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Abstract— The execution of long-horizon tasks under uncer-
tainty is a fundamental challenge in robotics. Recent approaches
have made headway on these tasks with an integration of task
and motion planning. In this paper, we present Interfaced Belief
Space Planning (IBSP): a modular approach to task and motion
planning in belief space. We use a task-independent interface
layer to combine an off-the-shelf classical planner with motion
planning and inference. We determinize the problem under
the maximum likelihood observation assumption to obtain a
deterministic representation where successful plans generate
goal-directed observations. We leverage properties of maximum
likelihood observation determinizations to obtain a simple
representation of (optimistic) belief space dynamics that is well-
suited to planning. Our interface is implemented with standard
belief state queries, requiring only the ability to sample,
compute unnormalized likelihoods, and compute maximum
likelihood states. Our contribution is a novel algorithm for
task and motion planning in belief space that has minimal
dependence on the details of the inference engine used. IBSP
can work with a broad class of black box state estimators,
with zero changes to the algorithm. We validate our approach
in simulated tasks for the PR2 that account for continuous
state, different types of initial state distributions, and negative
observations.

I. INTRODUCTION

A central goal in robotics is the execution of long-horizon
tasks in the face of uncertainty. Readers that have spent
frantic mornings searching for lost keys understand the
challenges such problems present. Completing such a task
corresponds to reasoning about multi-modal belief distribu-
tions and obtaining a meaningful observation can require
prohibitively long sequences of primitive actions.

A solution to this task is a policy that accounts for
uncertainty in locations of objects, uncertainty in robot
position, and non-determinism in the dynamics (among other
challenges). Solving such problems exactly is far beyond
the state of the art in partially observable Markov decision
processes (POMDP).

Given the intractability of exact solution, we propose an
approximate approach. Our starting point takes inspiration
from recent methods for fully observed task and motion
planning. This is a challenge in its own right, but careful
applications of abstraction, lazy discretization, and motion
planning have made inroads [1], [2]. These approaches
plan in an abstract representation of a problem (without
continuous variables) then use sampling and motion plan-
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Fig. 1: A screenshot from one of our experiments. The robot
is tasked with navigating to the other side of the corridor
through a uniform distribution over obstacles. Our low-level
refinement algorithm detects likely obstructions and propa-
gates this information to the high level. The objects shown
are from the posterior distributions of multiple obstacles after
several negative observations.

ning to refine abstract plans into fully grounded plans with
continuous parameterizations.

An important development in approximate solutions to
POMDPs is the maximum likelihood observation (MLO) de-
terminization [3]. This approximation assumes that each
belief state produces its maximum likelihood observation.
The result is a deterministic problem that encourages goal
directed information-gathering behavior. In this work, we
extend the domain abstraction techniques from Srivastava et
al. [1] to MLO approximations of large continuous POMDPs.

Our primary contribution relies on an abstraction mech-
anism that compactly represents belief state dynamics for
MLO determinizations. As an example, consider a fluent,
BGraspPose(o, o pose bel, r pose, grasp), whose arguments
are, respectively, an object reference, a distribution over
object poses, a distribution over robot poses, and a grasp.
This fluent is true if the (unobserved) actual poses represent
a successful grasp with some preset probability. We show
in Section IV-A that directly determinizing this formulation
and applying the skolemization approach from [1] leads to
unsatisfactory behavior.

Our approach avoids this issue by using properties of MLO
determinizations. If BGraspPose fails to hold, then either 1)
the maximum likelihood state does not represent a successful
grasp; or 2) it does, but there is too much uncertainty in the
belief to have a high probability of success. The key insight



we leverage is that, in a maximum likelihood observation
determinization, the correct response to the first scenario is
to change the maximum likelihood state, while the correct
response to the second is to observe more.

We show how to use this insight to generate useful abstrac-
tions in Section IV-B and give a novel algorithm, Interfaced
Belief Space Planning (IBSP), that applies a determinization-
replan approach to large continuous POMDPs. IBSP extends
the interface of [1] and enforces a clear separation among
extracting a plan skeleton from a domain description, refining
a plan skeleton, and determining success or failure of a plan.
Our implementation uses an off-the-shelf classical planner
to generate plan skeletons and sampling and trajectory opti-
mization to generate refinements and determine their validity.

An important property of our solution is that it relies
on standard belief state queries, such as sampling and
maximum likelihood computation. Such structured access
to the belief state allows IBSP to work with a broad class
of potentially complex state-estimation methods with no
algorithmic changes. We validate our approach in a set of
simulated partially observable mobile manipulation tasks.
A representative task is object retrieval from one of many
possible drawers. Long action sequences are required to
generate useful observations and correctly accounting for
negative observations is necessary for success. Our algorithm
reasons about obstructions and occlusions to generate plans
to find its goal object, while ensuring safety requirements
are met.

II. RELATED WORK

Our work builds on recent results in deterministic task and
motion planning. Early work in task and motion planning
was embodied in the aSyMov system [4], where a task plan
was generated and used to guide motion planning. The focus
of this work was on determining a way to solve motion plans
in parallel. Dornhege et al. use semantic attachments to do
task and motion planning with classical planners [5]. This
approach makes use of task planners, but requires symbolic
representation of discretized locations. Havur et al. use local
search to find an optimal geometric configuration before
discretizing the continuous plane into non-uniform cells and
using a hybrid planner to find a feasible motion plan [6].
Lagriffoul et al. parameterize symbolic actions with coarse
geometric representations of objects and grasp types. During
refinement they estimate the feasible region for continuous
parameters and use these regions as constraints to reduce
geometric backtracking [7].

Maximum likelihood observation determinization was in-
troduced by Platt et al. [3]. They used this approach to frame
planning in belief space as an underactuated control problem.
They use LQR and transcription methods to find trajectories
in belief space and characterize scenarios where a replanning
strategy is guaranteed to succeed. Van Den Berg et al. use
LQG to solve Gaussian belief space planning problems that
incorporate collision avoidance constraints [8]. They are
able to plan without the maximum likelihood observation

assumption and explore the approximations introduced with
maximum likelihood determinizations.

Our determinization-replan approach shares similarity
with determinization-replan approaches for probabilistic
planning, such as FF-replan [9]. Both leverage determiniza-
tion in order to obtain major performance gains from classi-
cal planners. The maximum likelihood observation assump-
tion is similar to the most likely transition determinization
from that literature, while our optimistic belief updates are
similar to an all outcomes determinization.

Knowledge space representations for planning are an old
idea in artificial intelligence that dates back to McCarthy
and Hayes [10]. Bonet and Geffner provide in-depth ex-
perimentation and analysis of discrete deterministic par-
tially observed planning [11]. They provide conditions under
which discrete formulations of partially observable planning
(with binary, factored beliefs) can be compiled to sound and
complete representations. Our algorithms are aimed at large
continuous problems for robotics while their work focuses
on classical planning.

The Belief Space Hierarchical Planning in the Now plan-
ning and execution system is a task and motion planning
approach to handle uncertainty [12]. They construct task
plans in belief space under maximum likelihood observation
determinization. Levihn et al. extend this system to construct
shorter plans at execution time by smart replanning and
reconsideration [13]. They formulate the regression of belief
goals under Gaussian distributions and plan with an exact
representation of belief state dynamics. In contrast, we use
references to the belief so our approach more easily extends
to arbitrary belief representations.

Srivastava et al. formulate open world POMDPs with a
probabilistic program [14] and develop a generalization of
point-based value iteration to that setting. Both methods
attempt to solve very large POMDPs. In their setting the chal-
lenge is the (unbounded) size of the world and complexity
of corresponding beliefs. The challenge in our work stems
from uncertainty about continuous quantities.

Gashler et al. use a contingent planner to generate plans
that react to feedback from the world [15]. They generate
contingent plans and use external function calls during their
planning step to generate effects of actions. However, they
represent poses and belief updates symbolically for task plan-
ning. We use pose and belief references to plan abstractly.
We refine and verify plans with the true belief.

Nebel et al. use a three valued logic for the TidyUp project
that allows fluents to take the value uncertain [16]. They
assume that uncertain fluents become known once the robot
is close enough and so do not explicitly plan sensing actions.
In contrast, we represent uncertainty directly and combine
reasoning about uncertainty with reasoning about maximum
likelihood states.

III. TECHNICAL BACKGROUND

A. Observable planning formulation

We use a STRIPS-style formalism to define our planning
problems. We introduce it with a pick-and-place task that



will serve as a running example for the paper.
We define a (fully observed) planning problem, Π as a

tuple, Π = 〈E ,F , I, G,A〉, with the following definitions:
E : a set of entities within our domain; e.g., individual

objects or locations.
F : a set of fluents that describe relations between entities.
I ∈ 2F : a conjunction of fluents that are initially true.
G ∈ 2F : a conjunction of fluents that characterizes the set

of goal states.
A: a set of parametrized operators that describes ways the

agent can alter the world. Each op ∈ A is characterized
by: preconditions, pre(op), a conjunction of fluents that
captures the set of states where an operator is applica-
ble; and effects, eff(op), which specifies the fluents that
become true or false after executing op.

A solution to Π is a sequence of operators and states,
{(op1, s1), . . . , (opN , sN )}. To be a valid solution, the pre-
conditions for each operator must be satisfied in the state that
precedes it. op1’s preconditions must be satisfied in the initial
state and the goal fluents must be satisfied in sN . Subsequent
states must add the effects of the intermediate operator to the
previous state (i.e., si+1 is obtained by applying opi’s effects
to si). We illustrate this with a specification of a pick-and-
place task:
E : objects (oi, represented as strings), Null (a nonexis-

tent object), object poses (continuous 6DOF), robot
poses (continuous 20DOF), robot trajectories (continuous
20 · Tmax dimensional), and grasps (continuous 6DOF).

F : Loc(obj, obj pose), RLoc(r pose),
Obstructs(obj, traj), Holding(obj, grasp),
Connects(r pose1, r pose2, traj),
GraspPose(obj, obj pose, r pose, grasp).

A • MoveTo(r pose1, r pose2, traj)
pre: RLoc(r pose1) ∧ Connects(r pose1, r pose2, traj)

∧ ∀i ¬Obstructs(oi, traj)
eff : RLoc(r pose2) ∧ ¬Rloc(r pose1)
• Pick(obj, obj pose, r pose, grasp)

pre: RLoc(r pose) ∧ Holding(Null, Null)
∧ GraspPose(obj, obj pose, r pose, grasp)
∧ Loc(obj, obj pose)

eff : Holding(obj, grasp) ∧ ¬Loc(obj, obj pose)
∧ ¬Holding(Null, Null)
∧ ∀t ¬Obstructs(obj, t)

• Place(obj, obj pose, r pose, grasp)
pre: RLoc(r pose) ∧ Holding(obj, grasp)

∧ GraspPose(obj, obj pose, r pose, grasp)
eff : ¬Holding(obj, grasp) ∧ Loc(obj, obj pose)

∧ Holding(Null, Null)
∧∀ t s.t. overlaps(obj, obj pose, t):

Obstructs(obj, t)

B. Abstraction of continuous variables

While this representation unambiguously specifies prob-
lems, the presence of continuous parameters and conditional
effects that depend on these parameters (e.g., new obstruc-
tions from placing an object) prevents direct solution with a
classical planner.

To use task planners in this setting, we abstract the
continuous aspects of our state in the style of Srivastava
et al. [1]. The key step replaces continuous variables by a
discrete set of references to useful sets of continuous values.
These references are entities in a discrete formulation where
the initial state includes fluents that characterize these sets.
This process is called skolemization and we refer to the
introduced entities as skolem variables.

For example, in order to derive an abstract representation
of the pick operation for object oi, we need a reference to
the pose of the object, the pose of the robot and the grasp it
will use to pick it. To abstract the pose of oi we introduce
a new entity, ObjPose(oi), and include the fluent Loc(oi,
ObjPose(oi)) to characterize it. Intuitively, the new symbol
can be understood as ‘the pose that makes Loc(oi, ·) true.’
We replace the robot pose and grasp with similar symbols,
parameterized by ObjPose(oi), and include a GraspPose
fluent that links the object identifier to the introduced entities.

To capture the effects of actions that use these parameters,
we use sound representations: facts which are guaranteed to
become true are included, but conditional effects that depend
on the particular binding of a skolem variable are not. For
example, after executing a place action, Loc(oi, ObjPose(oi))
will always be true, but the particular obstructions introduced
will depend on the exact binding of ObjPose(oi). We include
the former in our description and rely on an interface layer
to discover conditional effects (e.g., introduced obstructions)
as they become relevant. The process of assigning values to
the variables of a high level plan is called refinement of the
high level plan.

Algorithm 1 shows pseudocode for such an interface layer.
Lines 1-5 set up our planning problem. Line 6 constructs a
high level plan. Lines 8-10 attempt to find a motion plan
for the high level plan. If refinement fails, we identify a
conditional effect of the high level plan that may have caused
failure, update our description, and replan. This integration
is complete for a subclass of planning problems [1].

C. Assumed maximum likelihood observations

In this paper, we consider problems from a more general
class than is described in Section III-A—problems with
partial observability. To solve partially observable problems
with deterministic solvers, we use the maximum likelihood
observation (MLO) determinization of Platt et al. [3]. Here
we give a brief description of their method.

The introduction of partial observability into a planning
problem associates each state with a distribution over obser-
vations. For example, a state where a robot’s depth sensor is
pointed at an object might give a noisy measurement of the
object’s pose. A solution is a policy that maps a belief state,
a probability distribution over states, to actions.

The central idea behind the MLO is that, if we fix the
observation for each belief state, updates to our belief are
deterministic. For example, belief dynamics with Gaussian
state distributions and Gaussian noise are defined, for each
observation, by the Kalman filter update equations. Fixing
the observation for each state reduces this to a deterministic



Algorithm 1 An interface for deterministic problems

1: procedure INTERFACEPLAN(S0, γ)
2: S ← S0

3: s←ExtractSymbols(S0)
4: // Keep track of the successfully refined plan prefix
5: ppre ← None
6: Rpre ← None
7: ppost ← Plan(s, γ)// unrefined plan skeleton
8: while not resource limit reached do
9: Rpost ← MotionPlan(s, ppost)

10: is fail, ifail, failure
11: ← CheckSuccess(S, (ppost, Rpost))
12: if ¬is fail then
13: return (ppre + ppost, Rpre +Rpost)
14: end if
15: ppre ← ppre + ppost[: ifail]
16: Rpre ← Rpre +Rpost[: ifail]
17: S ← ApplyActions(S0, ppre, Rpre)
18: s← ExtractFailureSymbols(S, failure)
19: ppost ← Plan(s, γ)
20: if max attempts reached then
21: reset pose generators
22: reset S, s, ppost, ppre, Rpre

23: end if
24: end while
25: end procedure

update. The utility of this approach, compared with simpler
approximations like the most-likely-state determinization, is
that it can explicitly plan information gathering actions.

IV. INTERFACED BELIEF SPACE PLANNING

In this section, we present our primary contribution: IBSP,
a modular approach to task and motion planning in belief
space. Section IV-A extends our formulation of the problem
to include partial observability. Section IV-B details an
approach based on optimistic observations to obtain a useful
abstraction of belief space dynamics. Section IV-C describes
the IBSP algorithm in detail.

A. Belief space planning formulation

In our full description of the problem, we need to allow
for probabilistic representations in belief space. We restrict
ourselves to problems where the uncertainty is confined to
the continuous state (e.g., we may not know o1’s location,
but we know its name and whether we are holding it). The
entities for a partially observed version of our pick-and-place
domain are distributions over object poses, observations, and
the entities described in Section III-A. We replace the fluents
from our pick-and-place domain with belief fluents that are
true if the corresponding (deterministic) fluent holds with
high probability. For example, we have a fluent, BGraspPose,
which is true if GraspPose is true with high enough prob-
ability. Our input specifies a distribution over observations
that is conditioned on the state.

We divide our operators into actions, which alter the true
state, and observations, which do not alter the true state
but garner information about it. Actions are deterministic
in belief space (even when the underlying dynamics are not)
and follow a similar parametrization to the deterministic case.
Observation operators are parameterized by the belief about
state variables that determine the observation distribution.

This dichotomy restricts non-determinism to observa-
tions, so determinizing observations obtains a representation
suitable for task planning. In principle, one can directly
determinize the problem in this representation and apply
skolemization to get a sound description of abstract belief
dynamics. However, such an approach will often fail to
generate meaningful high-level plans.

We illustrate this issue with a belief space formulation
of the Pick operator. To simplify description, we represent
objects in the frame of the robot and assume that the robot’s
pose in its own frame is known.

In the full (intractable) representation, we have the follow-
ing description:
BPick(o, o pose bel, r pose, grasp)
pre: BLoc(o, o pose bel) ∧ RLoc(r pose)
∧ BGraspPose(o, o pose bel, r pose, grasp)
∧ Holding(Null, Null)

eff : Holding(o, grasp) ∧ ¬BLoc(o, o pose bel)
∧ ¬Holding(Null, Null)
∧ ∀t, h, g ¬BObstructs(o, t, h, g)
∧ ∀ o p, r p ¬BOccludes(o, o p, r p)

The first precondition captures that the continuous parameter
o pose bel represents our current belief about the pose of
o. The problematic precondition is BGraspPose. The issue
is that this a conditional effect of observation: it can only
become true if properties of the belief state that depend on
continuous values are true. The practical implication is that a
task plan generated from such a representation would never
select an observation action1. Formulating a sound logic over
general belief states dynamics that enables this reasoning
is a challenging task and easily results in cumbersome and
intractable representations.

B. Optimism for observations

The insight we use to solve this issue is that belief updates
for MLO often exhibit restricted dynamics: they will typically
concentrate belief at the maximum likelihood state for a
distribution. An action operator, on the other hand, can
change the maximum likelihood state for a distribution (and
potentially introduce variance). We need a formulation that
allows the task planner to effectively select between these
options. Thus, our approach reformulates a problem in terms
of two types of belief state fluents: those which characterize
the maximum likelihood state, and those which characterize
the certainty in our belief. The latter of the two shares
similarities with the BVLoc(ε) fluents from Kaelbling and
Lozano-Pérez [12].

1In [1] conditional effects only appear as negative preconditions and this
allows sound representations to generate meaningful plans.



Returning to the preconditions for BPick, there are two
reasons BGraspPose could fail to hold: either 1) the maxi-
mum likelihood state doesn’t contain a valid grasp pose or
2) the maximum likelihood state admits at least 1 valid grasp
pose, but the distribution has too much variance to allow a
successful grasp with high probability. In the first case, we
must manipulate the state (e.g., move obstructions), while in
the other we must observe it. We replace belief fluents with
maximum likelihood fluents and uncertainty fluents:
MLPick(o, o pose bel, r pose, grasp)
pre: MLLoc(o, o pose bel) ∧ RLoc(r pose)
∧ MLGraspPose(o, o pose bel, r pose, grasp)
∧ ¬UncertainGP(o pose bel, r pose, grasp)
∧ Holding(Null, Null)

eff : Holding(o, grasp) ∧ ¬MLLoc(o, o pose bel)
∧ ¬Holding(Null, Null)
∧ ∀t, h, g ¬MLObstructs(o, t, h, g)
∧ ∀ o p, r p ¬MLOccludes(o, o p, r p)

In order to achieve ¬UncertainGP facts, we include an
observation operator:
ObserveGP(r obs pose, o, o pose bel)
pre: MLLoc(o, o pose bel) ∧ RLoc(r obs pose)
∧ ∀oi¬MLOccludes(oi, o pose bel, r obs pose)
∧ MLInView(r obs pose, o pose bel)

eff : ∀ r p, g ¬UncertainGP(o pose bel, r p, g)
We call this an optimistic observation because the actual
effect is not guaranteed. We rely on the interface layer
to discover cases when it does not hold and correct our
representation. Note that this assumption of optimism is
only made in the high level description. The full algorithm
plans with a complete belief representation: if multiple
observations are needed to successfully localize an object,
the algorithm will plan to take them. In the event that our
plan was overly optimistic, BCheckSuccess on line 10 of
Algorithm 2 (described in the next section) will detect the
overly optimistic behavior and trigger replanning.

C. The IBSP algorithm

In this section, we detail the necessary changes to the
interface from Srivastava et al. to handle our belief space
formulation. The primary change is that the refinement
operation must find an assignment of continuous variables
that maximizes the probability of success, instead of simply
satisfying constraints. Algorithm 2 shows pseudocode with
changes to Algorithm 1 highlighted in red.

We take as input a safety parameter, ε. This determines
the acceptable probability of failure for each step in the plan.
The first change replaces MotionPlan with MLRefine. Both
functions return a dictionary mapping skolem variables to
continuous values. The difference is that MotionPlan does
collision-free motion planning to connect successive states,
while MLRefine minimizes the probability of collision. ML-
Refine can be defined either by direct trajectory optimization
to minimize an unnormalized likelihood of collision, or by
sampling objects from the belief state and minimizing the
number of samples that are in collision. The implementation
for our experiments adopts the second approach.

Algorithm 2 The IBSP planning algorithm

1: procedure IBSP(B0, γ, ε)
2: B ← B0

3: b← ExtractSymbols(B0, None)
4: ppost ← Plan(b, γ)
5: ppre ← None
6: Rpre ← None
7: while not resource limit reached do
8: Rpost ← MLRefine(B, ppost)
9: is fail, ifail, failure

10: ← BCheckSuccess(B, (ppost, Rpost), ε)
11: if ¬is fail then
12: return (ppre + ppost, Rpre +Rpost)
13: end if
14: ppre ← ppre + ppost[: ifail]
15: Rpre ← Rpre +R[: ifail]
16: B ← MLFilter (B, ppre, Rpre)
17: b← ExtractFailureSymbols(B, failure)
18: ppost ← Plan(b, γ)
19: if max attempts reached then
20: reset pose generators
21: reset B, b, ppost, ppre, Rpre

22: end if
23: end while
24: end procedure
25: procedure IBSP-EXECUTE(B, γ,world, ε)
26: (p,R)← IBSP (B, γ, ε)
27: for i ∈ len(p) do
28: B ← ExecuteAndFilter(p[i], R[i], B,world)
29: if ¬BCheckSuccess(B, (p[i + 1 :], R[i + 1 :]))

then
30: return IBSP-execute(B, γ,world, ε)
31: end if
32: end for
33: end procedure

The second change is the introduction of BCheckSuccess,
which examines a refinement and checks that preconditions
are satisfied. Algorithm 3 shows pseudocode for this method.
We define preconditions with a function that maps a state to
true or false and indicates whether the given relationship
holds. We determine that each of these is satisfied with
probability greater than 1 − ε by Monte Carlo sampling
from the belief state. Nsamples determines the fidelity of
this sampling.

When we detect that a precondition does not hold, we must
decide which type of failure information to propagate to the
high level. We do this by checking if the predicate holds
in the maximum likelihood state (Algorithm 3 Line 9). If it
does, then our error is caused by uncertainty in the belief
state, and we propagate an uncertainty failure. Otherwise,
we return a maximum likelihood fluent as the violated
precondition. The exceptions to this rule are predicates about
observations (e.g., occlusions). These are deterministic in an
MLO approximation, so it does not make sense to propagate



uncertainty failures for them.

Algorithm 3 Determining failure or success of a refinement

1: procedure BCHECKSUCCESS(B, p,R, ε)
2: // Iterate over the sequence of high level actions
3: // and their refinements
4: for pi, Ri ∈ zip(p,R) do
5: preds ← ExtractPreconds(pi, Ri)
6: W ← Sample(Bi, Nsamples)
7: for pred ∈ preds do
8: if PercentSucceeds(pred, W) < 1− ε then
9: if ¬pred.eval(B.ML) or IsObs(pred) then

10: return (False, i, ¬ML(pred))
11: else
12: return (False, i, Uncertain(pred))
13: end if
14: end if
15: end for
16: // update B with the results of this action
17: B ← MLFilter(B, pi, Ri)
18: end for
19: return (True, -1, None)
20: end procedure

The third change is the addition of MLFilter, which
updates the belief state based on the maximum likelihood
observation that occurred. This is a natural extension of
ApplyActions from Algorithm 1 and is implemented with
a black-box state estimation method.

An important observation is that these implementations
only require us to be able to sample from our belief dis-
tribution and compute unnormalized likelihoods. In order
to compute the MLO, we need to be able to compute a
maximum likelihood observation and maintain a filtered
distribution. These are generic operations for belief states
and are implemented for many state estimation techniques.
Lightweight dependence on the form of the belief distribution
allows one to switch state estimators with no change to the
algorithm. Thus, IBSP is a belief space planning algorithm
that operates with black box access to the belief updates. As
a result, our experiments run on several different initial state
distributions with no modification to the planning code.

V. EXPERIMENTS

We evaluate IBSP in partially observable pick-and-place
and navigation tasks. The robot in our simulation is a full
model of the Willow Garage PR2. We provide results for
several prior distributions on object locations: uni-modal
Gaussian, multi-modal Gaussian, and uniform.

A. Observation Operator Specification and Generators

The maximum likelihood component of the determinized
problem essentially follows the dynamics specified in Sec-
tion III-A. In order to extend this domain to handle partial
observability, we add the following fluents and operators:

Fluents:
MLInView(r pose, o pose bel)

(a) (b)

(c) (d)

Fig. 2: Intermediate belief states from a sample execution
in our drawer search domain. The robot is initialized with
a mixture of Gaussians distribution that places the object in
one of three drawers. Beliefs are illustrated with samples
from the posterior distribution and likelihoods are indicated
by the level of transparency. In this run, the object was in
the leftmost drawer and was found after searching the other
drawers because they had a higher likelihood of containing
the object. (a) shows the initial belief. (b) and (c) show
intermediate states where IBSP replanned after receiving an
observation that indicated its current plan would fail. Notice
that we only clear the obstruction in front of the drawer when
it prevents opening the drawer far enough to observe the
object. (d) shows the view cones from negative observations
that were generated during planning.

MLOccludes(o, o pose bel, r obs pose)
MLObstructs(o, traj)
UncertainGP(o pose bel, r pose, grasp)
UncertainObstructs(o, traj)

Operators:
• ObserveGP(r obs pose, o, o pose bel)

pre: MLLoc(o, o pose bel) ∧ RLoc(r obs pose)
∧ MLInView(r obs pose, o pose)
∧ ∀oi¬MLOccludes(oi, o pose bel, r obs pose)

eff : ∀ r p, g ¬UncertainGP(o pose bel, r p, g)
• ObserveTrajectory(r obs pose, traj)

pre: RLoc(r obs pose)
∧ MLInView(r obs pose, traj)
∧ ∀oi¬MLOccludes(oi, traj, r obs pose)

eff : ∀oi¬UncertainObstructs(oi, traj)
The additional skolem functions needed to support this

functionality are ViewPose(obj) and ViewPose(traj) for object
and trajectory references. The generator for object view
poses draws samples from a 1-meter unit disc around the
object, and the head pose is fixed to point at the object’s
maximum likelihood position. The generator for trajectory
view poses returns the first step along the trajectory that has
non-negligible probability of being in collision. To observe
the uncertain step, a base pose is sampled from regions with
negligible collision probability along the same trajectory.



(a) Initial belief state (b) After 1 observations (c) After 2 observations (d) After 3 observations

Fig. 3: Execution trace of interfaced belief space planning traversing a corridor with uncertain obstacles. The blue cylinders
are drawn from a uniform prior distribution. After reaching the other side of the corridor, the robot will search for and pick
up two target objects from the three tables.

B. Observation model and state estimation

In our experiments, we use an observation model that
accounts for false negatives, negative observations, and oc-
clusion. We model our sensor as a simulated head-mounted
Kinect. We use ray-casting with objects fixed to their maxi-
mum likelihood locations to build an estimate of the visible
region of the MLO for a given pose.

Under our model, we obtain false negatives in relation
to the overlap of the object with the visible region. We
measure this overlap as the ratio of penetration depth to the
object radius. Penetration depth is the minimum translation
distance that removes the object from the visible region and
object radius is the radius of the smallest sphere that encloses
the object. This amounts to observing a false negative with
probability 1 − min

(
1, penetration depth

object radius

)
. If we do not get

a false negative, then we observe the object’s pose with
Gaussian noise.

In our domains, correctly accounting for negative obser-
vations is critical: without them it is impossible to guarantee
that a trajectory is safe without first localizing all objects it
could collide with. To account for this, we use a factored
representation of the belief state. For each object we main-
tain an explicit posterior distribution over its position (e.g.,
Kalman filter) that summarizes positive observations and a
set of view cones where it was not observed that summarizes
negative observations. We refer to the first component as
the positive observation distribution and the second as the
negative regions.

Likelihood queries in this model are relatively straightfor-
ward. We implement sampling with probabilistic rejection
sampling: we sample from the positive observation distri-
bution and discard the sample with probability proportional
to the corresponding observation likelihood. We answer
maximum likelihood queries by sampling repeatedly and
returning the sample with maximum likelihood.

C. Evaluations

We implement our experiments in Python and use Open-
Rave [17] to represent the environment. We use trajectory
optimization for our motion planning [18] and implement
custom collision checking in Flexible Collision Library [19].
We use the Fast-Forward [20] and Fast-Downward [21]
task planners to solve our high-level planning problems.
Experiments were run in series on Intel Core i7-4770K

machines with 16GB RAM. We validate our approach in
three distinct scenarios.

To explore collision avoidance in robot navigation tasks
under uncertainty, we evaluate performance in a corridor
domain. We place the robot at one end of a corridor and
present it with the goal of finding and grasping objects on the
other end of the corridor. A solution in this domain traverses
the corridor observing at regular intervals to ensure collision
avoidance. Uniform distributions model the locations of
a varying number of obstructing columns throughout the
corridor. This task would be essentially insoluble without
proper accounting of negative observations.

The second task demonstrates the ability for our system to
reason about occlusions. We set a goal of grasping a target
object from a cluttered table with other objects on it: some
have deterministic locations and others have a Gaussian prior
distribution on their location. The target object’s location
is also drawn from a Gaussian distribution. IBSP plans to
remove any occlusions, observe the target object, and then
pick it up. In our experiments, 3 of the objects on the table
have unobserved locations.

Our final scenario illustrates planning under a multi-modal
initial state distribution. The robot has lost its keys and
is trying to locate them among three drawers they could
be in. We use a mixture of Gaussians as the prior for the
target’s location. Each drawer that could contain the object
is obstructed from being fully opened by an object. IBSP
begins by assuming the target is placed at its maximum
likelihood location. It discovers that the target is occluded
by the drawer containing it and plans to open this drawer. If
the drawer obstruction impedes the drawer from opening far
enough for the maximum likelihood observation to be useful,
this obstruction fact is also discovered and accounted for.
During execution, we perform an observation of the interior
of the drawer. If the object is observed we continue with the
existing plan and achieve our goal. If it is not, our system
chooses to replan, as the negative observation indicates the
object is in a different drawer.

Table I shows timing results for the three described tasks.
Figure 2 and Figure 3 show intermediate steps and belief
states for the drawer and corridor tasks. The supplementary
video demonstrates plan execution for all three tasks.



Problem Type % Solved Avg Time (s) Avg # Planner Runs

Uni. corridor, 1 obj 100 232 1.88

Uni. corridor, 2 obj 100 445 2.45

Uni. corridor, 3 obj 88 926 2.78

Uni. corridor, 4 obj 58 1168 2

Table, 5 obj 95 89 2.2

Table, 10 obj 95 162 2.21

Table, 15 obj 83 135 2.26

Table, 20 obj 70 229 2.03

Table, 25 obj 68 166 1.84

Table, 30 obj 48 122 1.96

3-drawer search 93 325 2.11

TABLE I: Solution percentages, running times, and number
of high-level planner calls for IBSP in occluded search
and navigation tasks. ‘Uni. corridor N obj’ refers to our
corridor navigation task with N obstructions. ‘Table, N obj’
is the cluttered table task with N objects on the table. ‘3-
drawer search’ is the multi-modal search problem. Results
are averaged across 30 independent runs. Planning runs
timeout after 1800s.

VI. DISCUSSION AND FUTURE WORK

We presented a novel approach to combining task and mo-
tion planning in belief space through the maximum likelihood
observation determinization principle. Our approach enforces
a clear separation among task planning, motion planning, and
inference and has the ability to integrate with complex state
estimation methods (which are too expensive to include in
the inner loop of a planning algorithm). We evaluated our
algorithm on several domains, where it completed challeng-
ing sequences of perception and geometric reasoning by task
planning in an abstract representation of the problem.

The primary limitation we encountered in our experiments
stems from computational complexity in rejection sampling.
This can involve a large number of intersection queries and
in environments with many geometric constraints this can
slow planning down considerably.

Another issue arises from belief distributions with many
modes. This is a challenge for MLO approximations in
general but can be exacerbated by our system. As an extreme
example, consider a search task where the prior distribution
has 100 modes scattered around a large room. Our system
will pick one of these to be the maximum likelihood observa-
tion and proceed to investigate it. This decision is made with
no regard to the cost of investigating that location and so this
setting can result in plans that are quite suboptimal. While
this is a challenging problem and minimizing execution cost
is not our goal, it is clear that a better solution is needed for
IBSP to be practical in similar scenarios.

Future work will include experiments on a real PR2,
investigations to the performance of this method with a noisy
transition model for the environment, and methods to deal

with high variance distributions efficiently.
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