Training object detectors

Current way: draw bounding-boxes

time consuming (26s-42s per box)

need detailed annotation guidelines

[Su AAAI 2012]

New way: bounding-boxes

from eye-tracking data

Introduction

Training Object Class Detectors from Eye Tracking Data ALVIN

Dim P. Papadopoulos, Alasdair D. F. Clarke, Frank Keller and Vittorio Ferrari

Eye tracking dataset

Data

- Large scale (6270 images)
- Pascal VOC 12: train+val images of 10 classes
- 5 distinct viewers (28 in total) for each image

- 178,000 fixations (5.7 per viewer per image)
- Mean response time = 889 ms/image
- **Fixations on target objects = 75.2%**

Experiment

- Visual search paradigm
 - more fixations on target objects
 - faster than free-viewing
- Pairs of classes
 - two-alternative forced choice object discrimination
 - pair classes with similar background (e.g. cat, dog)

 Add random offset (central bias)

Random image order

Results 2nd stage output final bounding-box

From fixations to bounding-boxes

Bounding-box estimation as figure-ground superpixel labeling

 \mathcal{R}_{bb+fix}

- small subset (7%) • learn to predict bounding-boxes from fixations

 $\mathcal{L}_{f} ix$

bounding-boxes

from fixations

in \mathcal{R}_{bb+fix} (linear SVM + Platt scaling)

- Apply model in \mathcal{R}_{fix} set

Grabcut-like energy minimization

+ all feature types contribute + full model outperforms all baselines

Quantitative results

+ segmentation refinement always helps (+ 3-5%)

• 10 Pascal VOC 12 classes, 6270 images in trainval

Evaluate predicted bounding-boxes in \mathcal{R}_{fix}

Train DPM detector from fixations [Felzenszwalb PAMI10]

All predicted

Performance: percentage of images with correct predictions

Pascal VOC 12: train on trainval, test on test set (10991 images)

All ground-truth

mAP = 25.5%

mAP = 12.5%

mAP = 13.7%

Given same annotation time, get comparable mAP performance

Features

derive new

Fixation position

Visual search increases fixations on (or near) the target object

Fixation timing

Timing matters: the longer or the later, the more significant

Fixation appearance Learn color distribution of fg and

bg superpixels from fixations

Objectness

Probability that a window contains object of *any* class

- + annotation time (1s per image)
- + correct localizations in half images

- + simple annotation guidelines