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Abstract

The syntenic distance between two genomes is given by the minimum number of fusions,
fissions, and translocations required to transform one into the other, ignoring the order of genes
within chromosomes. Computing this distance is NP-hard. In the present work, we give a tight
connection between syntenic distance and the incomplete gossip problem, a novel generalization
of the classical gossip problem. In this problem, there are n gossipers, each with a unique piece
of initial information; they communicate by phone calls in which the two participants exchange
all their information. The goal is to minimize the total number of phone calls necessary to
inform each gossiper of his set of relevant gossip which he desires to learn.

As an application of the connection between syntenic distance and incomplete gossip, we
derive an O(2O(n log n)) algorithm to exactly compute the syntenic distance between two genomes
with at most n chromosomes each. Our algorithm requires O(n2 + 2O(d log d)) time when this
distance is d, improving the O(n2 + 2O(d2)) running time of the best previous exact algorithm.

1 Introduction

Recently there has been considerable interest in computational models measuring the genetic dis-
tance between two species. Such models can be used in the construction of trees of evolutionary
history, or—if such a tree is known through other means—in estimating the rate of genomic evolu-
tion. These measures are generally based on a hypothesized set of transformations that can alter
a genome; the distance between the genomes of two species is then the minimum number of these
steps necessary to transform one into the other.

In addition to local mutations like insertions, deletions, and substitutions in the DNA sequence,
a realistic distance measure must account for non-local transformations that alter the placement
of genes within or among chromosomes. These rearrangements may include reversals, which invert
the order of a section of a chromosome, and transpositions, which extract a segment of a chromo-
some and reinsert it elsewhere in the chromosome. The corresponding distance measures—reversal
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distance, transposition distance, and the combined reversal and transposition distance—have been
explored by the theoretical computer science community [1, 2, 7, 9, 13, 14, 16, 24].

When comparing genomes containing multiple chromosomes, one must consider transforma-
tions acting between chromosomes in addition to those acting within a single chromosome. These
transformations include fissions, in which one chromosome splits into two, fusions, in which two
chromosomes merge into one, and translocations, in which two chromosomes exchange contiguous
blocks (usually prefixes or suffixes) of genes.

Initial mathematical investigations of multi-chromosomal distance functions considered translo-
cations in isolation or combined only with reversals [18, 23], and disregarded fusions and fissions.
This limits the model to pairs of species with the same number of chromosomes. Later research [19]
extended the model to include fusions and fissions.

1.1 Syntenic Distance

As defined, all of the above models require gene order data for their computation. In biological
practice, this information can be difficult to obtain—we may have information about the assignment
of genes to chromosomes, but not the order within them. Despite the recent progress in sequencing
the human genome [22], for example, the genomes of a vast majority of species are mostly unana-
lyzed; gene order data for most species will remain unavailable throughout the foreseeable future.
We would like to be able to compare genomes meaningfully even without this data; much recent
biological research is devoted to the investigation of this kind of relationship—e.g., [4, 36, 37].

Furthermore, even if gene order information is available, there is some biological reason to believe
that it may not be well-suited to use in genomic distance calculations. A number of researchers [29,
31, 34] have found evidence of frequent (small-scale) reversals in chromosomes; in the presence of
such reversals, gene order may be poorly preserved even in closely related species, and thus any
order-based metric may be a poor estimate of genomic distance.

Also, it does not necessarily make sense to treat all of the basic transformations (reversals,
transpositions, translocations, fissions, and fusions) as equally “costly” in computing a distance
function [5, 12, 33]. If, e.g., reversals turn out to be extremely frequent, heavily weighting the rarer
interchromosomal rearrangements should give a better estimate of distance.

Motivated by these types of observations, Ferretti, Nadeau, and Sankoff proposed a more ab-
stract measure of genomic distance, known as syntenic distance [15]. (Two genes are syntenic if
they appear in the same chromosome.) Any information about the order of genes within chro-
mosomes is ignored; a chromosome is then simply an unordered set of genes. A genome can be
transformed by fusions, fissions, and translocations—i.e., exactly those transformations that alter
the assignments of genes to chromosomes. Computing the syntenic distance between species has
been shown to be NP-complete, though there are efficient 2-approximations [11, 15, 27]. Other
recent work has also explored some of the rich combinatorial structure of this model [25, 28, 30].

1.2 Incomplete Gossip

In the early 1970s, the following puzzle (popularized by Paul Erdös) was circulated among mathe-
maticians. There are n gossipers, each of whom knows a unique piece of initial information. They
communicate by telephone calls, and whenever two speak they share all the gossip that they know.
The goal is to determine the minimum number of calls necessary for all of the participants to learn
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all of the initial information. A number of researchers have independently proven that 2n− 4 calls
are necessary and sufficient to achieve this goal [3, 6, 17, 21, 35].

A voluminous body of work followed these initial proofs, including a wide variety of extensions
and variations on this basic problem. (See [20] for a survey.) Most of this work focused on
modifications to the communication model—e.g., allowing conference calls involving more than two
gossipers, or placing restrictions on who can talk to whom.

In this paper, we generalize the gossip problem in a different way, by allowing gossipers to have
interest in only a subset of the initial information. For each gossiper i, suppose that there is a
set of relevant gossip Si that he wishes to learn. In the incomplete gossip problem, the gossipers
communicate by phone calls as before, but the goal is now to minimize the total number of calls
necessary so that each gossiper i learns all of his relevant gossip Si. We will formally introduce the
incomplete gossip problem in Section 4.

Incomplete gossip generalizes a number of previous variants in the gossip literature. The com-
plete gossip problem is simply the case in which all gossipers want to learn all information. The
broadcasting problem is the case in which all participants only want to learn the single piece of in-
formation initially known to the originator. In the set-to-set gossiping (or set-to-set broadcasting)
problem [26, 32], we are given two (possibly intersecting) sets A and B of gossipers, and the goal
is to minimize the number of calls necessary to inform all gossipers in A of all the gossip known to
the members of B. This is the special case of incomplete gossip when every a ∈ A wishes to learn
the initial information of every b ∈ B.

Other variations on the gossiping problem have some similarity to the incomplete gossip prob-
lem, but differ in the details. In the partial gossiping problem [8, 32], each participant wishes to
learn at least k ≤ n pieces of gossip, but does not care which k tidbits he learns. Brief consideration
has also been given to the situation in which each gossiper initially knows several pieces of gossip
(not necessarily distinct from the initial information of the others) and everyone wishes to learn all
the information [10].

1.3 Our Results: Relating Gossip and Synteny

In the present work, we derive and explore a tight connection between syntenic distance and in-
complete gossip. Our main contribution is this unexpected technical link between genomic distance
measures and problems of information flow. The connection to the incomplete gossip problem—a
conceptually simpler problem—also yields increased combinatorial insight into the syntenic dis-
tance problem. We also believe that the incomplete gossip problem is interesting in its own right.
Finally, as an application of this connection, we derive a new gossip-based exact algorithm for
syntenic distance. Our algorithm is a significant asymptotic improvement over the best previous
algorithm.

1.3.1 Similarities between gossip and synteny

One can view the syntenic distance problem between genomes G1 and G2 as follows. Let the target
of a chromosome C in G1 denote the set of chromosomes of G2 which share a gene with C. Then
the goal for the syntenic distance problem is to exchange genes among the chromosomes of G1 so
that the target of each chromosome becomes a unique single chromosome of G2.

Under this target view, the analogy between incomplete gossip and syntenic distance is as
follows. Gossipers and information in the gossip problem correspond, respectively, to chromosomes
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of G1 and chromosomes of G2 in the syntenic distance problem; a sequence of phone calls corresponds
to a sequence of translocations, viewed in reversed order. For the gossip problem, we begin with n
unique pieces of initial knowledge and complete a series of phone calls to spread the information.
For the syntenic distance problem, we aim to complete a series of translocations to merge targets so
that every chromosome of G1 has a unique target chromosome in G2. A phone call is in essence the
reverse of a translocation: in a phone call, two gossipers take their information sets A and B and
exchange information so that both know A ∪ B; in a translocation, two chromosomes with targets
contained in A ∪ B exchange genes so that they have targets A and B afterwards.

In previous work with Jon Kleinberg, we used this notion to establish a connection between
the syntenic diameter—the syntenic distance between the two n-chromosome species maximally
different under the syntenic distance model—and the (complete) gossip problem. We proved that
the number of calls necessary for the complete gossip problem is exactly the syntenic diameter [25].
In the present paper, we explore the relationship between gossip and the syntenic distance on
general instances, using the incomplete gossip problem. Roughly, the relevant gossip Si for gossiper
i is the target of the ith chromosome of genome G1; as we shall see, however, there are complications
in the analogy.

For ease of exposition, we will sometimes denote as sets the chromosomes of G1 and the gossipers,
and as elements the chromosomes of G2 and the pieces of gossip.

1.3.2 Differences between gossip and synteny

There are three major obstacles to the equivalence of incomplete gossip and translocation syntenic
distance: (1) whether the number of sets and number of elements may differ, (2) monotonicity, and
(3) whether the sets are ordered with respect to the elements. All three of these hurdles are hidden
by properties of the particular instance that we considered in [25].

Implicit in the gossip formulation is that the number of gossipers is the same as the number of
pieces of initial information. There is no such constraint in the syntenic distance problem, where
the number of chromosomes in G1 and G2 can differ arbitrarily. Accordingly, we introduce the
translocation syntenic distance, analogous to the translocation distance in the ordered case [18, 23],
in which fusions and fissions are forbidden. This restricts us to the situation where G1 and G2 have
the same number of chromosomes. (Furthermore, it is not clear how phone calls could be analogous
to fusions and fissions, since such moves would change the number of gossipers.)

Incomplete gossip is monotonic in the sense that if we add more relevant gossip for gossiper i,
then we can only increase the number of phone calls required to solve the instance. However, if we
increase the target for a chromosome Ci in G1, we cannot prove—and, in fact, believe to be false—
the claim that the translocation syntenic distance will not decrease. We overcome this difference
by introducing a variant on the translocation syntenic distance which enforces monotonicity. We
prove that this variant is equivalent to the general syntenic distance, including fusions and fissions.

The most troublesome difference between incomplete gossip and translocation syntenic distance
is that of the ordering of the sets. In the gossip problem, there is a strict relationship between the
gossiper i and the piece of information i—namely, information i is exactly that piece of gossip
initially known by the ith gossiper. There is no such relationship between the ith chromosome of
G1 and the ith chromosome of G2: if two genomes “differ” only by the numbers assigned to each
chromosome, then we want to report that the two species are identical. This difference forces us
into a brute force examination of all permuted orderings of the sets.
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1.3.3 An improved exact algorithm for syntenic distance

We exploit the connection between translocation syntenic distance and incomplete gossip to develop
an improved exact algorithm for the general syntenic distance problem. We first handle the easier
case in which translocations are the only legal transformations, and then we add fusions and fissions
to the model. Consider two genomes G1 and G2 with n and k chromosomes, respectively. When
the syntenic distance between G1 and G2 is d, our algorithm requires O(nk + 2O(d log d)) time, which
improves on the O(nk + 2O(d2)) running time of the best previous exact algorithm, of DasGupta et
al. [11]. (Recall that the syntenic distance problem is NP-complete.)

Intuitively, the speed-up in our algorithm is derived from the following. The algorithm of Das-
Gupta et al. essentially enumerates all possible sequences of transformations of length d, and checks
whether any of these sequences transform G1 into G2. The vast majority of the time spent in this
algorithm is on translocations: for a translocation, we not only must select the input chromosomes,
but also for each gene g in either input chromosome we must specify which output chromosome
will contain g. In the gossip-based approach, we only need to select which people participate in
each call. Once we have selected the participants, both learn whatever new information the other
knows; there is no choice of different output sets.

2 Syntenic Distance

We first formally introduce the syntenic distance model, and mention a few of the properties that
we will need in the remainder of this work. For the purposes of this paper, a chromosome is an
unordered set of genes, and a genome is an unordered collection of chromosomes. (We limit our
consideration to genomes with no duplicated genes, though we do not forbid duplication in the
model; this simplifies the notation of the compact representation, defined below.) A genome can
be transformed by any of the following operations:

• a fusion (S, T ) −→ U , in which two chromosomes S and T merge into a single chromosome
U , where U = S ∪ T .

• a fission U −→ (S, T ), in which a chromosome U splits into two chromosomes S and T , where
U = S ∪ T .

• a translocation (S, T ) −→ (S ′, T ′), in which two chromosomes S and T exchange arbitrary
subsets of their genes, producing two new chromosomes S ′ and T ′, where S ∪ T = S ′ ∪ T ′.

We require these operations to take non-empty chromosomes as input, and produce non-empty
chromosomes as output. Fissions and translocations can cause the duplication of genes; e.g., the
move ({1}, {2}) −→ ({1, 2}, {2}) is a legal translocation.

Definition 2.1 The syntenic distance d(G1,G2) between two genomes G1 and G2 is the minimum
number of fusions, fissions, and translocations required to transform G1 into G2, ignoring all genes
that appear in only one of the two genomes.

Suppose we have an instance of the problem specified by genomes S = S1, . . . , Sk and T =
T1, . . . , Tn. The compact representation of the instance [11, 15] is obtained as follows: for each
chromosome Si and each gene g ∈ Si, replace g by the indices of the chromosomes of T in which
it appears. That is, the ith chromosome of S is replaced by S ′

i =
⋃

g∈Si
{j : g ∈ Tj}. Thus, in
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the compact representation, S has been replaced by the genome S ′ = S′
1, . . . , S

′
k. It is not difficult

to show that d(S, T ) = d(S ′, T ′), where T ′ = {1}, . . . , {n} [11, 15]. The compact representation
allows us to limit the number of genes to n (the number of chromosomes in the second genome)
while also considering a more “uniform” target genome T ′.

As an example of the compact representation, consider the following instance:

S = {a, b}, (Chromosome 1)
{c, d, e}, (Chromosome 2)
{f, g}, (Chromosome 3)
{h, i, j} (Chromosome 4)

T = {a, c, d}, (Chromosome 1)
{b, e, f, g, h}, (Chromosome 2)
{i, k} (Chromosome 3).

In the compact representation, we wish to transform the collection of sets {1, 2}, {1, 2}, {2}, {2, 3}
into the collection {1}, {2}, {3}.

For the remainder of this paper, we will only consider instances in the compact representation.
Also, for an instance S = S1, . . . , Sn where Si = {} for some i, we will understand S to denote the
instance S ′ = S1, . . . , Si−1, Si+1, . . . , Sn. Thus we will presume that all sets are initially non-empty.

Definition 2.2 Let S = S1, . . . , Sk be a collection of sets such that
⋃

i Si = {1, . . . , n}. Then the
syntenic distance of S is

d(S) := d(S,Gn),

where Gn = {1}, . . . , {n}.

We will use σ to denote a sequence of fusions, fissions, and translocations, and we say that σ
solves S if it transforms S into Gn. Note that the sets of Gn do not have to be produced in any
particular order.

We write S v Ŝ for S = S1, . . . , Sn and Ŝ = Ŝ1, . . . , Ŝn, if, for all i, we have Si ⊆ Ŝi ⊆
⋃

i Si.
We will make use of the following known properties of the syntenic distance:

Theorem 2.3 (Canonicalization [11]) For any instance S, there is an optimal move sequence
σ solving S in which all fusions precede all translocations precede all fissions. 2

Theorem 2.4 (Syntenic Monotonicity [27]) For any instance S and any S ′ v S, we have
d(S ′) ≤ d(S). 2

In addition, we will use following observation of DasGupta et al. [11]: for any instance S =
S1, . . . , Sn where

⋃
i Si = {1, . . . , n}, there is a move sequence that solves S in at most 2n−2 moves.

3 Translocation Syntenic Distance

We begin by restricting our attention to move sequences that consist solely of translocations. We
explore some of the properties of the translocation syntenic distance, and relate this measure and
a variant to the general syntenic distance. For this restricted model, we must limit ourselves to
instances in which the number of elements is equal to the number of sets.
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Definition 3.1 A collection of non-empty sets S = S1, . . . , Sn is square iff
⋃

i Si = {1, . . . , n}.

Translocation-only move sequences can only solve square instances; since a translocation trans-
forms two non-empty sets into two other non-empty sets, a sequence of translocations cannot alter
the number of non-empty sets, as is required for instances that are not square. Note that any move
sequence solving a square instance must contain the same number of fusions and fissions—the num-
ber of non-empty sets increases by one with a fission and decreases by one with a fusion, and a
square instance initially contains exactly the right number of non-empty sets.

Definition 3.2 For square S = S1, . . . , Sn, let χ(S) be the translocation syntenic distance of S:

χ(S) := min
ρ solves S

|ρ|

where ρ contains only translocations.

Just as for the syntenic distance, ρ solves S by transforming it into Gn = {1}, . . . , {n}. We will
use ρ to denote sequences of translocations.

Proposition 3.3 For all square S, d(S) ≤ χ(S).

Proof. Any translocation move sequence is also a legal fusion-fission-translocation move sequence.
2

We would like to show that fusions and fissions never help in solving a square instance. However,
for example, the instance {1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}, {5, 6, 7}, {5, 6, 7}, {5, 6, 7}, {5, 6, 7}
appears to require 8 translocations if fusions and fissions are forbidden, but can be solved with the
following 7 moves (1 fusion, 5 translocations, and 1 fission):

({1, 2, 3, 4}, {1, 2, 3, 4}) −→ {1, 2, 3, 4}

({1, 2, 3, 4}, {1, 2, 3, 4}) −→ ({1}, {2, 3, 4})

({2, 3, 4}, {5, 6, 7}) −→ ({2}, {3, 4, 5, 6, 7})

({3, 4, 5, 6, 7}, {5, 6, 7}) −→ ({3}, {4, 5, 6, 7})

({4, 5, 6, 7}, {5, 6, 7}) −→ ({4}, {5, 6, 7})

({5, 6, 7}, {5, 6, 7}) −→ ({5}, {6, 7})

{6, 7} −→ ({6}, {7}).

Fortunately, the following weaker statement will suffice for our purposes:

Lemma 3.4 For all square S, there exists Ŝ w S such that d(S) ≥ χ(Ŝ).

Proof. Let σ be an optimal canonical move sequence solving S using the fewest possible fusions,
and let α be the number of fusions in σ. We proceed by induction on α.

For α = 0, the sequence σ contains only translocations. Therefore χ(S) ≤ |σ| = d(S) by the
optimality of σ.

For α ≥ 1, consider the last fusion σα = (A, B) −→ A∪B and the first fission C ∪D −→ (C, D)
of σ. Note that since only other fusions precede σα, the set A must consist of the union of some
number of original input sets. Let Si be one such set.
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We define σ′ and S ′ as follows. Add C ∪ D to the input set Si, and carry C ∪ D along with
the elements of Si until σα. Instead of σα, we complete the translocation (A ∪ C ∪ D, B) −→
(A ∪ B, C ∪ D). Therefore σ′

1, . . . , σ
′
α applied to S ′ yields exactly the same sets as σ1, . . . , σα

applied to S, except that the former produces an additional set C ∪ D.
We duplicate exactly the translocation phase of σ in σ′, ignoring the presence of the extra set

C ∪ D. The result of these moves of σ′ on S ′ is identical to the result of these moves of σ on S,
again except for the extra C ∪ D. Now in place of the fission C ∪ D −→ (C, D), we can complete
the translocation (C ∪D, C ∪D) −→ (C, D). Now the resulting instances are exactly identical. Let
the remainder of σ′ match that of σ. Thus σ′ solves S ′ and |σ′| = |σ|.

We have produced an instance S ′ w S, where S ′ is solved by a move sequence σ′ containing α−1
fusions and |σ| total moves. Note that |σ| = |σ′| ≥ d(S ′) ≥ d(S) = |σ| by syntenic monotonicity,
so d(S ′) = d(S). By the induction hypothesis, there is an instance Ŝ w S ′ so that χ(Ŝ) ≤ d(S ′).
Therefore Ŝ w S ′ w S and χ(Ŝ) ≤ d(S ′) = d(S). 2

With a monotonicity property for translocation syntenic distance—that is, χ(S) ≤ χ(Ŝ) when-
ever S v Ŝ—this lemma would imply χ(S) = d(S). Unfortunately, we are unable to prove this
property, and, in fact, believe that it is false. This situation inspires the definition of a variant on
translocation syntenic distance with enforced monotonicity:

Definition 3.5 For a square instance S the expanded translocation syntenic distance χ∗(S) is

χ∗(S) := min
S′wS

χ(S ′).

Proposition 3.6 For any square instance S and any Ŝ w S, we have χ∗(S) ≤ χ∗(Ŝ) ≤ χ(Ŝ).

Proof. Immediate from the definition of χ∗(S). 2

We can now prove the equality of expanded translocation syntenic distance and syntenic dis-
tance.

Theorem 3.7 If S is square then χ∗(S) = d(S).

Proof. By Proposition 3.3 and syntenic monotonicity,

χ∗(S) = min
S′wS

χ(S ′) ≥ min
S′wS

d(S ′) = d(S).

For the other direction, let Ŝ w S be such that d(S) ≥ χ(Ŝ) according to Lemma 3.4. Then
d(S) ≥ χ(Ŝ) ≥ χ∗(S) by Proposition 3.6. 2

4 Incomplete Gossip and the Translocation Syntenic Distance

Formally, the (complete) gossip problem is as follows. We are given a number n of gossipers, where
gossiper i initially knows a unique piece of information i. Any two gossipers can communicate via
a phone call, during which the two participants each tell the other all of the information that they
know at the time. We seek a minimum-length sequence φ of phone calls so that every gossiper
learns all the information {1, . . . , n}.
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For the incomplete gossip problem, we are also given sets S1, . . . , Sn, where Si ⊆ {1, . . . , n} is
the set of relevant gossip for gossiper i. Each gossiper wishes only to learn his set of relevant gossip.

We will say that a sequence φ of phone calls spreads S = S1, . . . , Sn if, after φ is complete, each
gossiper i has learned Ŝi ⊇ Si, and exactly spreads S if every gossiper i has learned exactly Ŝi = Si.

Definition 4.1 For a square instance S = S1, . . . , Sn, the incomplete gossip number γ(S) is

γ(S) := min
φ spreads S

|φ|.

Note that this quantity is defined only when
⋃

i Si = {1, . . . , n}—that is, we insist that each
initial piece of information is interesting to some gossiper (possibly the same gossiper who knows
it initially), and that no gossiper wants to learn anything other than what the other participants
know.

Proposition 4.2 (Gossip Monotonicity) For any square S, if S v S ′ then γ(S) ≤ γ(S ′).

Proof. Every call sequence φ that spreads S ′ also spreads S. 2

We now relate the incomplete gossip problem to the (expanded) translocation syntenic distance.
First we need to introduce some notation.

Suppose ρ is a sequence of translocations solving square S = S1, . . . , Sn. Let S[ρ,S]ti denote
the contents of the ith set after the first t translocations of ρ have been applied to S. Initially,
S[ρ,S]0i = Si. The (t + 1)th translocation in ρ is between S[ρ,S]tx and S[ρ,S]ty, for some x and y,
and produces two non-empty sets A and B, where A ∪ B = S[ρ,S]tx ∪ S[ρ,S]ty. Define

S[ρ,S]t+1
x = A

S[ρ,S]t+1
y = B

S[ρ,S]t+1
i = S[ρ,S]ti for all i 6∈ {x, y}.

Let φ be a call sequence. Let K[φ]ti denote the set of all pieces of gossip that person i knows
after the first t calls of φ. Thus K[φ]0i = {i} for any person i and any call sequence φ. If the (t+1)th
phone call in φ is between gossipers p and q, then

K[φ]t+1
p = K[φ]t+1

q = K[φ]tp ∪ K[φ]tq

and K[φ]t+1
i = K[φ]ti for all i 6∈ {p, q}.

Lemma 4.3 Let S be square. Then γ(S) ≥ χ∗(S).

Proof. Let φ optimally spread S = S1, . . . , Sn, and let Ŝ = Ŝ1, . . . , Ŝn, where gossiper i actually
learns Ŝi ⊇ Si after φ. Note that S v Ŝ and that φ exactly spreads Ŝ. By gossip monotonicity
and the fact that there exists a call sequence optimally spreading S that also spreads Ŝ, we have
γ(S) = γ(Ŝ). We will show:

(∗) If φ exactly spreads Ŝ = Ŝ1, . . . , Ŝn and K[φ]
|φ|
i = Ŝi, then |φ| ≥ χ(Ŝ).
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This proves the theorem because γ(S) = γ(Ŝ) = |φ| ≥ χ(Ŝ) ≥ χ∗(S) by Proposition 3.6.
We prove (∗) by induction on |φ|, implicitly constructing a sequence of |φ| translocations solving

Ŝ. For the base case |φ| = 0, we must have Ŝi ⊆ {i} because no information is exchanged and
Ŝi ⊇ {i} since gossiper i initially knows information i and φ exactly spreads Ŝ. Therefore χ(Ŝ) = 0.

For the inductive case |φ| ≥ 1, suppose the last call in φ is between gossipers p and q. Let
S ′ = S′

1, . . . , S
′
n be the collection of sets just before the last call of φ, i.e., S ′

i = K[φ]
|φ|−1
i , and let

φ′ = φ1, . . . , φ|φ|−1. Then φ′ exactly spreads S ′, and we have K[φ]
|φ′|
i = S′

i = K[φ′]
|φ′|
i . Applying the

inductive hypothesis gives us χ(S ′) ≤ |φ′| = |φ| − 1.
To complete the proof, it suffices to produce S ′ from Ŝ with one translocation. Define the input

sets to be Ŝp = K[φ]
|φ|
p and Ŝq = K[φ]

|φ|
q , and the output sets to be S ′

p = K[φ]
|φ|−1
p and S′

q = K[φ]
|φ|−1
q .

This is a legal translocation by the definition of a phone call:

K[φ]|φ|p ∪ K[φ]|φ|q = K[φ]|φ|p = K[φ]|φ|q

= K[φ]|φ|−1
p ∪ K[φ]|φ|−1

q

and, for all i 6∈ {p, q}, we have Ŝi = K[φ]
|φ|
i = K[φ]

|φ|−1
i = S′

i. 2

Note that it is possible for γ(S) to be strictly greater than χ∗(S): consider the instance S =
S1, . . . , Sn where Si = {(i + 1) mod n}. Then χ∗(S) = χ(S) = 0 because each of the singletons
{1}, . . . , {n} appears exactly once in the n sets. However, γ(S) = n − 1—although each person
only cares about one piece of gossip, it is unfortunately not the piece of gossip that he initially
possesses! However, under a relatively weak assumption, we can show something akin to the other
direction:

Lemma 4.4 Suppose there exists a translocation sequence ρ solving S = S1, . . . , Sn such that after
ρ, we have Si = {i}. Then γ(S) ≤ |ρ|.

Proof. Suppose we have a sequence ρ of translocations solving S. We construct a sequence φ of
|ρ| phone calls, in the process defining the sets K[φ]ti. In our construction, we will maintain the
following property:

(†) For each 1 ≤ i ≤ n and 0 ≤ t ≤ |ρ|, we have K[φ]
|ρ|−t
i ⊇ S[ρ,S]ti.

We will prove this property holds by induction on |ρ| − t, together with our construction of the
phone calls φ.

For the base case t = |ρ|, we have K[φ]0i = {i} = S[ρ,S]
|ρ|
i , for any φ.

For the inductive case, suppose that we have defined |ρ| − t phone calls, and (†) holds for all
i and all t′ ≥ t. Now, suppose that the (t)th translocation in ρ involves the sets S[ρ,S]t−1

x and
S[ρ,S]t−1

y ; we define φ|ρ|−t+1 to be between gossipers x and y. We must show that (†) now holds
for t − 1. We have

K[φ]|ρ|−t+1
x = K[φ]|ρ|−t

x ∪ K[φ]|ρ|−t
y

⊇ S[ρ,S]tx ∪ S[ρ,S]ty

⊇ S[ρ,S]t−1
x

with a completely symmetric argument holding for y. For i 6∈ {x, y}, we have K[φ]
|ρ|−t+1
i =

K[φ]
|ρ|−t
i ⊇ S[ρ,S]ti = S[ρ,S]t−1

i .
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This completes the proof of (†). As a consequence, we have K[φ]
|ρ|
i ⊇ S[ρ,S]0i = Si, and thus φ

has spread S in |ρ| phone calls. 2

The proof is virtually identical to the proof in [25] that χ(G∗
n,n) ≥ 2n − 4, where G∗

n,n is the
instance consisting of n copies of the set {1, . . . , n}. The only crucial property of the instance is
that after the move sequence ρ, we have Si = {i}.

We are now in a position to state and prove the desired result connecting incomplete gossip and
syntenic distance. For S = S1, . . . , Sn, write Sπ = Sπ1

, . . . , Sπn
for π a permutation of (1, . . . , n).

Theorem 4.5 For any square instance S = S1, . . . , Sn, we have d(S) = minπ γ(Sπ).

Proof. For any permutation π, we have d(S) = d(Sπ) since the order of sets is irrelevant to syntenic
distance. Thus d(S) = d(Sπ) = χ∗(Sπ) ≤ γ(Sπ) by Theorem 3.7 and Lemma 4.3. Since π was
arbitrary, d(S) ≤ minπ γ(Sπ).

For the other direction, note by Theorem 3.7 we have d(S) = χ∗(S). Let S∗ w S be an instance
such that χ∗(S) = χ(S∗), where S∗ = S∗

1 , . . . , S∗
n. Let ρ∗ be an optimal translocation sequence

solving S∗, and let π be the permutation of (1, . . . , n) so that after ρ∗, we have S∗
πi

= {i}. Let
Sπ∗ = Sπ∗

1 , . . . , Sπ∗
n , where Sπ∗

i = S∗
πi

and let ρπ∗ be ρ∗ with the moves relabeled in the same way.
Since ρ∗ was optimal for S∗ and we have only changed the order of the sets, χ(Sπ∗) = χ(S∗) =
|ρ∗| = |ρπ∗|. By the definition of π, ρπ∗ is an optimal translocation sequence solving Sπ∗ so that
after ρπ∗, we have Sπ∗

i = {i}. By Lemma 4.4, then, we have |ρπ∗| ≥ γ(Sπ∗). Finally, by gossip
monotonicity γ(Sπ∗) ≥ γ(Sπ). In summary,

d(S) = χ∗(S) = χ(S∗) = χ(Sπ∗) = |ρπ∗| ≥ γ(Sπ∗) ≥ γ(Sπ).

Therefore d(S) ≥ γ(Sπ) ≥ minπ γ(Sπ). 2

5 A Faster Algorithm for Syntenic Distance

As an application of Theorem 4.5, we give a gossip-based exact algorithm to compute the syntenic
distance between species with n and k chromosomes, respectively. This new algorithm runs in time
O(nk + 2O(d log d)) for syntenic distance d—a significant asymptotic improvement over the previous
best of O(nk + 2O(d2)). We present the algorithm in Figure 1.

5.1 Deciding Incomplete Gossip

The decision procedure decide-gossip is the obvious exponential algorithm for deciding if γ(S) ≤ d
for a square instance S. We simply enumerate all sequences of d calls among n callers, and check
it see if any such sequence successfully spreads S.

Lemma 5.1 For any square instance S, the procedure decide-gossip returns true iff γ(S) ≤ d.

Proof. The procedure returns true iff there is a call sequence φ of length d spreading S. Obviously
if there is such a φ we have γ(S) ≤ d. If γ(S) ≤ d, then there is a φ of length d spreading S: if φ′

optimally spreads S where |φ′| < d, then any extension of φ′ to d calls also spreads S. 2
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decide-gossip(S = 〈S1, . . . , Sn〉, d)
// decide if γ(S) ≤ d, where S is square.

1. Let Cn,d be the set of call sequences of length d with n gossipers.

2. For each φ ∈ Cn,d:

(a) Simulate φ and let Sφ
i be what gossiper i learns after φ.

Let Sφ = Sφ
1 , . . . , Sφ

n .

(b) Return true if Sφ w S.

3. Otherwise return false.

decide-square-synteny(S = 〈S1, . . . , Sn〉, d)
// decide if d(S) ≤ d, where S is square.

1. For each permutation π of (1, . . . , n):

(a) Let Sπ
i = Sπi

, and let Sπ = Sπ
1 , . . . , Sπ

n .

(b) If decide-gossip(Sπ, d) then return true.

2. Otherwise return false.

syntenic-distance(S = 〈S1, . . . , Sk〉)
// compute d(S), where

⋃
i
Si = {1, . . . , n}.

1. If n > k then consider dual(S) = {j : 1 ∈ Sj}, . . . , {j : n ∈ Sj}.

2. Remove all lonely singletons—an element b appearing only once, in a singleton {b}—from S.

Let S be the resulting instance, and let k and n be the number of sets and elements, respec-
tively, in S.

3. For all sequences f of k − n fusions, let Sf be the instance resulting from fusing the sets
specified in f , starting from S.

4. Search sequentially for the smallest δ ∈ {0, . . . , 2n − 2} so that, for some f ,
decide-square-synteny(Sf , δ).

5. Return δ + k − n.

Figure 1: An gossip-based algorithm to exactly compute syntenic distance.
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Lemma 5.2 The procedure decide-gossip runs in O(dn2d+2) time.

Proof. Let Cn,d be the set of call sequences of length d with n gossipers. There are
(
n
2

)
different

choices of callers for each of the d calls. Thus we have |Cn,d| =
∏d

i=1

(
n
2

)
< n2d. We can simulate a

single call in O(n) time, so we can simulate any φ ∈ Cn,d in O(dn). Testing if Sφ w S can be done
trivially in O(n2) time, comparing element-by-element. Thus the total time for each call sequence
is O(dn2), yielding O(dn2d+2) time for the procedure overall. 2

5.2 Deciding the Syntenic Distance of Square Instances

We use the connection between gossip and synteny to build a decision procedure decide-square-

synteny for the syntenic distance of a square instance S. Because of the differences between the two
problems with respect to the correspondence between the orderings of the sets and of the elements,
we use brute force to examine all permutations of the sets.

Lemma 5.3 For any square instance S, the procedure decide-square-synteny returns true iff d(S) ≤
d.

Proof. By Theorem 4.5, we have d(S) = minπ γ(Sπ). The procedure decide-square-synteny returns
true iff we have γ(Sπ) ≤ d for some π, by Lemma 5.1. 2

Lemma 5.4 The procedure decide-square-synteny requires O(n!dn2d+2) time.

Proof. There are n! permutations of (1, . . . , n), and thus n! calls to decide-gossip, each of which
requires O(dn2d+2) time by Lemma 5.2. 2

5.3 Computing Syntenic Distance

In syntenic-distance, we use decide-square-synteny to compute the actual syntenic distance of an
instance S, where S is arbitrary (i.e., not necessarily square). First, however, we do some prepro-
cessing based on the results of DasGupta et al. [11].

For an instance S = S1, . . . , Sk and
⋃

i Si = {1, . . . , n}, the dual of S is the instance S ′ =
S′

1, . . . , S
′
n, where j ∈ S ′

i iff i ∈ Sj . Call a set Si a lonely singleton iff Si = {b} and b /∈
⋃

j 6=i Sj .

Lemma 5.5 (Duality [11]) For any instance S with dual S ′, we have d(S) = d(S ′). 2

Lemma 5.6 (Lonely Singleton Removal [11]) Let T be an instance with a lonely singleton
Ti = {b}. Let S be the instance obtained by removing the element b and the set Ti from T . Then
d(T ) = d(S). 2

Thus we can limit ourselves to the case where k ≥ n—otherwise we consider the dual instance—
and there are no lonely singletons. We can compute the dual and remove all lonely singletons in
O(nk) time.

Theorem 5.7 The procedure syntenic-distance computes d(S).
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Proof. Note that, by duality, considering the dual instance does not change the distance. Also
note that removing the lonely singletons does not alter the distance, by Lemma 5.6. Therefore we
presume that k ≥ n and that there are no lonely singletons.

For a sequence f of n−k fusions, write Sf to denote the instance resulting from the application
of f to S. By Lemma 5.3 (and the observation that 2n− 2 moves suffice to solve any Sf ), we have
δ = minf d(Sf ). After any sequence f of k − n fusions, the resulting instance Sf is square. Let f
be a fusion sequence for which δ = d(Sf ). Doing f followed by an optimal move sequence for Sf

solves S, so d(S) ≤ k − n + d(Sf ) = k − n + δ.
For the other direction, it suffices to identify a fusion sequence f such that d(S) = k−n+d(S f ) ≥

k−n + minf d(Sf ) = k−n + δ. In any move sequence that solves S, we must decrease the number
of sets from k to n, which requires k − n fusions. Let σ be an optimal canonical move sequence
solving S, and let f denote the first k − n fusions in σ. Let Sf be the instance resulting from
completing them. Since σ was presumed to be optimal, we have d(S) = k − n + d(Sf ). 2

We turn to the running time, after noting the following fact:

Lemma 5.8 For any instance S = S1, . . . , Sk with d(S) < k/2, there is a lonely singleton Si.

Proof. A move sequence σ can only touch at most 2|σ| input sets, since each fusion, fission, and
translocation takes no more than two sets as input. Since d(S) < k/2, an optimal move sequence
σ touches fewer than k input sets, leaving at least one set Si unaltered by σ. If the untouched set
Si were not a lonely singleton, then σ would not solve S. 2

This is the motivation for the removal of lonely singletons: repeatedly doing so results in an
instance where the distance is on the order of the number of chromosomes.

Theorem 5.9 For any S = S1, . . . , Sk with
⋃

Si = {1, . . . , n} and d(S) = d, the procedure syntenic-

distance requires O(nk +2(k+2d+3) log k) time. This is O(nk +2(5k−1) log k) and O(nk +2(4d+3) log 2d).

Proof. After the preprocessing steps, we have that k ≥ n and there are no lonely singletons. This
preprocessing requires O(nk) time. We now consider the running time of steps 3–5.

First we count the number of sequences of fusions. There are
(
k−i+1

2

)
choices of sets to involve

in the ith fusion, and k − n total fusions. Therefore there are
∏k−n

i=1

(
k−i+1

2

)
≤

∏k−n
i=1

(
k
2

)
< k2k−2n

fusion sequences f .
Let k − n + δ = d, so that δ = minf d(Sf ). We run δ iterations of the sequential search; by

Lemma 5.4, the time to complete iteration i is O(n!in2i+2) time. This is asymptotically dominated
by the last iteration, so the total time is O(n!δn2δ+2).

Thus the total running time is at most O(k2k−2n · n!δn2δ+2). Since k ≥ n and k! ≤ kk, this is

O
(
k2k−2n · n!δn2δ+2

)
= O

(
δ · kk+2(δ+k−n)+2

)
= O

(
kk+2d+3

)
.

since δ ≤ d ≤ 2k − 2. This is O(2(k+2d+3) log k).
For the other versions of the bounds, we need only note that d ≤ 2k−2 and that by Lemma 5.8

we can remove lonely singletons until 2d ≥ k. 2
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6 Conclusion

In this paper, we have defined the incomplete gossip problem—a novel generalization of the classical
gossip problem—and shown a tight relationship between it and the syntenic distance between
genomes. We believe that incomplete gossip is an interesting problem in its own right, and there
are a number of open questions about it. No complexity results are known, and our exact algorithm
for incomplete gossip is completely naive; there may be far more efficient solutions.

Using this connection, we have presented a faster exact algorithm for the syntenic distance
problem, though it is admittedly practical only for very closely-related species. Whether we can
further speed this computation—by refining the techniques presented here, or using some other
approach—is an open question.

One possible approach to improving this algorithm is based on the component bound [11].
Consider the intersection graph G of the k chromosomes of an instance S with n elements, say with
n ≥ k. Each move can only increase the number of components of G by one, and we must end with
n components; thus d(S) ≥ n− p where there are p components in G. For values of d that are only
slightly larger than n − p, the only move sequences that could possibly solve S in d moves must
increase the number of components by one in almost every move. Such splitting moves must be
fissions or translocations between sets in the same component of G, which can dramatically limit
the number of possible moves. (For example, testing if d = n−p is equivalent to testing if there are
n− p consecutive splitting moves; since splitting moves are always within components, we can run
our exhaustive algorithm only within each component.) Thus the set of d-move sequences possibly
solving S may be much smaller than the set we considered in our algorithm.

There are several known polynomial-time 2-approximations for the syntenic distance problem.
Approximating syntenic distance to within a factor better than 2 appears to be difficult, though no
inapproximability results are known. We hope that this connection between syntenic distance and
incomplete gossip may help to shed light on the problem of approximating syntenic distance, and,
more generally, on a variety of questions in the areas of genome rearrangements and information
flow.
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