
Beyond Lowest-Warping Cost Action Selection in Trajectory Transfer

Dylan Hadfield-Menell, Alex X. Lee, Chelsea Finn, Eric Tzeng, Sandy Huang, and Pieter Abbeel

Abstract— We consider the problem of learning from demon-
strations to manipulate deformable objects. Recent work [1],
[2], [3] has shown promising results that enable robotic manip-
ulation of deformable objects through learning from demon-
strations. Their approach is able to generalize from a single
demonstration to new test situations, and suggests a nearest
neighbor approach to select a demonstration to adapt to a
given test situation. Such a nearest neighbor approach, however,
ignores important aspects of the problem: brittleness (versus
robustness) of demonstrations when generalized through this
process, and the extent to which a demonstration makes
progress towards a goal.

In this paper, we frame the problem of selecting which
demonstration to transfer as an options Markov decision
process (MDP). We present max-margin Q-function estimation:
an approach to learn a Q-function from expert demonstrations.
Our learned policies account for variability in robustness of
demonstrations and the sequential nature of our tasks. We
developed two knot-tying benchmarks to experimentally val-
idate the effectiveness of our proposed approach. The selection
strategy described in [2] achieves success rates of 70% and
54%, respectively. Our approach performs significantly better,
with success rates of 88% and 76%, respectively.

I. INTRODUCTION

Robotic manipulation of deformable objects tends to be
challenging due to high-dimensional, continuous state-action
spaces and due to the complicated dynamics of deformable
objects. Despite these challenges, recent work [1], [2], [3] has
shown promising results that enable robotic manipulation of
deformable objects through learning from demonstrations.
This work uses non-rigid registration to register a training
scene onto the current scene, and then extrapolates from this
registration to perform trajectory transfer of the robot end-
effector trajectory. The effectiveness of this approach was
validated in knot-tying and suturing experiments.

For complex tasks, demonstrations often correspond to
steps in the task, rather than the entire task itself. Figure 1
shows an example of the steps involved in tying an overhand
knot. In general, a single demonstration for a step in the task
cannot be expected to cover all possible scenarios that arise
during execution. The natural solution to this is to use a
library of demonstrations with multiple demonstrations for
each step.

Realizing these benefits requires a robust technique to
select a good trajectory to transfer. Certain trajectories will
generalize better than others, and particular sequences of
demonstrations may perform tasks more efficiently than oth-
ers. The original paper presenting the approach of trajectory

Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, CA, USA.
{dhm, alexlee gk, cbfinn, etzeng, shhuang,
pabbeel}@cs.berkeley.edu

Fig. 1: The overhand knot manipulation task in our bench-
mark. A standard knot tie takes three steps, as shown in this
particular execution from our benchmark.

transfer prescribes choosing the trajectory segment from the
demonstrations library with the lowest warping cost onto the
current scene [2]. This approach does not account for the
inherent generalizability of a particular demonstration: some
demonstrations may be better adapted to transfer than others.
For brittle demonstrations (e.g. grabbing near the edge of a
rope), a small change in the state can have low registration
cost, but the transferred trajectory will fail. As a result, such
an approach often fails to accomplish tasks that can be solved
with the existing library of demonstrations. In addition to
ignoring potential brittleness in demonstrations, registration
cost does not consider any notion of a goal or task.

Our approach to these issues is to use a demonstration
library to define a related, simpler, Markov decision process
where each action corresponds to performing trajectory trans-
fer from a particular demonstration. We learn a policy for
this representation in the form of a Q-function: a measure of
cost-to-go for a state and action pair. Given an (approximate)
Q-function there are several policies one can define. The
simplest is to select the action that maximizes the value of
the Q-function for the current state. A more computationally
intensive approach uses a simulator to search over action
sequences and selects the action that begins the ‘best’ action
sequence, where best is defined as the sum of the cost
encountered during the action sequence plus cost-to-go at
the final state (as encoded by the Q-function).

In this paper, we present a solution to the demonstration
selection problem that can account for the variability in

robustness of demonstrations and incorporates the sequential
nature of our tasks. Our contributions are as follows: (i) We
formulate the demonstration selection problem as an options
Markov decision process (MDP); (ii) We present max-margin
Q-function estimation (MMQE), a method for approximating
Q-functions from expert-guided task executions; and (iii) We
describe task-independent features that are rich enough to
allow learning but make no additional assumptions beyond
those of trajectory transfer.

We developed two knot-tying benchmarks for evaluating
the effectiveness of our proposed approach, overhand knots
and figure-eight knots. These benchmarks are available at
sites.google.com/site/icra015mmqe). The nearest neighbor
approach described in [2] achieves a success rate of 70%
and 54% on these two benchmarks. The reactive policy
with respect to our learned approximate Q-function achieves
success rates of 82% and 63% respectively. Augmenting our
policy with a simulator and beam search raises the success
rate to 88% and 76%.

While our primary running example and experiments deal
with knot tying, our policy learning and trajectory transfer
methods make few assumptions about the specifics of the
task except for the availability of point clouds for the scene;
it is applicable in a wide class of manipulation problems.

II. RELATED WORK

Related work for our contribution stems from three areas
of research: learning from demonstrations, deformable object
manipulation (in particular knot tying), and hierarchical
reinforcement learning.

The problem of learning from demonstrations (LfD) deals
with the generalization of expert demonstrations to new
scenarios [4], [5]. Behavioral cloning is an approach to LfD
that directly learns a policy to mimic an expert’s behavior.
One of the first successful applications of behavioral cloning
is the ALVINN system, which utilizes a neural network to
learn a steering policy that enables an autonomous car to
follow a road [6]. Muller et al. use a convolutional network
to learn a steering policy for off-road driving [7]. Ratliff et al.
use multi-class classification to learn a function that scores
actions to predict good foot steps for robot locomotion and
good grasps for robot manipulation [8]. Ross et al. propose a
method to directly control a Micro UAV from RGB camera
input [9].

Calinon et al. learn a mixture of Gaussians to represent
the joint trajectory of the robot and environment state across
multiple demonstrations, and infer the trajectory for a new
environment state by conditioning on that state [10], [11].
Their approach assumes access to a fixed representation of
the environment in terms of object frames, so it cannot
be applied to tasks in environments without fixed feature
representations — such as our application of knot tying.

Ratliff et al. [12] use max-margin planning to do inverse
reinforcement learning [13], [14]. They obtain trajectories
from expert human demonstrators for motion planning prob-
lems. They formulate a max-margin problem to infer the cost

function the expert is optimizing. Our approach shares sim-
ilarity with this in that both learn from demonstrations with
a max-margin method. However, they learn a cost function
whereas our approach learns a Q-function. In addition, their
approach requires access to a dynamics model.

Dvijotham and Todorov directly learn a value function or
Q-function for an MDP, given sample transitions from an
optimal control policy [15]. They learn the expert’s reward
function but are limited to models with tractable discrete
representations or linear dynamics models. In contrast, our
approach fixes a cost function and uses learning to account
for prohibitive state-action space size and complex dynamics.

Because our approach makes limited assumptions about
the state space and dynamics of the model, it can be
applied towards a variety of tasks in robotics, including
the manipulation of deformable objects. It is challenging to
manipulate deformable objects because of their nonlinearity
and because the configuration spaces of such objects may be
infinite-dimensional [16].

In previous work, Wada et al. model textile fabric and
sponge blocks coarsely and then apply a control method that
is robust to discrepancies between the coarse model and the
object [17]. Howard et al. present a more general approach
for grasping 3D deformable objects that does not assume
prior knowledge of the object. They model particle motion
of the object using nonlinear partial differential equations,
and train a neural network to determine the minimum force
required for manipulating the object [18]. In contrast, our
approach enables manipulation of deformable objects with-
out directly modeling the object, and makes no assumptions
beyond those of trajectory transfer. When a model of state-
transitions is available, we can use lookahead to reduce
uncertainty in execution through the simulation of transferred
trajectories.

We validate our approach in a knot tying domain, a
commonly studied deformable object manipulation task
in robotics. Previous approaches usually depend on rope-
specific knowledge and assumptions. For instance, in knot
planning from observation, knot theory is used to recog-
nize rope configurations and define movement primitives
from visual observations of humans tying knots [19], [20].
Existing motion planning approaches for knot tying use
topological representations of rope states (i.e. sequences of
rope crossings and their properties) and define a model
for transitioning between topological states [21], [22], [23].
Robust open loop execution of knot tying has also been
explored [24]. In contrast to these methods, our approach
does not explicitly make use of underlying rope-specific
knowledge or directly model the rope; instead, it infers this
knowledge by robustly applying human-guided demonstra-
tions to new scenes through a learned selection criterion and
trajectory transfer.

Konidaris et al. use LfD to initialize a skill chaining rein-
forcement learning algorithm [25]. However, they focus on
taking a demonstration and decomposing it into explicit local
policies. We simply make use of the associated trajectory
transfer and leverage it to solve tasks beyond the reach

https://sites.google.com/site/icra2015mmqe

of current reinforcement learning approaches. Neumann et
al. and Stulp et al. both explore using optimizing motion
primitive parameters as another way to elicit this behavior
in reinforcement learning [26], [27]. When they learn the
primitives, they must find an appropriate policy for setting
these parameters, which is intractable in our setting.

III. TECHNICAL BACKGROUND

A. Markov decision processes

Markov decision processes (MDP) provide a mathematical
model for sequential decision making problems. In this
work, we consider stochastic shortest path (SSP) formu-
lations of MDPs. An (undiscounted) SSP, M, is a tuple:
M = 〈S,G,A, T, C〉 [28]. S is a set of states, which
represent different configurations of our world. G ⊂ S is
a set of terminal states. A is a set of available actions.
T : S × A → ∆S is a function that maps a state
and an action to a probability distribution over next states.
C : S → R+ is a function that specifies the cost associated
with states. In an SSP, costs are positive everywhere except
for terminal states. A solution to an MDP is a policy that
maps each state to an action.

This solution is found by finding a value function, V ∗,
that satisfies the Bellman equations:

V (s) =

{
max
a

∑
s′
T (s, a, s′)[V (s′)− C(s)] s /∈ G

0 s ∈ G

It is sometimes easier to work with a Q-function, given by
the expression inside the max in the above equation. Thus,
V ∗(s) = max

a
Q∗(s, a). There are many approaches to find-

ing such a value function, but they require storing a vector
that is O(|S|), which is prohibitive in many applications.

A common (approximate) approach to solving an MDP
is linear value function approximation [29]. Given a M -
dimensional feature map, φ : S × A → RM , we restrict
ourselves to value functions that are linear combinations
features and minimize the error associated with the Bellman
equations for a set of sampled state transitions.

An options MDP extends MDPs to allow temporal ab-
straction [30]. An option, o, is a combination of a policy,
an instantiation set and a termination set. When an agent
is in a state within o’s instantiation set they can select o
like any other action. Actions are then selected according to
o’s policy until the termination set is reached. This enables
simple policies over options to specify complex behavior for
large MDPs.

B. Trajectory transfer through non-rigid registration

In complex, high-dimensional and continuous MDPs, such
as those that arise in deformable object manipulation, linear
value function approximation often fails to compute a reason-
able policy—it is prohibitively expensive to sample enough
state transitions to effectively represent the dynamics of the
problem. A promising alternative leverages demonstrations
from successful task executions. This approach, learning
from demonstrations (LfD), has been successfully used in

a wide variety of applications [31], [10]. In this work, we
build on a recent LfD method that uses non-rigid registration
to perform trajectory transfer from demonstrations.

Non-rigid registration is a method to compute mappings
between two scenes based on correspondences between
landmark points. A commonly-used, effective method for
registering spatial data is the Thin Plate Spline (TPS) reg-
ularizer [32], [33]. Given a set of correspondence points
(xi,yi), the corresponding (regularized) TPS is a function,
f : R3 → R3, that minimizes the following energy
functional:

Ebend(f ;X,Y, C) =
∑
i

||f(xi)− yi||2

+ C

∫
dx||D2(f)||2Frob.

This functional is called bending energy because the second
term measures the curvature (bending) of f as the norm
of the Hessian of f . argminf Ebend(f ;X,Y,C) admits a
solution of the form:

f(x′;A,B, c,X) = AK(X,x′) + Bx + c.

Where K is the 3D TPS kernel K(x,x′) = −||x − x′||,
A ∈ R3×N , B ∈ R3x3, and c ∈ R3. Given a point cloud and
correspondences, we solve for the coefficients A,B, and c
with a straighforward application of least squares.

In the case where correspondences are unknown, Thin
Plate Spline Robust Point Matching (TPS-RPM) algorithm
provides a method to jointly find correspondences and
mappings between them [34]. TPS-RPM is an expectation
maximization style algorithm that alternates between (1)
estimating correspondences between the point clouds of
two scenes based on a current mapping and (2) fitting the
optimal TPS transformation based on these estimated scene
correspondences.

Recent approaches leverage TPS to perform trajectory
transfer [2]. They represent a demonstration, d, as a
paired point cloud and trajectory of end effector poses:
d = (Pd, τd). In the current (or test) scene, P ′, they
compute the TPS to the demonstration point cloud f∗Pd,P ′

with TPS-RPM. Then we execute the transferred trajectory:
τ ′ = f∗Pd,P ′(τd). In the case where this transfer is infeasible,
trajectory optimization is used to find a nearby feasible
trajectory. We use the pose transfer approach from Lee
et al. [3] to use a 3D mapping to transfer end effector
configurations.

Schulman et al. [2] extend trajectory transfer to demon-
stration libraries by first selecting

d∗P ′ = argmin
d∈D

Ebend(f
∗
PD,P ′) (1)

and applying trajectory transfer from d∗P ′ . While it was
designed for deformable object manipulation, it is straightfor-
ward to apply trajectory transfer in any scenario where point
clouds are available. As long as a successful trajectory can
be determined from geometric information, then trajectory
transfer can be expected to perform well.

C. Structured max margin

In this paper, we explore the problem of learning a (task-
specific) ranking function to select d∗P ′ . We approach this
task in a max-margin framework. The simplest (although
somewhat naı̈ve) approach in this framework is to train an
SVM to recognize the expert’s state-action pairs. We assume
a feature representation of state-action pairs and a set of
optimal state-action pairs, L = {(ai, si)}. Then we find a
hyperplane in feature space that maximizes the margin from
optimal state-action pairs to suboptimal state-action pairs.
This is formalized as the following convex optimization, φ
is a feature map for state-action pairs:

minimize
w,ξ≥0

||w||2 + C
∑

ξi (2)

subject to w>φ(si, ai) ≥ w>φ(si, a
′) + 1− ξi

∀(si, ai) ∈ L,∀a′ ∈ A \ ai.

The ξi are slack variables that ensure the optimization
is always feasible. This frequently runs into issues when
there are actions which are suboptimal, but only barely.
For example, if there are two identical actions, of which
the expert only selected one, we will be unable to find
a reasonable separating hyperplane. In a structured max-
margin method, we account for this issue with a similarity
measure m between state-action pairs. The corresponding
optimization is as follows:

minimize
w,ξ≥0

||w||2 + C
∑

ξi (3)

subject to w>φ(si, ai) ≥ w>φ(si, a
′) +m(ai, si, a

′)− ξi
∀(si, ai) ∈ L,∀a′ ∈ A \ ai.

IV. LEARNING A POLICY TO SELECT DEMONSTRATIONS

A. From expert demonstrations to options

In this section, we present the key conceptual contribution
of our work: an interpretation of trajectory transfer from a
demonstration library as options within an MDP. This allows
us to apply MDP learning techniques to this problem and
enables substantial performance improvements.

To motivate trajectory transfer, consider an overhand knot-
tying task. The state space is the joint space of rope config-
urations and velocities as well as robot configurations. The
action space is the continuous set of motor torques that can
be commanded to the robot’s joints. The goal set is states
where the rope configuration satisfies a complex topological
constraint. The state transition function is defined by physical
properties and include both contact and tension forces.

Direct solution is impractical—even representing the state
compactly is a challenge. An additional challenge arises from
the length of plans to take required to solve this problem.
If we discretize actions by specifying voltage commands for
some fixed amount of time, it is entirely reasonable to suspect
that reaching a goal state will take hundreds of individual
actions.

With the knot-tying task in mind, let us consider the
properties of trajectory transfer. We obtain a demonstration
that maps a particular rope configuration (represented as a

discrete set of points) to a series of end effector poses. When
we transfer this demonstration to a new state, s, we obtain
a new trajectory. This mapping is deterministic for a fixed
transfer method and a fixed demonstration. When we have
multiple demonstrations, we select one of these trajectories
to execute.

What relation do these transferred trajectories have to the
original problem? Trajectory execution runs a controller to
take the current end effector pose to the next one in the
trajectory, so we can conceptualize trajectory transfer as a
mapping from states to policies the original (intractable)
problem description. Thus, a demonstration library, a transfer
technique, and an MDP, combine to create an options MDP
that we call a demonstration MDP. Figure 2 illustrates this
observation with a system diagram.

The demonstration MDP for a task will typically be far
simpler. Consider our overhand knot task with the addition
of a demonstration library. While the state space is still
unconscionably large, the action space and effective horizon
are much shorter. The demonstration library used in [2] has
148 demonstrations and splits a knot-tying task into four
steps. The action space has been reduced from a subset of
R14 to a finite set with 148 members. The planning horizon
has been reduced from hundreds to approximately four.

In this light, the decision rule in Equation 1 is a hand-
coded policy for a demonstration MDP that leverages knowl-
edge about the transfer process. However, the problem is
now of a form such that it is reasonable to learn a pol-
icy. We also observe that search algorithms have running
times that are O(|A|H). Thus, the reduction in complexity
obtained through a demonstration MDP enables us to apply
search techniques with learned value functions to solve this
problem.

B. Learning a policy in the demonstration MDP

Much of policy learning is viewed from the perspective of
learning a Q-function. This provides a measure of the quality
of executing a state-action pair. Replacing the bending cost
in Equation 1 with the Q-function would provide the optimal
selection rule for a demonstration library.

Computing an optimal Q-function for challenging tasks
such as deformable object manipulation is likely intractable,
as the state space is prohibitively large, but approximate
methods are applicable. We use a feature map to embed
state-action pairs in a common space. We will use linear
combinations in this space to define our approximate Q-
function:

Q̃(s, a;w0, w) = w0 + wᵀφ(s, a). (4)

A way to learn a policy for this problem uses the structured
max margin approach described in Section III-C. We collect
examples of optimal state-action pairs, where the actions
indicate which demonstration to transfer and require that Q̃
rank expert selection higher than the others.

We let L = {(si, ai)} be a set of expert state-action pairs.
We can solve the optimization in Equation 3 to obtain a
(state-dependent) ranking function for demonstrations. This

New State: S

P = ExtractPoints(S)

⌧ = f⇤
Pd,P (⌧d)

f⇤
Pd,P = argmin

f
Ebend(f ; Pd, P)

New Trajectory: ⇡d(S) = ⌧

d = (Pd, ⌧d)

⇡d

Fig. 2: System diagram indicating the trajectory transfer
process. This illustrates that, for a fixed transfer process and
demonstration, trajectory transfer specifies a policy mapping
states to trajectories. Each trajectory is a policy when viewed
from the point of view of primitive actions. Thus, we can
think of a demonstration library as providing the structure
of an options MDP for a given problem. This options MPD
will typically be much simpler to solve.

is easily turned into a policy by selecting the demonstration
that maximizes this ranking function for the current state.

This will learn a policy that approximates the expert’s and
is easy to control for overfitting. However, it would be a
mistake to call this an approximate Q-function. In addition to
ranking optimal actions higher, the Q-function also satisfies
the Bellman equations and provides a measure of cost-to-go.
There are two reasons we would like a learned ranking to
model this behavior.

The first is that, in the case that L is composed of
sequences of state action pairs, we discard information by
ignoring Bellman constraints. It may be possible to obtain
a ranking function that will generalize better by including
information about Bellman equations in the learning process.

The second drawback is related to our observation that
demonstration MDPs have actions sets and effective horizons
that are small enough to make search a viable option. Putting
this into practice corresponds to a multistage lookahead
policy [28]. These policies expand a local region of the state
space as a tree (using a chosen search method). Then, the
agent acts optimally under the assumption that leaves have
value Q̃. This strategy does not make sense unless Q̃ can rank
state-action pairs where the states are different. However, the
max-margin solutions provide no guarantees that this will be
the case—each state’s evaluation is only loosely related to
the others’.

C. Maximum margin Q-function estimation (MMQE)

To learn a Q-function in a max-margin framework, we
propose maximum margin Q-function estimation (MMQE).
The basic idea behind this approach is straightforward. In
addition to maximizing the margin between optimal actions

and suboptimal actions, we also minimize a measurement of
the Bellman error associated with Q̃(·, ·;w0, w)

Formally, we assume that our labelled examples are broken
up into sequences lj ∈ L, each of length nj :

lj = [(s
(j)
1 , a

(j)
1), (s

(j)
2 , a

(j)
2), . . . , (s(j)nj

, a(j)nj
)].

Each labeled sequence lj corresponds to a single complete
task execution and is ordered chronologically: s(j)i is the
result of taking action a(j)i−1 in state s(j)i−1, and s(j)nj is a goal
state.

For a fixed Q̃, we can estimate the Bellman error associ-
ated with lj as
nj∑
i=0

|Q̃(si, ai;w0, w)− Q̃(si+1, ai+1;w0, w) + C(si)|. (5)

MMQE simply includes this error in the objective of a
structured margin optimization:

min
w,ξ≥0,ν

||w||2 + C

|L|∑
j=1

nj∑
i=1

ξ
(j)
i +D

|L|∑
j=1

nj∑
i=1

|ν(j)i | (6)

s.t. wᵀφ(s
(j)
i , a

(j)
i) ≥ wᵀφ(s

(j)
i , a′) +m(s

(j)
i , ai, a

′)− ξ(j)i
(7)

∀j = 1, . . . , |L|; ∀i = 1, . . . , nj ;

∀a′ ∈ A \ ai
wᵀφ(s

(j)
i , a

(j)
i)− wᵀφ(s

(j)
i+1, a

(j)
i+1) + C(sji) = ν

(j)
i

(8)
∀j = 1, . . . , |L|; ∀i = 1, . . . , nj − 1

This optimization will find an approximate Q-function that
matches the expert’s action ranking and the sampled Bellman
conditions. Equation 6 maximizes the margin while minimiz-
ing the total constraint violation. Equation 7 expresses that
expert selections should be preferred to other options (as
in a structured margin optimization). Equation 8 expresses
that the Q-function satisfy Bellman the equations for expert
demonstrations.

V. FEATURE DESIGN

In the formulation above, we assumed the presence of a
feature function φ(s, a) that produces a featurized represen-
tation of a state-action pair. We briefly outline a few basic
features that are general enough to apply to any task in which
trajectory transfer is applicable.
• Action bias: An |A|-dimensional vector, with each

component corresponding to a particular action in A.
Let ia be an index associated uniquely with action a.
The action bias vector is 0 at every component except
ia, where it has a value of 1. This enables learning
whether actions generalize well or poorly and weights
them accordingly.

• Registration cost: An (|A| + 1)-dimensional vector
based on the TPS registration cost r between s and
astart. The registration cost vector consists of a shared
component, which is always r, and an action-specific
component, in which component ia is set to r and every

other component is left at 0. The shared component
allows for a single penalty to be applied for any large
registration cost. The individual components allow for
additional adjustments in the cases where demonstra-
tions are particularly sensitive to poor registrations.

• End effector position: A scalar feature that indicates
the minimum distance between the transferred trajectory
and the observed point cloud at the first time the gripper
closes. This feature enables limited reasoning about
failures for grasping tasks. For knot-tying it allows Q̃ to
encode that demonstrations whose transferred trajectory
fail to grasp the rope have low value.

• Landmarks: We randomly select a set of “landmark”
states K from the set of expert demonstrations. The
landmark feature is an |K|-dimensional vector con-
sisting of the TPS registration costs to each of these
landmarks. We apply a Gaussian RBF kernel to these
costs and normalize the vector to sum to 1. This serves
to identify which portion of the state space we are in
by comparing to known states, and enables preference
for states that lie closer to the goal.

In our experiments, which we outline in Section VI, it
suffices to simply concatenate the outputs of these feature
functions into a single feature representation. For this work,
we restrict ourselves to features that apply in any setting
where trajectory transfer applies; it would be straightforward
to incorporate domain-specific features if desired.

VI. EXPERIMENTS AND RESULTS

A. Experimental Setup

In our experiments, we compare two methods for extract-
ing a policy from an approximate Q-function:
• Reactive: simply selecting the action with the largest

estimated Q-value
• Lookahead: using a simulator and beam search to select

the action that yields the maximum approximate Q-value
at a future time step.

We evaluate the reactive policy with two different feature sets
and we evaluate two lookahead policies, all using the Willow
Garage PR2 in a simulation environment on two knot tying
tasks.

1) Demonstrations: For overhand knots, we use the set
of demonstrations collected by [2] for their rope-tying ex-
periments. These demonstrations were collected in the real
world and consist of 148 pairs of point clouds and gripper
trajectories. For figure-eight knots, we collected a new set of
demonstrations, consisting of 88 cloud, trajectory pairs. In
both cases, the point clouds were collected using an RGB-
D camera and then filtered based on color to remove the
green background of the table, leaving only the point cloud
representation of the rope. The gripper trajectories were
recorded kinesthetically, from human-guided demonstrations
that move the robot’s grippers to tie a knot. The overhand
knot dataset contains demonstrations for a three-step method
of tying an overhand knot and recovery demonstrations that

enable recovery from common failures, whereas the figure-
eight dataset contains four-step demonstrations without fail-
ure recovery demonstrations.

2) Simulation Environment for Knot Tying: The training,
validation, and evaluation of our policy are run in simulation.
The simulation environment uses Bullet Physics [35] as the
physics engine. The rope is simulated with a linked chain of
capsules with bending and torsional constraints.

3) Benchmark: For the labeled examples L used to train
our MMQE model, we use human-labeled examples consist-
ing of complete task executions: from a randomly drawn
initial rope configuration to a successfully tied knot.

Initial rope states are randomly perturbed configurations
of samples uniformly drawn from the initial robe states in
the demonstration library. The process of perturbing a rope
state consists of selecting five uniformly-spaced points along
the rope and dragging each in a random direction for a radius
of 10 cm. All initial rope configurations in our experiments
are drawn from this distribution.

The goal of labeling is to specify the best demonstration
to generalize from for many observed rope states. Our
labeling interface shows the user simulations of applying
demonstrations in decreasing order of registration cost, which
is a rough measure of the quality of an action. When the
human labeler sees an action that they deem optimal (or
close enough to optimal) they indicate this, the simulated
robot commits to that action, and the process proceeds until
a knot is tied.

In addition, the benchmarks contain an evaluation set
of 100 randomly drawn initial configurations. In the first
benchmark, we define success to be tying an overhand knot
in a sequence of 5 or fewer actions, and in the second
benchmark, tying a figure-eight knot in 6 or fewer actions.

B. Experiments

We evaluate the success rate for the following policies and
feature combinations:
(i) reactive policy: action bias, registration cost
(ii) reactive policy: (i) + end effector pose
(iii) two-step lookahead with width 5: (i) + landmark
(iv) three-step lookahead with width 3: (i) + landmark

For the overhand knot tying task, our training data is
130 expert-labeled task executions, consisting of 565 in-
dividual segments. Similarly, for the figure-eight task, 123
labeled executions of 559 segments are used. For each
of the evaluated policies, the optimization hyperparameters
C and D are first tuned via holdout validation, using a
holdout set of 100 randomly drawn initial rope states (distinct
from the evaluation set). For this case, the best-performing
hyperparameters we found via cross-validation are C = 100,
D = 1 for the reactive policies and C = 100, D = 100
for the lookahead policies. We applied MMQE with these
hyper-parameter settings and ran each of the four policies
on the evaluation set. As a baseline comparison, we also
evaluate using the nearest neighbor policy presented in [2].
Their policy chooses the action associated with the state that
has the smallest registration cost with respect to the current

Policy OH Success Rate F8 Success Rate

Nearest neighbor [2] 70% 54%

Reactive 82% 59%
Reactive, with EE feature 80% 63%
Lookahead (width 2, depth 5) 87% 61%
Lookahead (width 3, depth 3) 88% 76%

TABLE I: Success rate of tying overhand (OH) and figure-
eight (F8) knots. The nearest-neighbor method selects the
demonstration to transfer as in Equation 1. Other policies
maximize the approximate Q-function we learn through
MMQE. Reactive maximizes this value in the current state.
The lookahead policies act to maximize a backed up value
computed by beam search with the specified parameters. The
reactive policy succeeds in an additional 18% and 23% of
examples in each task when compared with the baseline.
Lookahead policies achieve very high performance rates and
approach the best possible with our demonstration library.

of Training Examples OH Success Rate F8 Success Rate

Nearest neighbor [2] 70% 54%

40 77.0% 53.3%
80 79.3% 57.3%
All (130, 123) 82% 63%

TABLE II: We vary the number of examples used to generate
constraints for the MMQE optimization problem and examine
how average task performance is affected over 100 test trials
using the resulting reactive policies. It turns out that the
number of examples has a relatively small influence on the
performance of the resulting policy for the overhand knot
task and a larger influence for the figure-eight task.

state. The success rates obtained under these policies are
summarized in Table I. Note that our best results surpass the
baseline by 18% and 23% respectively. About half of this
improvement results from the reactive approach of choosing
the action that maximizes the Q-value, given the current state.
The remaining improvement is gained through lookahead; the
performance of depth 3, width 3 lookahead surpasses that of
depth 2, width 5 lookahead (Table I).

We also examine the relation between the number of
expert-labeled executions and the success rate, using the most
successful reactive policy. For each task, we generate six
randomly sampled subsets of the training data: three sets of
size 40 and three of size 80. The average success rates for
each training set size are shown in Table II. As expected,
the success rate increases as we use more labeled examples.
For the overhand knot task, the resulting policies remain
surprisingly resilient to the number of training examples.
Even with only 40 labeled task executions, the reactive policy
is able to exceed the baseline by 7%. On the figure-eight
knot, a more difficult task, the number of training examples
is more important for learning a successful policy. The
average performance differs by nearly 10% when changing
the training set size from 40 task executions to 123.

VII. CONCLUSIONS AND FUTURE WORK

In summary, we presented a method to improve the use
of trajectory transfer in learning from demonstrations for
deformable object manipulation. We formulated this task as a
discrete-action options MDP. We presented a novel approach
to learning from demonstrations for this MDP, which we
call maximum margin Q-function estimation, that integrates
behavior cloning and value function approximation. We
provide features for learning in this scenario that make no
additional assumptions beyond the assumptions required to
apply trajectory transfer.

We validated our approach on two simulated knot-tying
tasks and contribute two benchmark sets of demonstrations
(both at the trajectory level and in the abstract MDP) and
problems. We showed a significant improvement over a
baseline method that uses a registration cost from trajectory
transfer to select actions. Our experiments suggest that the
quantity of training examples is important in the more diffi-
cult figure-eight task, whereas our method approaches peak
performance on the overhand knot with a modest number of
training examples.

A important avenue for future work is to investigate real
world performance of these approaches. Our results illustrate
a proof of concept and show the utility of modelling the
cost-to-go for this task, but it is important to investigate
the application of our methods and abstraction techniques
to the real world. In particular, it is important to account for
mismatch between the physics model in our simulator and
that of the real world.

More broadly, our key insight is that we can formulate a
temporally abstracted problem representation from a library
of expert demonstrations. This abstraction greatly simplifies
the complexity of the problem and, in turn, this allows
us to develop and apply efficient learning and planning
methods. This suggests a general approach to LfD that
extracts computationally tractable problem representations
from expert demonstrations.

ACKNOWLEDGEMENTS

This research was funded in part by AFOSR through a
Young Investigator Program award. Dylan Hadfield-Menell
was supported by a Berkeley Fellowship, Alex Lee by an
NSF Graduate Research Fellowship, Chelsea Finn by a
Berkeley EECS Fellowship, Sandy Huang by a Chancellor’s
Fellowship, and Eric Tzeng by a Berkeley EECS Fellowship.

REFERENCES

[1] J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick, and
P. Abbeel, “A Case Study of Trajectory Transfer Through Non-Rigid
Registration for a Simplified Suturing Scenario,” in Proceedings of
the 26th IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2013.

[2] J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Learning from Demon-
strations through the Use of Non-Rigid Registration,” in Proceedings
of the 16th International Symposium on Robotics Research (ISRR),
2013.

[3] A. X. Lee, S. H. Huang, D. Hadfield-Menell, E. Tzeng, and P. Abbeel,
“Unifying scene registration and trajectory optimization for learning
from demonstrations with application to manipulation of deformable
objects,” in 27th IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2014.

http://www.cs.berkeley.edu/~pabbeel/papers/2013-IROS-suturing-final.pdf
http://www.cs.berkeley.edu/~pabbeel/papers/2013-IROS-suturing-final.pdf
http://www.cs.berkeley.edu/~pabbeel/papers/SchulmanHoLeeAbbeel_ISRR2013.pdf
http://www.cs.berkeley.edu/~pabbeel/papers/SchulmanHoLeeAbbeel_ISRR2013.pdf

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A Survey
of Robot Learning from Demonstration,” Robot. Auton. Syst., vol. 57,
no. 5, pp. 469–483, May 2009.

[5] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233–242, 1999.

[6] D. Pomerleau, “ALVINN: An Autonomous Land Vehicle In a Neural
Network,” in Advances in Neural Information Processing Systems,
D. Touretzky, Ed. Morgan Kaufmann, 1989.

[7] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. LeCun, “Off-road
obstacle avoidance through end-to-end learning,” in Advances in
Neural Information Processing Systems, 2005, pp. 739–746.

[8] N. Ratliff, J. A. Bagnell, and S. S. Srinivasa, “Imitation learning for
locomotion and manipulation,” in IEEE-RAS International Conference
on Humanoid Robots, 2007.

[9] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. D. Bagnell, and M. Hebert, “Learning Monocular Reactive UAV
Control in Cluttered Natural Environments,” in IEEE International
Conference on Robotics and Automation. IEEE, March 2013.

[10] S. Calinon, F. Guenter, and A. Billard, “On Learning, Representing,
and Generalizing a Task in a Humanoid Robot,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, no. 2,
pp. 286–298, April 2007.

[11] S. Calinon, F. D’halluin, D. Caldwell, and A. Billard, “Handling of
multiple constraints and motion alternatives in a robot programming
by demonstration framework,” in Humanoid Robots, 2009. Humanoids
2009. 9th IEEE-RAS International Conference on, Dec 2009, pp. 582–
588.

[12] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum Margin
Planning,” in Proceedings of the 23rd International Conference on
Machine Learning, ser. ICML ’06. New York, NY, USA: ACM,
2006, pp. 729–736.

[13] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[14] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in Icml, 2000, pp. 663–670.

[15] K. Dvijotham and E. Todorov, “Inverse Optimal Control with Linearly-
Solvable MDPs,” in Proceedings of the 27th International Conference
on Machine Learning (ICML), 2010.

[16] F. Lamiraux and L. E. Kavraki, “Planning Paths for Elastic Objects
Under Manipulation Constraints,” International Journal of Robotics
Research, vol. 20, pp. 188–208, 2001.

[17] T. Wada, S. Hirai, H. Mori, and S. Kawamura, “Robust Manipulation
of Deformable Objects Using Model Based Technique,” in Articulated
Motion and Deformable Objects, ser. Lecture Notes in Computer
Science, H.-H. Nagel and F. Perales Lpez, Eds. Springer Berlin
Heidelberg, 2000, vol. 1899, pp. 1–14.

[18] A. M. Howard and G. A. Bekey, “Intelligent Learning for Deformable
Object Manipulation,” Autonomous Robots, vol. 10, no. 1, pp. 51–58,
2000.

[19] T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi,
“Knot planning from observation.” in Proceedings of the International
Conference on Robotics and Automation (ICRA). IEEE, 2003, pp.
3887–3892.

[20] J. Takamatsu, T. Morita, K. Ogawara, H. Kimura, and K. Ikeuchi,
“Representation for Knot-tying Tasks,” Trans. Rob., vol. 22, no. 1,
pp. 65–78, Nov. 2006. [Online]. Available: http://dx.doi.org/10.1109/
TRO.2005.855988

[21] M. Moll and L. E. Kavraki, “Path planning for deformable linear
objects,” IEEE Transactions on Robotics, vol. 22, pp. 625–636, 2006.

[22] M. Saha, P. Isto, and J.-C. Latombe, “Motion Planning for Robotic Ma-
nipulation of Deformable Linear Objects,” in Experimental Robotics,
ser. Springer Tracts in Advanced Robotics, O. Khatib, V. Kumar, and
D. Rus, Eds. Springer Berlin Heidelberg, 2008, vol. 39, pp. 23–32.

[23] H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/Unknotting Manip-
ulation of Deformable Linear Objects.” The International Journal of
Robotics Research, vol. 25, no. 4, pp. 371–395, 2006.

[24] M. Bell, “Flexible Object Manipulation,” Ph.D. dissertation, Dart-
mouth College, Hanover, NH, USA, 2010.

[25] G. Konidaris, S. Kuindersma, R. Grupen, and A. S. Barreto, “Con-
structing skill trees for reinforcement learning agents from demon-
stration trajectories,” in Advances in neural information processing
systems, 2010, pp. 1162–1170.

[26] G. Neumann and W. Maass, “Learning complex motions by se-

quencing simpler motion templates,” in In Proceedings of the 26th
International Conference on Machine Learning, 2009.

[27] F. Stulp, E. Theodorou, and S. Schaal, “Reinforcement Learning With
Sequences of Motion Primitives for Robust Manipulation,” Robotics,
IEEE Transactions on, vol. 28, no. 6, pp. 1360–1370, Dec 2012.

[28] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an
overview,” in Decision and Control, 1995., Proceedings of the 34th
IEEE Conference on, vol. 1. IEEE, 1995, pp. 560–564.

[29] P. J. Schweitzer and A. Seidmann, “Generalized polynomial approx-
imations in Markovian decision processes,” Journal of mathematical
analysis and applications, vol. 110, no. 2, pp. 568–582, 1985.

[30] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial intelligence, vol. 112, no. 1, pp. 181–211, 1999.

[31] H. Miyamoto and M. Kawato, “A tennis serve and upswing learning
robot based on bi-directional theory.” Neural Networks, vol. 11, no.
7-8, pp. 1331–1344, 1998.

[32] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and Representation
of 3D Objects with Radial Basis Functions,” in Computer Graph-
ics (SIGGRAPH 01 Conf. Proc.), pages 6776. ACM SIGGRAPH.
Springer, 2001, pp. 67–76.

[33] G. Wahba, Spline Models for Observational Data. Philadelphia:
Society for Industrial and Applied Mathematics, 1990.

[34] H. Chui and A. Rangarajan, “A new point matching algorithm for
non-rigid registration,” Computer Vision and Image Understanding,
vol. 89, no. 2-3, pp. 114–141, 2003.

[35] E. Coumans, “Bullet Physics,” Jan 2014. [Online]. Available:
http://code.google.com/p/bullet/

http://www.cs.cmu.edu/~mmv/papers/09ras-survey.pdf
http://www.cs.cmu.edu/~mmv/papers/09ras-survey.pdf
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/2847-off-road-obstacle-avoidance-through-end-to-end-learning.pdf
https://papers.nips.cc/paper/2847-off-road-obstacle-avoidance-through-end-to-end-learning.pdf
http://www.ri.cmu.edu/pub_files/2007/11/53.pdf
http://www.ri.cmu.edu/pub_files/2007/11/53.pdf
http://www.ri.cmu.edu/pub_files/2013/3/icra_camera_ready.pdf
http://www.ri.cmu.edu/pub_files/2013/3/icra_camera_ready.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4126276&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4126276&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5379592
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5379592
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5379592
http://webdocs.cs.ualberta.ca/~maz/publications/maximummarginplanning.pdf
http://webdocs.cs.ualberta.ca/~maz/publications/maximummarginplanning.pdf
http://homes.cs.washington.edu/~todorov/papers/DvijothamICML10.pdf
http://homes.cs.washington.edu/~todorov/papers/DvijothamICML10.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=769951
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=769951
http://link.springer.com/chapter/10.1007%2F10722604_1
http://link.springer.com/chapter/10.1007%2F10722604_1
http://dx.doi.org/10.1023/A%3A1008924218273
http://dx.doi.org/10.1023/A%3A1008924218273
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1242193
http://dx.doi.org/10.1109/TRO.2005.855988
http://dx.doi.org/10.1109/TRO.2005.855988
http://dx.doi.org/10.1109/TRO.2005.855988
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1668249&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1668249&tag=1
http://dx.doi.org/10.1007/978-3-540-77457-0_3
http://dx.doi.org/10.1007/978-3-540-77457-0_3
http://ijr.sagepub.com/content/25/4/371
http://ijr.sagepub.com/content/25/4/371
http://www.cs.dartmouth.edu/~devin/papers/TR2010-663.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2010_1039.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2010_1039.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2010_1039.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.7267&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.7267&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6295672
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6295672
http://www.simon.rochester.edu/fac/seidmannav/Articles/Generalized%20Peolnomial%20Approximations%20in%20Markovian%20Decision%20Process%20(JMAA%20pub).pdf
http://www.simon.rochester.edu/fac/seidmannav/Articles/Generalized%20Peolnomial%20Approximations%20in%20Markovian%20Decision%20Process%20(JMAA%20pub).pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www.cns.atr.jp/~kawato/Ppdf/1213.pdf
http://www.cns.atr.jp/~kawato/Ppdf/1213.pdf
http://window.stanford.edu/courses/cs468-03-fall/Papers/carr-beatson-etal-siggraph01.pdf
http://window.stanford.edu/courses/cs468-03-fall/Papers/carr-beatson-etal-siggraph01.pdf
http://dx.doi.org/10.1016/S1077-3142(03)00009-2
http://dx.doi.org/10.1016/S1077-3142(03)00009-2
http://code.google.com/p/bullet/
http://code.google.com/p/bullet/

	Introduction
	Related Work
	Technical Background
	Markov decision processes
	Trajectory transfer through non-rigid registration
	Structured max margin

	Learning a policy to select demonstrations
	From expert demonstrations to options
	Learning a policy in the demonstration MDP
	Maximum margin Q-function estimation (mmqe)

	Feature Design
	Experiments and Results
	Experimental Setup
	Demonstrations
	Simulation Environment for Knot Tying
	Benchmark

	Experiments

	Conclusions and Future Work
	References

