
Guided Search for Task and Motion Plans Using Learned Heuristics

Rohan Chitnis1, Dylan Hadfield-Menell2, Abhishek Gupta2, Siddharth Srivastava3, and Pieter Abbeel2

Abstract— Tasks in mobile manipulation planning often re-
quire thousands of individual motions to complete. Such tasks
require reasoning about complex goals as well as the feasibility
of movements in configuration space. In discrete representa-
tions, planning complexity is exponential in the length of the
plan. In mobile manipulation, parameters for an action often
draw from a continuous space, so we must also cope with
an infinite branching factor. Task and motion planning (TAMP)
methods integrate a logical search over high-level actions with
geometric reasoning to address this challenge. We present an
algorithm that searches the space of possible task and motion
plans, and uses statistical machine learning to guide the search
process. Our contributions are as follows: 1) we present a
complete algorithm for TAMP; 2) we present a randomized local
search algorithm for TAMP that is easily formulated as a Markov
decision process (MDP); 3) we apply reinforcement learning
(RL) to learn a policy for this MDP; 4) we learn from expert
demonstrations to efficiently search the space of task plans,
given options that address different (potential) infeasibilities;
and 5) we run experiments to evaluate the performance of our
system in a variety of simulated domains. We show significant
improvements in performance over prior work.

I. INTRODUCTION

We are interested in designing autonomous systems to
perform complex mobile manipulation tasks over long time
horizons (e.g., setting a dinner table, doing laundry). We
approach this problem in the framework of combined task
and motion planning (TAMP).

In TAMP, an agent is given a symbolic, logical char-
acterization of actions (e.g., move, grasp, putdown), along
with a geometric encoding of the environment. Efficient
integration of high-level, symbolic task planning and low-
level, geometric motion planning is difficult; recent research
has proposed several approaches [1], [2], [3], [4], [5], [6]. In
this paper, we adopt the abstraction framework developed by
Srivastava et al. [1] (henceforth referred to as SFRCRA-14)
to factor the reasoning and search problems into interacting
logical and geometric components.

In this work, we develop a complete algorithm for TAMP
and propose learning methods to guide a joint search in
the space of high-level, symbolic plans and their low-level
refinements: instantiations of continuous values for symbolic
references in the plan. For example, in a pick-place domain,
a high-level plan consists of a sequence of move, grasp,
and putdown actions, while its refinement is a sequence of
collision-free trajectories that implement the plan. We refer
to the search for a valid refinement as plan refinement.

1 ronuchit@berkeley.edu
2 {dhm, pabbeel, abhigupta}@eecs.berkeley.edu
3 siddharth.srivastava@utrc.utc.com

Fig. 1: We apply reinforcement learning to speed up planning for
TAMP tasks. We break the problem down into a low-level policy
that samples promising values for continuous parameters (e.g., pre-
grasp poses, grasping poses, etc.), and a high-level policy that
ranks different high-level plans. The above figures illustrate learning
for the low-level system. The top images show initial, uniform
distributions. The bottom images show learned distributions over
base pose (blue) and end effector pose (green, yellow) for pick tasks
in our simulated domains: a can (left), a tray (middle), and a frying
pan (right). The green and yellow points refer to the positions of the
tool center points; the end effectors are oriented to point toward the
object being grasped. The can and frying pan are picked up using
only one gripper.

SFRCRA-14 uses error information propagated from the
geometric planner to update the symbolic state and generate
a new high-level plan. For example, if motion planning
discovers an obstruction in a pick-place domain, the new
plan may involve moving the obstruction out of the way. The
key step in our approach defines a plan refinement graph,
where nodes are high-level plans and edges are unsatisfiable
preconditions that explain a failed attempt at refinement. We
develop a complete algorithm that interleaves search over
this graph with plan refinement.

Naturally, the space of high-level plans and their possible
refinements is quite large. To combat this, we present ma-
chine learning techniques that guide search over both spaces.

At the low level, our system learns to propose con-
tinuous values for symbolic references that are likely to
result in collision-free trajectories. Discretizing the space of
continuous parameters is a common step in TAMP systems
and largely relies on hand-coded heuristics or well-chosen
sampling distributions.

We apply reinforcement learning (RL) to learn domain-
specific distributions over these values in a domain-
independent fashion. Our approach draws inspiration from
Zhang and Dietterich [7], who applied RL to job shop

scheduling. In their formulation, states correspond to sched-
ules and actions propose changes to the schedule. In our set-
ting, states correspond to (potentially infeasible) refinements
and actions propose new values for symbolic references.

At the high level, we train heuristics that estimate how dif-
ficult it is to refine a given plan. Directly applying RL to this
task is challenging because actions amount to either motion
planning or task planning, and so are time consuming; there
is also often a wide range of options among which to select. It
is, however, fairly easy for a person to determine which high-
level plans are promising, so we use inverse reinforcement
learning based on expert demonstrations to train heuristics
for this problem.

The contributions of our work are as follows: 1) we
present a complete algorithm for TAMP; 2) we present a
randomized local search algorithm for plan refinement that
is easily formulated as an MDP; 3) we apply RL to learn a
policy for this MDP; 4) we learn from expert demonstrations
to efficiently search the space of high-level plans, given
options that address different infeasibilities; and 5) we run
experiments to evaluate the performance of our system in
a variety of simulated domains. Our results demonstrate
significantly improved performance over SFRCRA-14.

II. RELATED WORK

Dearden and Burbridge [2] use machine learning to learn
probability models that map symbolic predicates to geomet-
ric states in TAMP problems. They use these models in a
backtracking search over potential geometric state instan-
tiations for the sequence of symbolic states visited by the
plan. Their work differs from ours in two key ways. First,
they focus on learning the semantics of symbolic predicates,
whereas we assume known semantics and instead optimize
for fast planning. Second, they sample geometric states
independently for each symbolic state in the task sequence,
while our distributions are conditioned on an entire plan and
its current refinement.

Kaelbling et al. [3] use hand-coded “geometric suggesters”
to propose continuous geometric values for the plan parame-
ters. These suggesters are heuristic computations which map
information about the robot type and geometric operators to
a restricted set of values to sample for each plan parameter.
It would be interesting to adapt the methods considered here
to their setting.

Lagriffoul et al. [4] propose a set of geometric constraints
that involve the kinematics and sizes of the specific objects
of interest in the environment. These constraints then define
a feasible region from which to search for geometric instan-
tiations of plan parameters. One way to think of our work is
that we are learning distributions which incorporate the joint
constraints their system computes.

Garrett et al. [5] use information about reachability in the
configuration space and symbolic state space to construct
a relaxed plan graph that guides motion planning, using
geometric biases to break ties. Intermediate poses are sam-
pled from a hand-coded distribution, whereas we learn these
distributions using RL and could use them with this graph.

Our problem formulation is motivated by Zhang and
Dietterich’s application of RL to job shop scheduling [7].
Job shop scheduling is a combinatorial optimization problem
where the goal is to find a minimum-duration schedule of
a set of jobs with temporal and resource constraints. An
empirically successful approach to this problem relies on a
randomized local search that proposes changes to an existing
suboptimal schedule. The authors formulate this as an MDP
and use TD(λ) [8] with function approximation to learn
a value function for it. Their approach outperformed the
previous state-of-the-art for this task and scaled to larger
scheduling problems.

Zucker et al. [9] use RL to bias the distribution of a rapidly
exploring random tree (RRT) for motion planning. They use
features of a discretized workspace to train a non-uniform
configuration space sampler with a policy gradient algorithm.
In our work, we adapt their gradient updates to the TAMP
framework.

Another line of research uses machine learning to learn
heuristics for search. This general formulation is applied to
many domains other than robotics. Boyan et al. [10] solve
optimization problems by learning a state evaluation function
that guides local search. Arbelaez et al. [11] solve constraint
satisfaction problems using a heuristic model that is refined
with supervised learning. Xu et al. [12] train heuristics to
control forward state-space beam search in task planning.

III. BACKGROUND

A. Task and Motion Planning

A motion planning problem is defined by a configuration
space for a robot and all movable objects in its environment,
along with initial and final configurations. The solution to a
motion planning problem is a collision-free trajectory for the
robot that connects these configurations. In task and motion
planning, we add more abstract concepts to this formulation.

Definition 1: We define a task and motion planning
(TAMP) problem as a tuple 〈T ,O,F , I,G,U〉:
• T : a set of object types (e.g., movable objects, trajectories,

poses, locations).
• O: a set of objects (e.g., can2, grasping pose6, location3).
O defines the configuration space of all movable objects,
including the robot.

• F : a set of fluents, which define relationships among
objects and are Boolean functions defined over the con-
figuration space.

• I: a conjunction of fluents that defines the initial state.
• G: a conjunction of fluents that defines the goal state.
• U : a set of high-level actions (e.g., grasp, move, putdown),

parameterized by objects and defined by preconditions, a
set of fluents that describe when an action can be taken;
and effects, a set of fluents that hold true after the action
is performed.

An instantiated action is said to be feasible in a state if
and only if its preconditions hold in that state. A solution
to a TAMP problem is a sequence of instantiated actions
a0, a1, ..., an ∈ U such that every action is feasible when

applied successively starting with I, and the final state
reached satisfies the goal condition G.

B. Markov Decision Processes

Markov decision processes (MDPs) formalize the interac-
tion between an agent and an environment. At each step of
an MDP, the agent knows the current state and selects an
action. This causes the state to change according to a known
transition distribution.

Definition 2: We define a finite-horizon MDP as a tuple
〈S,A, T,R,H,P〉, where
• S is the state space.
• A is the action space.
• T (s, a, s′) = Pr(s′ | s, a) for s, s′ ∈ S, a ∈ A is the

transition distribution.
• R(s, a, s′) for s, s′ ∈ S, a ∈ A is the reward function.
• H is the horizon, or total number of timesteps.
• P is the initial state distribution.

A solution to an MDP is a policy, π : S ×Z→ A, that maps
the state and timestep to an action. The value function under
π is a function of the timestep k and state s:

V kπ (s) = E

[
H∑
t=k

R(st) | π, sk = s

]
.

In reinforcement learning (RL), an agent must determine
π∗ through interaction with its environment (i.e., without
explicit access to S or T). At each timestep, the agent knows
the state and what actions are available, but initially does not
know how taking actions will affect the state. There is a large
body of research on RL. Standard techniques include value
function approximation, which uses methods such as tempo-
ral difference learning, and direct policy estimation, which
encompasses gradient-based and gradient-free methods [8].

In inverse reinforcement learning (IRL) [13], an agent
attempts to recover R from a description of the MDP and ex-
ecution traces of optimal behavior. This is useful in scenarios
where an expert demonstrator can help guide learning. Some
standard techniques include maximum-margin IRL [14] and
maximum-entropy IRL [15].

IV. SOLVING TASK AND MOTION PLANNING PROBLEMS

Solving TAMP problems requires evaluation of possible
courses of action, each comprised of different combinations
of instantiated action operators. A fundamental challenge is
that the set of possible action instantiations is infinite. We
give a brief overview of SFRCRA-14, a recent approach to
TAMP, and refer the interested reader to the cited paper for
further details. Then, we present a complete algorithm for
TAMP that uses the framework of SFRCRA-14.

A. Preliminaries

The fundamental TAMP problem is that high-level logical
descriptions are lossy abstractions of the true environment
dynamics. Thus, they may not include sufficient information
to determine the applicability of a sequence of actions.
SFRCRA-14 addresses this by: incrementally searching for
a high-level plan that solves the logical abstraction of the

1. MoveTo(poseinit, poseA)
2. Grasp(A, poseA)

1. MoveTo(poseinit, poseB)
2. Grasp(B, poseB)
3. MoveTo(poseB , poseA)
4. Grasp(A, poseA)

1. MoveTo(poseinit, poseC)
2. Grasp(C, poseC)
3. MoveTo(poseC , poseA)
4. Grasp(A, poseA)

B obstructs
path to A

C obstructs
path to A

Fig. 2: A plan refinement graph for an environment with 3 objects:
A, B, and C. The goal is to grasp A. Each node is a high-level plan,
and edges are labeled with errors discovered during failed attempts
at plan refinement. Each edge points to a plan that addresses that
reason for failure. In this example, failures are obstructions and new
plans move the offending object out of the way.

given TAMP problem; determining a prefix of the plan that
has a motion planning feasible refinement; updating the high-
level abstraction to reflect the reason for infeasibility; and
searching for a new plan suffix from the failure step onwards.

In general, including geometric properties in the logic-
based formulation leads to an increase in the number of
objects representing distinct poses and/or trajectories. For
instance, expressing the fact that a trajectory for grasping
can1 is obstructed by can3 from the current pose of the robot
would require setting a fluent of the form obstructs(can3,
pose17877, trajectory3219, can1) to true in the description
of the high-level state. In turn, this would require adding
pose17877 and trajectory3219 into the set of objects if they
were not already included. Unfortunately, the size of the
abstracted, logic-based state space grows exponentially with
the number of objects, and such an approach quickly leads
to unsolvable task planning problems.

SFRCRA-14 addresses this challenge by abstracting the
continuous action arguments, such as robot grasping poses
and trajectories, into a bounded set of symbolic references
to potential values. A high-level, or symbolic, plan refers
to the fixed task sequence returned by a task planner, and
is comprised of these symbolic references. An interface
layer conducts plan refinement, searching for instantiations
of continuous values for symbolic references while ensuring
action feasibility. The resulting process is able to utilize off-
the-shelf task and motion planners while carrying out the
necessary exchange of information in a scalable manner.

However, this algorithm has two main limitations: it is
not guaranteed to find a solution when there exists one, and
the sets of values from which instantiations get sampled
are object-specific, hand-coded distributions. Since the al-
gorithm never reduces the set of possible sampled values,
its efficiency degrades as the number of values that get
sampled increases. In the next subsection, we address the first
limitation; in the following sections, we address the second.

B. A Complete Algorithm for TAMP

We introduce a complete algorithm that maintains a plan
refinement graph (PRG). Figure 2 illustrates a simple example

with 3 high-level plans. Every node u in the PRG represents
a high-level plan πu and the current state of the search
for a refinement. An edge (u, v) essentially represents a
“correction” of πu for a specific instantiation of the symbolic
references in πu. We let πu,k be the plan prefix of πu
consisting of the first k actions. Formally, each edge e =
(u, v) is labeled with a tuple 〈σ, k, ϕ〉. σ is an instantiation
of references for a prefix πu,k of πu, where feasible motion
plans have been found for all previous actions πu,k−1. ϕ
denotes a conjunctive formula consisting of fluent literals
that were required in the preconditions of the kth action in
πu but were not true in the state obtained upon application
of πu,k−1 with the instantiation σk. The plan in node v (if
any) retains the prefix πu,k−1 and solves the new high-level
problem that incorporates the discovered facts ϕu,v in the
kth state.

The overall search algorithm interleaves the search for
feasible refinements of high-level plans with the addition
of new edges and plan nodes into the PRG. This process
is described using non-deterministic choices (denoted using
the prefix “ND”) in Alg. 1. Subroutine REFINENODE selects
a reference instantiation and attempts to solve the motion
planning problems it defines. Subroutine ADDCHILD selects
a reference instantiation and creates a new node that either
1) incorporates the reason for infeasibility (provided by the
subroutine GETERROR), or 2) holds a nearly identical high-
level plan, but with a random change at a single step. The
latter can be required in some pathological domains that have
dead-ends and where changing the instantiation of symbolic
references for an action has no effect on the action outcomes.
GETERROR returns a failed precondition for an infeasible
refinement (e.g., collision-check the current set of trajectories
to detect obstructions).

Different implementations of the non-deterministic choices
in Alg. 1 can capture various search algorithms that account
for unbounded branching factors (e.g., iterative-deepening
with iterative-broadening best first search). Indeed, SFRCRA-
14 can be seen as a greedy depth-first traversal of the PRG.
We show that using trained search heuristics with the PRG
can improve performance. It is easy to see that the resulting
algorithm is complete.

Theorem 1: If there exists a high-level sequence of actions
that a) does not revisit symbolic states when using the high-
level domain definition and b) has a motion planning feasible
refinement within the scope of symbol interpretations, then
Alg. 1 will find it, as long as the non-deterministic policies
assign non-zero weight to each choice.

The proof follows easily because if there is a solution, then
the non-deterministic calls can be selected appropriately to
find it. In the next section, we show a specific implementation
of REFINENODE based on randomization. Afterward, we
show how to train heuristics that guide the search processes,
replacing the non-deterministic choices.

C. A Randomized Algorithm for Plan Refinement

In order to apply the complete planning algorithm de-
scribed above, we must provide definitions for each of

Algorithm Complete TAMP
1 for trial in 1 ... do
2 for j in 1 .. trial do

/* Traverse graph of plans, initially
with just one plan. */

3 u← NDGETNEXTNODE(PRG)
4 π ← GETHLPLAN(u)
5 mode ← NDCHOICE{refine, add child}
6 if mode == refine then

REFINENODE(π, j)
else

ADDCHILD(π, j)
end

end
end

Subroutine REFINENODE(π, j)
1 σ ← NDGETINSTANTIATION(π, j)

/* resourceLimit(j) is monotonically
increasing in j. */

2 MP, FailedAction, FailedPred ←
GETMOTIONPLAN(σ, π, resourceLimit(j))

3 if MP 6= NULL then
4 return success

end

Subroutine ADDCHILD(π, j)
1 σ ← NDGETINSTANTIATION(π, j)
2 StepNum, FailedPrecon ← GETERROR(σ, π)
3 mode ← NDCHOICE{error, random}
4 if mode == error then
5 NewState ← PATCH(GETSTATEAT(StepNum, π),

FailedPrecon)
else

6 π ← π, with an action before StepNum replaced
by a random applicable action

7 NewState ← GETSTATEAT(StepNum, π)
end

8 π′ ← GETCLASSICALPLAN(NewState)
9 ADDNODETOPRG(σ, StepNum, π′)

Algorithm 1: Complete algorithm for TAMP.

the subroutines mentioned in Alg. 1. SFRCRA-14 uses a
backtracking search over a discrete set of instantiations to
implement REFINENODE. We want to learn policies for
refinement, so we seek an algorithm that is more easily
formulated as an MDP. Our method imitates that of Zhang
and Dietterich [7]: we initialize an infeasible refinement and
use a randomized local search to propose improvements.
Alg. 2 shows pseudocode for this refinement strategy, which
implements REFINENODE in Alg. 1.

The algorithm takes as input a high-level plan and a max-
imum iteration count. In line 1, we initialize a (potentially
invalid) refinement by sampling from distributions associated
with each symbolic reference. We continue sampling until we
find bindings that satisfy inverse kinematics constraints (IK
feasibility). Trajectories are initialized as straight lines.

The MOTIONPLAN subroutine called in line 3 attempts
to find a collision-free set of trajectories linking all pose
instantiations. To do so, it iterates through the sequence of
actions comprising the high-level plan. For each, it first calls
the motion planner to find a trajectory linking the sampled
poses. If this succeeds, it tests the action preconditions; as

Algorithm RandRef(π,Nmax)
1 σ ← INITREFINEMENT(π)
2 for iter = 0, 1, ..., Nmax do
3 failStep, failPred←GETMOTIONPLAN(π)
4 if failStep == NULL then

/* Found valid plan refinement. */
5 return success

end
6 else if failPred == NULL then

/* Motion planning failure. */
7 failAction← π.ops[failStep]
8 RESAMPLE(failAction.params)

end
9 else

/* Action precondition violation. */
10 RESAMPLE(failPred.params)

end
end

Algorithm 2: Randomized local search for plan refinement.

part of this step, it checks that the trajectory is collision-free.
We then call the RESAMPLE routine on the symbolic

parameters associated with the infeasibility; this routine picks
one at random and resamples its value. INITREFINEMENT
and RESAMPLE together define NDGETINSTANTIATION for
our implementation, while GETERROR iterates through the
steps of the plan, checks precondition feasibility, and returns
a failed action index and associated predicate.

Randomized refinement has two key properties. The first
is a very explicit algorithm state. We show in the next section
that this allows for a straightforward MDP formulation. The
second is that it allows the instantiations for a particular
action in the plan to be influenced by those for a future
action. For example, in a pick-place domain, it can make
sense for the object’s grasping pose to be sampled condi-
tionally on the current instantiation of the putdown pose,
even though the putdown appears after the grasp in the plan
sequence. This allows plan refinement to account for long-
term dependencies in symbolic reference instantiation.

V. LEARNING HOW TO REFINE HIGH-LEVEL PLANS

A. Formulation as Markov Decision Process

We formulate plan refinement as the following MDP:
• States are tuples 〈π, σ,E〉 that consist of the high-level

plan, its current (potentially infeasible) refinement, and
the geometric environment.

• Actions are pairs 〈p, x〉, where p is the discrete symbolic
reference to resample and x is the continuous value
assigned to p in the new refinement.

• The transition distribution is defined by setting p’s value
to x. If x is IK feasible, the motion planner determines
any corresponding trajectories.

• The reward function R(s, a, s′) is linearly interpolated
between 0 and 20 based on the fraction of high-level
actions whose preconditions are satisfied. Actions that
result in an IK infeasible pose receive reward −1.

• The horizon is the number of available samples.
• P is a distribution over plans to be refined, defined as a

distribution over planning problems.

Consider an example execution of refining a pick-place
high-level plan. The robot must grasp an object and put it
down at a certain location. The initial state consists of this
plan, a set of initialized parameters, and meshes that describe
the geometry of the problem. We’ll suppose that the initial
grasping pose causes both the grasp and the putdown actions
to have violated preconditions. The first action in the MDP
selects a new grasping pose; suppose it receives no reward
because it does not work with the current putdown pose.
The subsequent two actions then set consistent values for
the grasping and putdown poses. This provides the maximum
reward of 20 because all instantiated actions are now feasible.

B. Training Process

We restrict our attention to training policies that suggest x
for a given parameter, since our refinement algorithm defines
a way to select p. Our approach is to adapt the method of
Zucker et al. [9], which uses a linear combination of features
to define a distribution over poses. We learn a weight vector
θp for each reference type, comprised of a pose type and
possibly a gripper (e.g., “left gripper grasping pose,” “right
gripper putdown pose,” “base pose”).

We use a feature function f(s, a) = f(s, p, x) that maps
the current state s ∈ S and action a ∈ A to a feature vector;
f defines a policy class for the MDP. Additionally, we define
N as the number of planning problems on which to train and
ε as the number of samples comprising a training episode,
after which we update weights.

The training is a natural extension of randomized refine-
ment and progresses as follows. N times, sample from P to
obtain a complete planning problem Π. For each Π, compute
a high-level plan and run randomized refinement to attempt
to find a valid plan refinement. Select actions according to
the θp and collect rewards according to R. After every ε calls
to RESAMPLE, take a gradient step on θp.

For a symbolic reference p, in state s, our policy selects
a sample value x with probability

q(s, p, x) ∝ exp(θ>p f(s, p, x)).

We define the expected reward of an episode, ξ, as
η(θp) = Eq[R(ξ)], and approximate its gradient:

∇η(θp) ≈
R(ξ)

ε

ε∑
i=1

(f(s, p, xi)− Eq,s[f]).

R(ξ) is the sum over all rewards obtained throughout ξ, and
Eq,s[f] is the expected feature vector under q in state s. Then,
for an appropriate step size α the weight vector update is:

θp ← θp + α∇η(θp).

We sample x from q using the Metropolis algorithm [16].
Since our distributions are continuous, calculating Eq,s[f] is
hard, so we approximate it with a Monte Carlo estimate.

VI. LEARNING WHAT HIGH-LEVEL PLAN TO REFINE

A. Significance

In this section, we present a method for learning which
high-level plan to try refining. Recall that in Alg. 1, the high
level has a two-tiered decision to make: 1) which node in
the PRG to visit next, and 2) whether to attempt to refine
this node or generate failure information from it. These
decisions are encoded in the routines NDGETNEXTNODE
and NDCHOICE. Making these decisions intelligently is
critical to good performance.

For example, consider a pick-place domain. Different sam-
pled grasping poses may cause different obstruction errors to
be propagated back up to the task planner. Figure 3 illustrates
two different failures, one of which generates a large number
of obstructions. The PRG contains plans to remedy both of
these issues; however, one will take much longer to refine
than the other. An effective heuristic would allow us to
allocate more search effort for the promising plan. In this
section, we describe a method to learn one such heuristic.

B. Approach

Direct application of RL is difficult for two reasons: 1)
the space of potential high-level plans is very large and
reward are sparse; 2) actions take a long time to ‘execute’ as
they often require motion planning. These combine to make
the learning problem quite challenging, so we use IRL with
expert demonstrations to train heuristics.

The heuristics are trained to trade off the computation time
from refining a plan with that of generating a plan correction
and adding a new plan to the PRG. We use u to represent
the selected node and m the mode to apply (either trying to
refine the node or quickly generating failure information).

We encode geometric features of a current plan refinement
in a feature vector f(u). We train separate weights to
estimate the utility of each mode. We do this by stacking
two copies of the features and using an indicator to zero out

the top or bottom half: f((u,m)) =

[
f(u)
f(u)

]> [
1−m
m

]
.

We obtain human-demonstrated trajectories (sequences of
actions (u,m)∗) that intelligently navigate the PRG. We
solve the following maximum-margin optimization [17] to
recover a set of weights so that the expert’s demonstration
is (approximately) optimal:

min
w,ξi≥0

||w||2 + C
∑
i

ξi

s.t. w>f∗i ≥ w>fij + 1− ξi ∀i, j .

The i iterate over the demonstrated trajectories and the j
iterate over possible actions. The ξ are slack variables that
ensure that a solution always exists. C is a regularization
parameter that controls overfitting. At test time, we follow
the policy encoded by w, picking the highest-scoring action
at each step.

A single round of this approach often fails. The graphs
generated by a human expert look very different from those
generated by the (approximate) policy that is learned. We

Fig. 3: In this problem, the goal is to grasp the black can.
Obstructions make it so that this is not immediately possible;
however, which obstructions are moved will have a big impact
on how long it takes to find a solution (i.e., 6 obstructions in the
left image vs. 2 obstructions in the right image). Each of these
failures generates a new node in the plan refinement graph. We
learn heuristics from expert demonstrations that allow the search to
focus on the promising nodes in the graph.

thus use dataset aggregation [18], a general approach to this
problem where the expert provides new demonstrations on a
set of states generated by executing the learned policy.

VII. EXPERIMENTS

A. Methodology

We evaluate our approach in three domains: cans dis-
tributed randomly on a table (the can domain), setting up
bowls for dinner (the dinner domain), and placing frying
pans into a narrow shelf (the frying domain). We compare
performance with two baselines, both of which use the hand-
coded refinement distributions used in SFRCRA-14.

Baseline 1 is SFRCRA-14: it uses exhaustive backtracking
search for refinement and greedy depth-first search of the
PRG, which always tries to refine the plan that incorporates
all error information obtained thus far. Baseline 2 uses
randomized refinement with the following fixed graph search
policy: try 3 times to refine the deepest node in the graph;
if unsuccessful, generate a geometric error, replan with the
task planner (which creates a child node), and repeat.

We compare these baselines against two systems. The first
combines learned refinement policies with the graph search
used in baseline 2. The second is our full system, and uses
learned refinement policies and graph search heuristics. For
the dinner domain and frying domain, we focus only on the
low-level learning. The errors propagated in these domains
relate to the stackability of objects and a good strategy at the
high-level incorporates all available error information when
attempting refinement. Thus, the graph search strategy from
baseline 2 already performs quite well.

Initial experimentation revealed that jointly learning
weights for all parameter types was intractable. Thus, we use
a curriculum where the distribution of planning problems,
P , gets progressively harder. For the full system, we train
the refinement policies first, then fix them while collecting
demonstrations and training the graph search heuristics. To
reduce variance in the process, we train 3 sets of refinement
weights independently and select the one that performs best
on a validation set.

We report results on fixed test sets of 50 randomly
generated environments for the can and dinner domains,
and 20 for the frying domain (because these environments
have less variation). For the third and fourth systems, we

Objects System % Solved (SD) Avg Ref Time (s) Avg # MP Calls

30 (can) T 42 (0) 6.2 8.0

30 (can) B 40 (0) 20.5 10.5

30 (can) L 72 (8.2) 20.4 11.3

30 (can) F 81 (3.0) 17.9 12.7

35 (can) T 50 (0) 9.2 8.0

35 (can) B 50 (0) 17.6 9.2

35 (can) L 68 (8.3) 11.6 6.6

35 (can) F 78 (2.2) 10.6 6.8

40 (can) T 34 (0) 19.7 10.3

40 (can) B 36 (0) 21.7 10.0

40 (can) L 61 (6.3) 18.7 9.4

40 (can) F 74 (3.2) 20.7 10.4

2 (dinner) T 100 (0) 35.5 60.2

2 (dinner) B 100 (0) 37.3 59.2

2 (dinner) L 99 (1.8) 41.5 61.6

4 (dinner) T 100 (0) 43.2 98.0

4 (dinner) B 90 (0) 63.0 95.5

4 (dinner) L 99 (0.6) 69.2 97.1

2 (frying) T 96 (0) 29.0 67.2

2 (frying) B 88 (0) 46.9 60.0

2 (frying) L 99 (2.0) 22.6 44.7

4 (frying) T 55 (0) 48.9 131.8

4 (frying) B 20 (0) 187.9 155.5

4 (frying) L 92 (6.8) 90.6 120.9

TABLE I: Percent solved, standard deviation, refinement time, and
number of motion planning calls for baseline 1 (T); baseline 2 (B);
learned refinement policies with greedy graph search (L); and our
full system: learned refinement policies and graph search heuristics
(F). Results for L and F are averaged across 5 separately trained
sets of weights. Time limit: 300s.

average results across running the training process 5 times
independently and evaluating each final set of weights.

Our low-level policies use 24 features and rely on the
notion of a target object. 9 binary features encode the
bucketed distance between the sample and target object. 9
binary features encode the bucketed sample height. 3 features
describe the number of other objects within discs of radius 7,
10, and 15 centimeters around the sample. 3 binary features
describe the angle made between the vector from the robot
to the target and the vector from the sample to the target:
whether the angle is less than π/3, π/2, and 3π/4.

Our high-level heuristics use features to describe the
feasibility of plans. In our domains, this mainly summarizes
issues with potential grasps. We use three features to evaluate
a potential grasp action, targeted at an object o. We consider
a cone whose point is at the object center and ranges from
angles −π3 to π

3 , pointing toward the closest table edge from
o. The exists obstr feature is a binary variable that indicates
whether any other objects lie in this cone. The exists path

Fig. 4: The learned left arm grasping (green) distribution for the
black can adapts as a single potential obstruction (red) is moved.

feature is a binary variable that indicates whether there is a
linear grasp path wide enough for the robot’s gripper to fit
through within the cone. The sweep count feature computes
the minimum number of collisions with the robot’s gripper
placed at any angle inside the cone.

We construct these features for the first five grasp actions
in the plan, padding with -1 as necessary. We then add on the
following aggregate features associated with the entire plan:
1) the minimum exists obstr across all grasp actions, 2) the
sum of sweep count across all grasp actions, 3) the number
of times u was picked for refinement, and 4) the number of
times u was picked for generating an error.

Our experiments are conducted in Python 2.7 using the
OpenRave simulator [19] with a PR2 robot. The motion
planner we use is trajopt [20], and the task planner is Fast-
Forward [21]. The experiments were carried out in series on
an Intel Core i7-4770K machine with 16GB RAM. Table I
summarizes our quantitative results.

B. Can Domain

We run three sets of experiments, using 30, 35, and 40
cans on the table. The goal is always for the robot to pick
up a particular can with its left gripper. We disable the right
gripper, so any obstructions to the target object must be
picked up and placed elsewhere on the table. This domain has
4 types of continuous references: base poses, object grasping
poses, object putdown poses, and object putdown locations.

Our curriculum learning system trains distributions for
base poses and grasping poses for 12 iterations with ε = 5,
then base poses, grasping poses, and putdown poses (at fixed
location) for 18 iterations with ε = 20, then all reference
types for 30 iterations with ε = 20. We fix H = 100.

To train the graph search heuristics, we collected approx-
imately 300 optimal actions from the human demonstrator,
over 3 rounds of dataset aggregation. After these 3 rounds,
performance plateaued. We use C = 109 to solve the
maximum-margin optimization problem.

The results demonstrate significant improvements in per-
formance when compared to the baseline systems for success
rate. When backtracking search succeeds, it does so quickly,
so it has a faster average refinement time on the successes.
Figure 1 shows learned base motion and pickup distributions.
Figure 4 shows how the learned distribution shifts based on
the geometric context.

C. Dinner Domain

We run two sets of experiments, using 2 and 4 bowls. The
robot must move the bowls from their initial locations on one
table to target locations on the other. We assign a cost to base
motion in the environment, so the robot is encouraged to use
the provided tray, onto which bowls can be stacked. This
domain has 5 types of continuous references: base poses,
object grasping poses, object putdown poses, tray pickup
poses, and tray putdown poses.

Our curriculum learning system first trains base poses and
tray pickup and putdown poses for 20 iterations, then object
grasping and putdown poses for 20 iterations. We fix H =
100 and ε = 10.

The results demonstrate comparable performance to the
baseline systems. The reason is that hand-coding the sample
space works well in this domain. For example, the optimal
robot base pose from which to pick up the tray is directly in
front of it, which is quickly sampled in the baseline systems.
Additionally, the lack of long-term dependencies in the plan
means that backtracking search finds a valid refinement
quickly. The fact that our system performs comparably with
the baselines shows that our learning algorithm can recover
good hand-coded distributions. Figure 1 shows learned tray
pickup poses after all 20 iterations.

D. Frying Domain

We run two sets of experiments, using 2 and 4 frying pans.
The robot must stack the frying pans in order of decreasing
radius into a narrow shelf. To be successful, it must grasp the
frying pans at the handle, so that the handle sticks out after
the pan is placed in the shelf. This domain has 3 types of
continuous references: base poses, pan grasping poses, and
pan putdown poses.

We did not need curriculum learning. We fix N = 30, H =
100, and ε = 5. SFRCRA-14 did not have a frying domain, so
we use the following hand-coded distribution for picking up
the pans: 4 grasping poses in the cardinal directions around
the lip of the pan, and 4 equidistant along the handle.

The results demonstrate significantly higher success rate
versus the baseline systems. The backtracking baseline is
faster likely because the refinement times were averaged
over cases where all 3 systems succeeded; backtracking often
succeeded only when it “got lucky” and picked grasping
poses along the handle early in the search. Figure 1 shows
learned frying pan grasping poses after all 30 iterations. Our
system learned to prefer picking up the pan at its handle to
fit it into the shelf, which is not shown.

VIII. LIMITATIONS AND FUTURE WORK

A major limitation of our system is the hand-coded
features. In future work, we plan to move toward learned
features, which offer more complex policy classes. Along
the same lines, we hope to consider features of the logical
structure of the high-level plan, perhaps using a kernelized
method that applies to strings. We also plan to experiment
with more sample-efficient RL algorithms.

ACKNOWLEDGMENTS

This research was funded in part by the Intel Science
and Technology Center (ISTC) on Robotics and Embedded
Systems. Dylan was also supported in part by an NSF GRFP
fellowship and a Berkeley fellowship.

REFERENCES

[1] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” IEEE Conference on Robotics and Au-
tomation, 2014.

[2] R. Dearden and C. Burbridge, “An approach for efficient planning of
robotic manipulation tasks,” International Conference on Automated
Planning and Scheduling, 2013.

[3] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” IEEE Conference on Robotics and Automation,
2014.

[4] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,
“Efficiently combining task and motion planning using geometric
constraints,” IEEE Conference on Robotics and Automation, 2014.

[5] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: An effi-
cient heuristic for task and motion planning,” International Workshop
on the Algorithmic Foundations of Robotics, 2014.

[6] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,” in
Towards Service Robots for Everyday Environments. Springer, 2012,
pp. 99–115.

[7] W. Zhang and T. G. Dietterich, “A reinforcement learning approach
to job-shop scheduling,” International Joint Conference on Artificial
Intelligence, 1995.

[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[9] M. Zucker, J. Kuffner, and J. A. D. Bagnell, “Adaptive workspace
biasing for sampling based planners,” IEEE Conference on Robotics
and Automation, 2008.

[10] J. Boyan and A. W. Moore, “Learning evaluation functions to improve
optimization by local search,” Journal of Machine Learning Research,
2001.

[11] A. Arbelaez, Y. Hamadi, and M. Sebag, “Continuous search in
constraint programming,” in Autonomous Search, 2012, pp. 219–243.

[12] Y. Xu, S. Yoon, and A. Fern, “Discriminative learning of beam-search
heuristics for planning,” International Joint Conference on Artificial
Intelligence, 2007.

[13] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning.” 2000.

[14] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” International Conference on Machine Learning,
2004.

[15] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” National Conference on Ar-
tificial Intelligence, 2008.

[16] S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” The American Statistician, vol. 49, no. 4, pp. 327–335,
1995.

[17] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, “Learning
structured prediction models: A large margin approach,” in Proceed-
ings of the 22nd international conference on Machine learning. ACM,
2005, pp. 896–903.

[18] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-regret reductions for
imitation learning and structured prediction,” Computing Research
Repository, vol. abs/1011.0686, 2010.

[19] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, July 2008.

[20] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” Robotics: Science and Systems, 2013.

[21] Jörg Hoffman, “FF: The fast-forward planning system,” AI Magazine,
vol. 22, pp. 57–62, 2001.

	Introduction
	Related Work
	Background
	Task and Motion Planning
	Markov Decision Processes

	Solving Task and Motion Planning Problems
	Preliminaries
	A Complete Algorithm for tamp
	A Randomized Algorithm for Plan Refinement

	Learning How to Refine High-Level Plans
	Formulation as Markov Decision Process
	Training Process

	Learning What High-Level Plan to Refine
	Significance
	Approach

	Experiments
	Methodology
	Can Domain
	Dinner Domain
	Frying Domain

	Limitations and Future Work
	References

