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Abstract— We consider the problem of refining an abstract
task plan into a motion trajectory. Task and motion planning
is a hard problem that is essential to long-horizon mobile
manipulation. Many approaches divide the problem into two
steps: a search for a task plan and task plan refinement to find a
feasible trajectory. We apply sequential quadratic programming
to jointly optimize over the parameters in a task plan (e.g.,
trajectories, grasps, put down locations). We provide two
modifications that make our formulation more suitable to task
and motion planning. We show how to use movement primitives
to reuse previous solutions (and so save optimization effort)
without trapping the algorithm in a poor basin of attraction.
We also derive an early convergence criterion that lets us
quickly detect unsatisfiable constraints so we can re-initialize
their variables. We present experiments in a navigation amongst
movable objects domain and show substantial improvement in
cost over a backtracking refinement algorithm.

I. INTRODUCTION
Long-horizon mobile manipulation planning is a funda-

mental problem in robotics. Viewed as trajectory optimiza-
tion, these problems are wildly non-convex and direct motion
planning is usually infeasible. Viewed as a classical planning
problem, there is no good way to represent the geometry of
the problem efficiently in a STRIPS or PDDL representation.

The robotics and planning communities have studied the
problem of task and motion planning (TAMP) as a way to
overcome these challenges. TAMP integrates classical task
planning methods, that can handle long horizons, with mo-
tion planning approaches, that can handle complex geometry.
Recent years have seen a variety of approaches to finding
feasible task and motion plans [1], [2], [3].

The approach to TAMP in [1] relies on three components:
a black box classical planner that ignores geometry to find
an abstract task plan, a black box motion planner that can
determine motion plans for a given abstract action, and an
interface that shares information between the two different
planners. Task plans consist of bound object references
(e.g., can1) and unbound pose references (e.g., pose1). Pose
references are continuous parameters that are characterized
by a set of constraints. For example, a task plan may require
that pose1 be a grasping pose for can1.

The process of motion planning for an abstract plan
is called plan refinement. If plan refinement for a given
task plan fails, the interface updates the task planner with
information that lets it plan around the failure. In this work,
we contribute a novel method for the task plan refinement
component of this system. Our approach has applications to
systems that use a similar decomposition and as a trajectory
smoother for general TAMP algorithms.

Current approaches to task plan refinement rely on a
backtracking search over the parameters of the plan and

(a) Straight line initialization. (b) Backtracking solution.

(c) Intermediate Solution. (d) Final Solution.

Fig. 1: The robot, shown in red, moves a green can to the goal
location. The backtracking solution samples and fixes a trajectory
waypoint. This leads to an unnecessarily long path. (c) and (d) show
an intermediate and final trajectory computed by running sequential
quadratic programming on the task plan.

solve a sequence of independent motion planning problems.
We propose an approach that jointly optimizes over all of
the parameters and trajectories in a given abstract plan. This
leads to final solutions with substantially lower cost, when
compared with approaches that compute motion plans for
each high level action independently. Figure 1 shows an
example that compares the result from joint optimization
with the result from a backtracking search.

The optimization problems we consider are highly non-
convex. We rely on randomized restarts to find solutions: if
we fail to converge, we determine variables associated with
infeasible constraints and sample new initial values. After a
fixed budget of restarts, we return to the task planning layer
and generate a new task plan. We contribute two algorithmic
modifications that facilitate efficient randomized restarts.

The first modification uses a minimum velocity projec-
tion [4] of the previous solution to re-initialize trajectories.
This preserves the overall global structure of the trajecto-
ries without trapping new solutions in the same basin of
attraction. The second modification is an early convergence
criterion that checks to see if a constraint is likely to be



unsatisfiable. This allows us to restart more frequently and
reduces solution time.

Our contributions are as follows: 1) we apply sequential
convex programming to jointly optimize over the trajectories
and parameters in a plan refinement; 2) we show how to
reuse previous solutions without trapping the optimization
in a bad basin of attraction; and 3) we show how to do early
convergence detection to avoid wasted effort on infeasible
plans. We present experiments that compare our approach
to a backtracking refinement. Our approach leads a 2-4x
reduction in the total path cost of solutions at the cost of a
1.5-3x increase in running time. We verify that our proposed
modifications led to reductions in refinement time.

II. RELATED WORK
Related work largely comes from plan-skeleton ap-

proaches to task and motion planning. These are approaches
that search over a purely discrete representation of the
problem and then attempt to refine the task plans they obtain.

Toussaint [3] also considers joint trajectory optimization
to refine an abstract plan. In his formulation, the symbolic
state from a task plan defines constraints on a trajectory
optimization. The system optimizes jointly over all plan
parameters and uses an initialization scheme similar to ours.
The problems they consider are difficult because the inter-
mediate states are complicated structures that must satisfy
stability constraints. In contrast, the problems we consider
are difficult because motion planning problems are hard to
solve. This leads us to focus on trajectory re-use and early
convergence detection.

Lozano-Pérez and Kaelbling [5] consider a similar ap-
proach. They enumerate plans that could possibly achieve
a goal. For each such abstract plan, they discretize the
parameters in the plan and formulate a discrete constraint
satisfaction problem. They use an off-the-shelf CSP solver
to find a trajectory consistent with the constraints imposed
by the abstract plan. Our approach to refinement draws on
this perspective, but we do not discretize the plan parameters;
instead, we use continuous optimization to set them.

Lagriffoul and Andres [6] define the fluents in their task
planning formulation in a similar way to ours. They use these
constraint definitions to solve a linear program over the plan
parameters. They then use this LP to reduce the effort of a
backtracking search for plan refinement. This is similar to
the first initialization step that we and [3] use, in that it only
considers the intermediate states.

III. TRAJECTORY OPTIMIZATION WITH
SEQUENTIAL QUADRATIC PROGRAMMING

Our approach uses sequential quadratic programming to
do task plan refinement. In this section, we describe the
motion planning algorithm from [7], which applies sequential
quadratic programming to motion planning.

Motion Planning as Constrained Trajectory Optimization
A core problem in robotics is motion planning: finding

a collision-free path between fixed start and goal poses. A
motion planning problem is defined by:

• a configuration space of robot poses
• a set of obstacles O
• an initial and goal configuration.

We define configuration spaces by a set of feasible robot
poses X and a dynamics constraint. The dynamics constraint
is a Boolean function f : X ×X → {0, 1}. It takes as input
a pair of poses p1, p2 and is 1 iff p2 is directly reachable
from p1.

Figure 1 shows a 2D motion planning problem that will
serve as the starting point for a running example. The
pose of the robot is represented by a pair (x,y). We let
X be a bounding box so x ∈ [0, 7] and y ∈ [−2, 7].
The dynamics function ensures that the distance between
subsequent states of the trajectory is always less than a fixed
constant: f(p1, p2) = (p1 − p2 < dmax).

There are three main approaches to motion planning
that are used in practice: discretized configuration space
search [8], randomized motion planners [9], [10], and
trajectory optimization [7], [11]. In this work, we build on
trajectory optimization approaches.

The downside of trajectory optimization approaches is that
they are usually locally optimal and incomplete, while the
other approaches have completeness or global optimality
guarantees. The upside of trajectory optimization is that it
scales well to high dimensions and converges quickly. The
second property is useful in a task and motion planning
context because it quickly rules out infeasible task plans.

Trajectory optimization generates a motion plan by solving
the following constrained optimization problem.

min
τt∈X

||τ ||2 (1)

subject to f(τt, τt+1) = 1

SD(τt, o) ≥ dsafe ∀o ∈ O
τ0 = p0, τT = pT

We optimize over a fixed number of waypoints τt, with
t = 0, . . . , T . The objective ||τ ||2 is a regularizer that pro-
duces smooth trajectories. A standard choice is the minimum
velocity regularizer

||τ ||2 =
∑
t

||τt − τt+1||2.

The first constraint is the dynamics constraint that ensures
that the pose at time t+1 is reachable from the pose at time
t. The second constraint is a collision avoidance constraint. It
requires that the distance1 from any robot pose to an object
be larger than a fixed safety margin. The final constraint
ensures that the trajectory begins (resp. ends) at the initial
(resp. final) pose.

Sequential Quadratic Programming

[7] applied sequential quadratic programing (SQP) to
trajectory optimization. Practically, this treats a robot tra-
jectory as variables in a mathematical program and applies

1This is actually the signed-distance, which is negative is the robot and
object overlap.



standard solution algorithms. SQP is an iterative non-linear
optimization algorithm that can be seen as a generalization of
Newton’s method. [12] Ch. 18 describes several variants of
SQP. The most important attribute of SQP for trajectory opti-
mization is that it can typically solve problems with very few
function evaluations. This is useful in trajectory optimization
because function evaluation (i.e., collision checking) is a
computational bottleneck.

SQP minimizes a non-linear f subject to equality con-
straints hi and inequality constraints gi.

min
x

f(x) (2)

subject to hi(x) = 0 i = 1, . . . , neq

gi(x) ≤ 0 i = 1, . . . , nineq

Loosely speaking, the approach iteratively applies two
steps. The first is to make a convex approximation to the
constraints and objective in Equation 2. We write the approx-
imations as

∼
f ,
∼
hi,
∼
gi. SQP makes a quadratic approximation

to f and linear approximations to the constraints hi, gi.

Once we have obtained a convex local approximation we
can minimize it to get the next solution x(i+1). We need
to ensure that the approximation is accurate so we impose
a trust-region constraint. This enforces a hard constraint on
the distance between x(i) and x(i+1). Let

∼
f ,
∼
hi,
∼
gi be convex

approximations to f, hi, gi. The optimization we solve is

min
x

∼
f + µ

(
neq∑
1

|
∼
hi(x)|+

nineq∑
1

|∼gi(x)|+
)

(3)

subject to |x− x(i)| < δ (4)

where δ is the trust-region size. The `1-norm to penalize
constraint violations results in a non-smooth optimization,
but can still be efficiently minimized by standard quadratic
programming solvers. We elect to use an `1-norm, as opposed
to an `2 norm, because it drives constraint violations to 0
and performs well with large initial constraint deviations.
Algorithm 1 shows pseudocode for this optimization method.

As an example, consider the behavior of SQP on the
motion planning problem from Figure 2. The initial pose
is in the top right at location (0, 2) and the target pose is
around a corner at location (3.5, 5.5). We initialize with
an infeasible straight line trajectory. We use 20 time-steps
for our trajectory. We let the x coordinate for the robot
take values in [0, 7] and the y coordinate take values in the
range [−2, 7]. The corresponds to the following trajectory
optimization:

min
τt∈[0,7]×[−2,7]

20∑
t=0

||τt − τt+1||2

subject to |τt − τt+1| ≤ dmax
SD(τt,Wall) ≥ dsafe

τ0 = (7, 3)

τ20 = (3, 7)

Algorithm 1 `1 Penalty Sequential Quadratic Program-
ming [12].

Define: SQP(x(0), f, {hi}, {gi})
Input: initial point x(0), the function being minimized f ,
a set of non-linear equality constraints {hi}, a set of non-
linear inequality constraints {gi}.
/* increase the penalty for violated nonlinear constraints
in each iteration */
for µ = 100, 101, 102 . . . , µmax do

for i = 1, . . . , ITER LIMIT do
/* compute a quadratic approximation for f*/
f̃ , {h̃i}, {g̃i} = ConvexifyProblem(f, {hi}, {gi})
for j = 1, 2, . . . do
x = argmin (4) subject to (5) and linear constraints
if TrueImprove / ModelImprove > c then

/* expand trust region */
δ ← improve ratio · δ
break

end if
/* shrink trust region */
δ ← decrease ratio · δ
if converged() then

/* converge if trust region too small
or current solution is a local optimum */
return locally optimal solution x∗

end if
end for

end for
end for

The first step of the algorithm makes a linear approxi-
mation to the signed distance constraint. The details of the
approximation can be found in [7]. The first image shows
this initialization and superimposes the local approximation
to the signed distance constraint on top of it. It pushes each
pose towards the outside of the walls.

The next step of the algorithm minimizes the approxima-
tion to this constraint subject to a trust region constraint. This
makes progress on the objective, so we accept the move and
increase the size of the trust region. After several iterations,
we obtain the trajectory in the middle of the image. At
termination we arrive at the motion plan in the left most
image: a collision-free, locally-optimal trajectory.

IV. TASK AND MOTION PLANNING
In this section, we formulate task and motion planning

(TAMP). We present an example formulation of the naviga-



(a) Initialization (b) Optimization (c) Final trajectory

Fig. 2: Trajectory optimization for a 2D robot. The gradient from
the collision information pushes the robot out of collisions despite
the infeasible initialization.

tion amongst moveable objects (NAMO) as a TAMP problem.
We give an overview of the complete TAMP algorithm
presented in [1].

Problem Formulation

Definition 1: We define a task and motion planning
(TAMP) problem as a tuple 〈T,O, FP , FD, I, G, U〉:

T a set of object types (e.g., movable objects, trajec-
tories, poses, locations).

O a set of objects (e.g., can2, grasping pose6,
location3).

FP a set of primitive fluents that collectively define the
world state (e.g., robot poses, object geometry). The
set of primitive fluents, together with O, defines the
configuration space of the problem.

FD a set of derived fluents, higher-order relationship
between objects defined as boolean functions that
depend on primitive fluents.

I a conjunction of primitive fluents that defines the
initial state.

G a conjunction of (primitive or derived) fluents that
defines the goal state.

U a set of high-level actions (e.g., grasp, move, put-
down). Each high-level action a ∈ U is parametrized
by a list of objects and defined by: 1) a.pre, a set of
pre-conditions, fluents that describe when an action
can be taken; 2) a.post, a set of post-conditions,
fluents that hold true after the action is performed;
and 3) a.mid a set of mid-conditions, fluents that
must be true while the action is being executed.

A state in a TAMP problem is defined by a set of primitive
fluents. Note that this defines the truth value of all derived
fluents. The solution to a TAMP problem is a plan

π = {s0, (a0, τ0), s1, (a1, τ1), . . . , (aN−1, τN−1), sN}.

The si are states, defined as a set of primitive predicates
that are true. The ai are the actions in the plan. τ i is the
trajectory for action i and is defined as a sequence of states.
A valid solution satisfies the following constraints.

• The first state is the initial state: s0 ∈ I .
• Pre-conditions are satisfied: ai.pre ∈ si.
• Mid-conditions are satisfied: ai.mid ∈ τ it ∀t.
• Post-conditions are satisfied: ai.post ∈ si+1.

• Trajectories start in the states that precede
them and end in the states that follow them:
τ i0 = si, τ iT = si+1.

• The final state is a goal state: G ∈ sN .
Our formulation differs from the standard formulation of

TAMP in two ways. The first is that we explicitly differentiate
between primitive fluents and derived fluents. We use the
difference between the two types of fluents to distinguish
between variables and constraints for the optimization in
Section V.

The second difference is the introduction of mid-
conditions. These are invariants: constraints that must be
satisfied on every step on of a trajectory that implements
a high-level actions. Mid-conditions define the space of
trajectories than can implement a given high-level action. An
example mid-condition is a collision avoidance constraint.

Example Domain: Navigation Amongst Movable Objects

Here, we formulate a 2D version of the navigation
amongst moveable objects (NAMO) problem [13]. In our do-
main, a circular robot navigates a room full of obstructions.
If the robot is next to an object, it can attach to it rigidly via a
suction cup. In the top middle of our domain is a closet. The
robot’s goal is to store objects in, or retrieve objects from,
the closet. Thus, we call the problem the 2D closet domain
(CL-2D-NAMO). This domain is characterized as follows.

Object types T . There are six object types: 1) robot, a
circular robot that can move, pick, and place objects; 2) cans,
cylinders throughout the domain that the robot can grasp and
manipulate; 3) walls, rectangular obstructions in the domain
that the robot can not manipulate; 4) poses, vectors in R2 that
represent robot poses; 5) locs, vectors in R2 that represent
object poses; and 6) grasps, vectors in R2 that represent
grasps as the relative position of the grasped object and robot.

Objects O. There is a single robot, R. There are N movable
objects: can1, . . . ,canN . There are 8 walls that make up the
unmovable objects in the domain: wall1, . . . ,wall8. Robot
poses, object locs, and grasps make up the remaining objects
in the domain. The are continuous values so there are
infinitely many of these objects. Robot poses and object locs
are contained in a bounding box around the room B. Grasps
are restricted to the be in the interval [−1, 1]2.

Primitive Fluents FP . The primitive fluents in this domain
define the state of the world. We define the robot’s posi-
tion with a fluent whose sole parameter is a robot pose:
robotAt(?rp-pose). We define an object’s loc with a similar
fluent that is parametrized by an object and a loc: objAt(?o-
can ?ol-loc).

Derived Fluents FD. There are three derived fluents in
this domain. The first is a collision avoidance constraint
that is parametrized by an object, a loc, and a robot pose:
obstructs(?obj-can ?loc-loc ?rp-pose). This is true when ?obj
and the robot overlap at their respective locations and poses.



It is defined as a constraint on the signed distance: SD(?obj,
R) ≥ dsafe.

We determine if the robot can pick up a can with
isGraspPose(?obj-can ?rp-pose ?loc-loc). This is true if a
robot at ?rp touches the can at location ?loc. This is imple-
mented as an equality constraint on signed distance: SD(R,
can) = ε. We use this to determine when the robot can pick
up the object, and when it can put it down.

Once the robot has picked up an object, we need to ensure
that the grasp is maintained during the trajectory. We do this
with inManip(?obj-can ?g-grasp), which is parametrized by a
can and a grasp. It is defined by an equality constraint on the
respective positions of the object and the robot: (robotAt(?rp)
∧ objAt(?obj ?loc) ⇒ ?rp-?loc = ?g). If the robot is holding
an object (i.e., inManip is true for some object and grasp)
then it is treated as part of the robot in all signed distance
checks.

Dynamics. The dynamics of this problem are simple. The
robot has a maximum distance it can move during any
timestep. The objects remain at their previous location. The
inManip fluent ensures that held objects are always in the
same relative position to the robot.

High-level actions U . We have four high-level actions in
our domain: MOVE, MOVEWITHOBJ, PICK, and PLACE.

The MOVE action moves the robot from one location to
another, assuming it holds no object. We use ?rpt to represent
the robot pose at time t within the move action’s trajectory.
MOVE(?rp1-pose ?rp2-pose)

pre robotAt(?rp1)
∧ (∀ ?obj-can, ?g-grasp ¬ inManip(?obj ?g)

mid (∀ ?c-can, ?l-loc ¬ obstructs(?c, ?l ?rpt))
post robotAt(?rp2)

The MOVEWITHOBJ action is similar to the move action.
The primary difference is that the preconditions require that
the robot be holding an object and that said object remain
rigidly attached to the robot.
MOVEWITHOBJ(?rp1-pose ?rp2-pose ?obj-can ?g-grasp)

pre robotAt(?rp1) ∧ inManip(?obj ?g)
mid (∀ ?c-can, ?l-loc ¬ obstructs(?c, ?l ?rpt))
∧ inManip(?obj ?g)

post robotAt(?rp2)
The final two actions pickup objects from locations and

put them down. They only consist of a single timestep, so
they have no mid-conditions. In order to pick up an object,
the robot must be holding nothing and be next to the object.
To put an object down it must be currently held and the robot
has to be in the appropriate relative location.
PICK(?obj-can ?l-loc ?rp-pose ?g-grasp)

pre robotAt(?rp) ∧ objAt(?obj ?l)
∧ (∀ ?c-can, ?g-grasp ¬ inManip(?c ?g)
∧ isGraspPose(?obj ?rp ?l)

mid ∅
post inManip(?obj ?g)

PLACE(?obj-can ?l-loc ?rp-pose ?g-grasp)
pre robotAt(?rp) ∧ inManip(?obj ?g)
∧ isGraspPose(?obj ?rp ?l)

mid ∅
post ¬ inMaip(?obj ?g) ∧ objAt(?obj ?l)

V. TASK PLAN OPTIMIZATION

A common operation in task and motion planning is
plan refinement. This is the process of converted a partially
specified abstract plan into a fully specified trajectory. We
focus on a special case of plan refinement where all discrete
variables are fixed by the task plan. This is a common type
of abstract plan that is used in, e.g., [3],[5], [1], and [6].

First, we describe how our formulation of task and mo-
tion planning encodes a joint trajectory optimization over
intermediate states and plan parameters. Then, we discuss
our trajectory initialization and reuse schemes. These are
important in light of the size and non-convexity of the
trajectory optimization problems we consider. We show how
the movement primitives of [4] can be used to leverage
previous solutions to guide initialization. Finally, we give an
algorithm for early detection of infeasibility. This is crucial
for task and motion planning, because it is important to fail
fast if no motion planning solution exists.

Abstract Plans Encode Trajectory Optimizations

We adopt the view taken in [3] that abstract plans encode
trajectory optimizations. In our formulation, we maintain
a precise connection between pre-conditions and effects of
actions and the trajectory optimizations those actions encode.
Before describing the optimization formulation in general,
we go through an example from the CL-2D-NAMO domain.

Example: Trajectory Optimization for a Pick-Place: Con-
sider an abstract task plan for the CL-2D-NAMO domain.

• MOVE(rpinit gp1)
• PICK(can1 c1init gp1 g1)
• MOVEWITHOBJ(gp1 pdp1 can1 g1)
• PLACE(can1 c1goal pdp1 g1)

This plan moves to a grasping pose for can1, picks up can1,
moves to a goal location, and then places the object at the
goal. The parameters plan refinement determines are the
continuous action parameters: the grasping pose, gp1; the
grasp to use, g1; and the putdown pose, pdp1.

Setting the values for these parameters defines the inter-
mediate states in the plan, so these variables are directly
constrained by the pre-conditions and post-conditions of
actions in the plan.

Next, we need to find trajectories through the state space
that connect these intermediate states. The variables in the
trajectory optimization will be a sequence of world states.
We fully determine the world state by setting a value for
each primitive predicate, so we optimize over the continuous
parameters for a sequence of primitive predicates, subject to
the mid-conditions from the high-level action and dynamics
constraints. This results in the following trajectory optimiza-
tion:



min
gp1,g1,pdp1,τ0,τ2

∑
||τ0t − τ0t+1||2 +

∑
||τ2t − τ2t+1||2.

subject to τ00 = rpinit, τ
0
T = gp1

τ20 = gp1, τ
2
T = pdp1

|τ0t − τ0t+1| ≤ δ
|τ2t − τ2t+1| ≤ δ

∀o ∈ O SD(τ0t , o) ≥ dsafe
∀o ∈ O SD(τ2t , o) ≥ dsafe

isGraspPose(can1, c1init, gp1)

isGraspPose(can1, c1goal, pdp1)

inManip(can1, g1)

The constraints on the start and end of the trajectories come
from the robotAt preconditions. The final inManip constraint
holds for every state in τ2. Each constraint defined above
is either linear or a signed distance constraint. This means
that the problem is suitable for the sequential quadratic
programming approach described in Section III.

Converting a General Abstract Plan to a Trajectory Op-
timization: To translate a general high-level action A(p1,
p2, . . . ) we apply the following sequence of steps. First,
determine the parameters in the high-level action that are
not set. Second, determine the variables for a trajectory for
this action. In our formulation, these are defined by the set of
primitive predicates. In the CL-2D-NAMO domain, this adds
variables for robot poses and object locations.

Now that we have a set of variables, we can add in
constraints. We iterate through A’s pre-conditions. We add
them as constraints on the parameters of the action and the
first state in the trajectory. We repeat that process with the
post-conditions and the last state in the trajectory. Finally, we
add A’s mid-conditions as constraints on each intermediate
step of the trajectory. Algorithm 2 shows pseudocode to set
up and refine this trajectory optimization.

The sequential quadratic programming approach that we
use is a local improvement algorithm, so good initialization
leads to faster convergence. Bad initializations often fail to
converge, even when a solution exists. This is a difficult
challenge in regular trajectory optimization and trajectories
considered here are substantially longer than those consid-
ered in typical motion planning.

To deal with this challenge, we use the structure of our
formulation to help guide search. We define a distribution
over continuous values for each parameter type, called a
generator [14]. Our first step in initialization uses these
generators to obtain initial values for each parameter. After,
we need to initialize trajectories and make sure the the
parameters are self-consistent. We do this with an optimiza-
tion that considers the trajectory costs but only includes
constraints at end states. Finally, we add in all constraints
and optimize the full problem.

Trajectory Reuse

Often, the first attempt at refinement fails to converge.
Figure 3 (a) shows an example of one such trajectory. The
initial grasp pose was sampled on the wrong side of the
object, so it is unreachable. At this point, we want to use
a randomized restart to try to find a solution. However,
completely starting over from scratch as in Figure 3 (b) is
undesirable because we through away a lot of information.
In particular, the previous trajectory has figured out that it
should go around the corner, not through it. The optimization
can figure this out again, but it will require a lot of collision
checks and will increase the total time. This problem gets
much worse with very long plans (e.g., 20 different move
actions). If a single action has no feasible trajectory, we do
not want to throw away the rest of the solution.

We would like to re-initialize only the variables in violated
constraints. This often fails because the rest of the plan
has too much ‘inertia:’ it has already settled into a local
optimum and so the first step of the optimization moves
the re-initialized variables back to their previous (infeasible)
values.

Algorithm 2 Refining an Abstract Task Plan

Define: PLANOPT(π)
Input: partially specified abstract plan π.
/* iterate through high-level actions in the plan */
for a ∈ π.ops do

params = GetVariables(a)
for p ∈ a.preconditions do
p.AddConstraint(params, τa1 )

end for
for p ∈ a.postconditions do
p.AddConstraint(params, τaT )

end for
for p ∈ a.midconditions do

for t = 2, . . . , T − 1 do
p.AddConstraint(params, τat )

end for
end for

end for
/* call SQP to optimize all the τa */

Instead, we run an optimization that keeps re-initialized
variables at their (new) values and propagates the changes
to the rest of the trajectory. This is done by minimizing
the norm of the changes in the trajectories. The choice
of trajectory norm is important. Figure 3 (c) shows what
happens if this projection is performed under an `2-norm.
Although some of the trajectory moves to account for the
new parameters, enough of it is stuck behind the object that
the optimization is still stuck in the same basin of attraction.

[4] formulates movement primitives as projections under
different norms in a Hilbert space of trajectories. We adopt
their approach and use a minimum velocity norm to project
old trajectories onto new initializations. This is shown in
Figure 3 (d). We can see that the new trajectory maintains the



qualitative structure of the previous solution (and so avoids
collisions) and naturally moves to the new pick pose.

Early Detection of Unsatisfiability

With long task plans, it is important that the optimization
fail fast. Very often an optimization quickly determines that
a constraint is infeasible and converges for that constraint.
However, the rest of the plan may still be very far from
a local optimum. Thus, a vanilla implementation of the
convergence check may spend a large number of extra QP
minimizations and collision checks optimizing a plan that
we know to already be infeasible.

In SQP, one convergence test checks that approximate
improvement in the objective value is above a threshold.
This is the improvement we make during a QP solve, but
measured with respect to the convex approximation. If the
approximate improvement is small it is likely that we are at
a local optimum of the real objective.

Our approach is to check this convergence constraint inde-
pendently for each constraint. We terminate the optimization
early if the following conditions are met: 1) there is a
constraint that is unsatisfied; 2) the approximate improve-
ment on the constraint’s infeasibility is below a threshold;
3) constraints that share variables with this constraint are
satisfied or have low approximate improvement. The first
two conditions extend the standard convergence criterion to a
per-constraint criterion. The final condition catches situations
where the optimization allocates its effort to satisfying a
different, coupled, constraint.

VI. EXPERIMENTS

Methodology

We evaluate our approach in the NAMO domain with two
distinct experimental setups: the swap task and the putaway
task. In the swap task, there are two objects inside the
closet. The robot must reverse the positions of both objects.
This requires reasoning about obstructions and proper plan
ordering. In the putaway task, two target objects are located
among several obstructions in the room. The robot must
retrieve the two objects and place them both anywhere inside
the closet. An important aspect of this task is that once one
object is placed inside the closet, the robot cannot navigate
behind it to the place the other. We run experiments for this
task with 0, 3, and 5 obstructing objects.

We compare performance with the backtracking baseline
established in [1], which performs exhaustive backtracking
search over plan parameters. We implement the motion
planning by applying SQP to each action independently.
Manipulated Variables. We perform two experiments. Ex-
periment 1 compares the performance of four systems: the
backtracking baseline (B), standard SQP (S), SQP with our
early convergence criteria (E), and standard SQP initialized
using the solution found by backtracking (T). There are two
manipulated variables in this experiment: which of these
systems is run, and which experimental scenario we test on
(swap or putaway with 0, 3, or 5 obstructions).

(a) Previous trajectory. (b) Straight line.

(c) `2-norm. (d) Minimum velocity.

Fig. 3: Trajectory (a) has collisions, so the robot end pose is
resampled. (b) initializes with a straight line trajectory, and needs
to rediscover the path around the wall. (c) uses an l2-norm to find
a similar trajectory with the new end point. This doesnt change
the trajectory enough to get to a new basin of attraction. The
minimum-velocity trajectory (d) adapts to the new endpoint but
reuses information from the previous trajectory.

Experiment 2 considers the effects of different types of
trajectory reuse on each of our novel systems, S and E. There
are two manipulated variables in this experiment: which
system is run (S or E), and which trajectory reuse strategy
we use. We consider three such strategies: 1) straight-line
initialization (i.e., ignore previous trajectories), 2) `2-norm
minimization (i.e., stay as close as possible to previous
trajectories), and 3) minimum-velocity `2-norm minimization
(i.e., stay close to a linear transformation of the trajectory).
Our experiments reveal that minimum-velocity `2-norm min-
imization worked best, so Experiment 1 uses this technique.
Dependent Measures. We measure success rate, the sum
of squared velocities on the trajectories, planning time, and
number of new task plans generated.
Problem Distributions. Experiment 1 is evaluated on fixed
test sets of 50 randomly generated environments. Environ-
ments for the putaway task are generated by randomly
spawning N objects within the room and designating two
as the targets. Experiment 2 is evaluated on a smaller test
set of 30 environments for the swap task.

Our experiments are conducted in Python 2.7 using
the OpenRAVE simulator [15]. Our task planner is Fast-
Forward [16]. Experiments were carried out in series on an
Intel Core i7-4770K machine with 16GB RAM. The time
limit was set to 1200 seconds for the swap task and 600



Condition % Solved Traj Cost Time (s) # Replans

Swap, B 100 42.4 37.7 5.0

Swap, S 100 10.2 267.2 6.0

Swap, E 100 10.4 217.8 14.4

Swap, T 100 10.9 115.1 5.0

P(0), B 100 12.2 16.8 3.2

P(0), S 100 7.7 21.1 1.8

P(0), E 100 7.7 23.9 2.3

P(0), T 100 7.8 20.7 3.2

P(3), B 98 16.9 58.8 4.9

P(3), S 96 8.9 109.4 3.9

P(3), E 98 9.1 101.1 4.3

P(3), T 98 9.1 76.5 5.1

P(5), B 86 21.3 91.4 8.4

P(5), S 83 9.7 154.4 5.4

P(5), E 88 9.7 160.3 6.8

P(5), T 94 11.0 135.0 7.3

TABLE I: Success rate, average trajectory cost, average total time,
and average number of calls to task planner for each system in each
experimental scenario. P indicates a putaway task. The number in
parentheses is the number of obstructions. B: backtracking baseline.
S: standard SQP. E: SQP with early convergence criteria. T: SQP
with initialization from B. Results are obtained based on perfor-
mance on fixed test sets of 50 randomly generated environments.
All failures were due to timeout: we gave 1200 seconds for each
swap task problem and 600 seconds for each putaway task problem.

Condition % Solved Traj Cost Time (s) # Replans

SL, S 100 10.7 338.6 9.4

SL, E 100 10.8 217.6 9.4

`2-norm, S 63 10.4 336.1 9.5

`2-norm, E 67 11.0 181.0 13.6

Min-V, S 100 10.0 247.3 5.7

Min-V, E 100 10.4 200.7 13.1

TABLE II: Success rate, average trajectory cost, average total time,
and average number of calls to task planner for several systems. SL
indicates straight-line initialization; `2-norm and Min-V use an `2 or
minimum velocity projection to initialize; S denotes standard SQ; E
denotes SQP with early convergence criteria. Results are obtained
based on performance on fixed test sets of 30 environments. All
failures were due to timing out the 1200 second limit.

seconds for the putaway task. Tables I and II summarize
results for Experiments 1 and 2.

Discussion

Experiment 2 shows that trajectory reuse with minimum-
velocity projection outperforms standard `2 projection and
straight-line initialization. `2 projection performs poorly be-
cause it gets trapped in bad local optima. Experiment 1
shows that full joint optimization (systems S and E) over
plan parameters leads to significant improvements in overall
trajectory cost. This comes at the expense of increased
running time. Using our algorithm as a trajectory smoother

(System T) merges the benefits of both approaches.
We attribute backtracking’s speed advantage to two fac-

tors. First, backtracking is able to rule out plans faster than
the joint optimization. Early-convergence helps, but leaves
room for improvement. Second, the joint optimization ends
up making more collision check calls. This is because the
trust region in the optimization is shared across the whole
plan. So the algorithm will take small steps when one part of
the plan is poorly approximated. In future work, we intend
to optimize our implementation (the current implementation
is somewhat optimized Python) and experiment on more
realistic robots (e.g., the PR2).
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