard

Deviation Time 3.07 s 6.52 s 33.0 s

TABLE II: Execution times for optimizing the transferred
trajectory and simulating it per step across all the experi-
ments.



(a) Warping cost: 0.1957 (b) Warping cost: 1.2323 (c) Warping cost: 0.2146

Fig. 2: We qualitatively compared the two-phase optimization method to our unified optimization method in a holonomic
car example, in which a new obstacle is introduced in the test scene. The demonstration trajectory is a driving path from left
to right in a straight line. The warping function is visualized as a warped grid. (a) The pre-defined correspondence points
between the demonstration and test scenes finds a warping function that bends upwards; the warped trajectory is in collision
with the obstacle. (b) After enforcing feasibility constraints, the original two-phase method produces a trajectory that poorly
navigates the obstacle. (c) Unified optimization produces a trajectory that smoothly avoids the obstacle. The warping costs
for (b) and (c) refer to that of the resulting trajectory after optimization when using the car corner points as correspondences.

to learn the motion of the gripper pads, whereas past work
considered the motion of a coordinate frame attached to the
gripper as a whole. This new proposed approach enables
learning more precise grasping motions.

Our experiments, which consider the task of knot tying,
show that both unified optimization and explicit consider-
ation of the gripper pad motion result in improved perfor-
mance. Unified optimization performs significantly better in
cases where the warped demonstration gripper trajectories
are further away from trajectories achievable by the robot.
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