
Observations on the Dynamic Evolution of Peer-to-Peer Networks
David Liben-Nowell Hari Balakrishnan David Karger

ABSTRACT

A fundamental theoretical challenge in peer-to-peer systems
is proving statements about the evolution of the system while
nodes are continuously joining and leaving. Because the system
will operate for an infinite time, performance measures based on
runtime are uninformative; instead, we must study the rate at
which nodes consume resources to maintain the system state.

This “maintenance bandwidth” depends on the rate at which
nodes tend to enter and leave the system. In this paper, we for-
malize this dependence. Having done so, we analyze the Chord
peer-to-peer protocol. We show that Chord’s maintenance band-
width to handle concurrent node arrivals and departures is near
optimal, exceeding the lower bound by only a logarithmic fac-
tor. We also outline and analyze an algorithm that converges to
a correct routing state from an arbitrary initial condition.

1 INTRODUCTION

Peer-to-peer (P2P) routing protocols like Chord,
Pastry, CAN, and Tapestry induce a connected over-
lay network across the Internet, with a rich structure
that enables efficient key lookups. The typical ap-
proach to the design of such overlays goes roughly as
follows. First, an “ideal” overlay structure is speci-
fied, under which key lookups are efficient. Then,
a protocol is specified that allows a node to join
or leave the network, properly rearranging the ideal
overlay to account for their presence or absence. Fi-
nally, fault tolerance may be discussed: one can show
that the ideal overlay can still route efficiently even
after the failure of some fraction of the nodes.

Such an approach ignores the fact that a P2P net-
work is a continuously evolving system. The join
protocol may work well if joins happen sequentially,
but what if many happen concurrently? The ideal
overlay may tolerate faults, but once those faults oc-
cur, the overlay is no longer ideal. So what happens
as the faults continue to accumulate over time?

To cope with these problems, any realistic P2P
system must implement some kind of maintenance
protocol that continuously repairs the overlay as

MIT Laboratory for Computer Science.�
dln,hari,karger � @lcs.mit.edu.

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Space and Naval Warfare
Systems Center, San Diego, under contract N66001-00-1-8933.

<http://pdos.lcs.mit.edu/chord/>.

nodes come and go, ensuring that the overlay re-
mains globally connected and supports efficient
lookups. In analyzing this maintenance protocol, we
must recognize that the system is unlikely ever to be
in its ideal state. Thus, we must show that lookups
and joins (and the maintenance protocol itself) occur
correctly even in the imperfect overlay.

Because a P2P system is intended to be running
continuously and system membership is dynamic,
the time taken to maintain the system’s state is not a
proper measure of resource usage; rather, what mat-
ters is how much resource bandwidth is consumed by
nodes in maintaining control information in the form
of routing tables and other such data structures.

This paper investigates the per-node network
bandwidth consumed by maintenance protocols in
P2P networks. We are motivated by the observation
that this property—which addresses how much work
each node must do in the interests of providing con-
nectivity and a good topological structure—may be
an important factor in determining the long-term vi-
ability of large-scale, dynamic P2P systems. For in-
stance, if the per-node bandwidth consumed by these
maintenance protocols were to grow fairly rapidly
(e.g., linearly) as the network size increases, then a
system would quickly overwhelm the access band-
widths of its participants and become impractical.

Any node joining the network must send at least
some number of housekeeping messages to let other
nodes know of its presence, to provide basic connec-
tivity. Additional messages are usually required to
update routing table information on nodes, so that
efficient lookups can then occur. Similarly, because
nodes may fail without any notification, each node
must periodically monitor the state of some or all of
its neighbors, consuming network bandwidth.1

We can ask a number of questions in this frame-
work. At what rate must each node in the system do
work in order to keep the system in a “good” state?
How much work is required simply to provide a con-

1Alternatively, a node may detect failures only when it ac-
tually needs to contact a neighbor; however, this merely defers
the network traffic for finding a new neighbor until the old one
fails. It also raises the risk that all of a node’s neighbors fail,
permanently disconnecting that node from the network.

1

nected structure where lookups are correct? How
much work is required to provide a richer structure
where lookups are correct and also fast?

To answer these questions, we make two kinds
of observations about P2P maintenance protocols.
First, we give lower bounds on the maintenance pro-
tocol bandwidth for connectivity in any P2P network
as nodes join and leave. We characterize this lower
bound using the notion of half life, which essen-
tially measures the time for replacement of half the
nodes in the network by new arrivals. We show that
per-node maintenance protocol bandwidth is lower-
bounded by ���������
	�� per half life for any P2P sys-
tem that wishes to remain connected with high prob-
ability.2 Second, we analyze the maintenance proto-
col used by Chord [5], a P2P routing protocol. We
show that Chord consumes bandwidth only logarith-
mically larger than our lower bound. Critical to this
analysis is a demonstration that Chord’s join, lookup,
and maintenance protocols work correctly even when
the system is not in its idealized stable state.

This style of evolutionary analyses of P2P net-
works has not been well-developed. Many P2P sys-
tems focus on models in which nodes join and de-
part only in a well-behaved fashion, allowing main-
tenance to happen only at the time of arrival and de-
parture. We believe this kind of well-behaved model
is unrealistic. Other protocols allow for the possi-
bility of unexpected failures, and show that the sys-
tem is still well-structured after such failures occur.
These analyses, however, assume that the system be-
gins in an ideal starting state, and do not show how
the system returns to this ideal state after the failures;
thus, accumulation of failures over time eventually
disrupts the system. (See, e.g., [1, 3, 4, 5, 6].)

Perhaps the closest to our evolutionary analysis is
the recent work of Pandurangan et al. [2], who study
a centralized, flooding-based P2P protocol. Using
a Poisson arrival/departure model, they show that
their protocol results in an overlay network whose
diameter remains logarithmic, with high probability.
However, their scheme does not solve the problem of
routing within the P2P network: to find the node re-
sponsible for a given data item, they propose flood-
ing the network, requiring ����	� messages. Also,

2Throughout this paper, with high probability (abbreviated
whp) means with probability ����������������� .

their system requires a central server to guarantee
connectivity.

We believe that our evolutionary analysis, with its
recognition that the ideal state will rarely occur, is
crucial for proper understanding of P2P protocols in
practice.

2 A HALF LIFE LOWER BOUND

In this section, we give a general lower bound for
the bandwidth of maintenance messages in P2P sys-
tems, based on the rate of node joins and departures.
If there are 	 live nodes at time � , then the doubling
time at time � is time that it takes for 	 additional
nodes to arrive. The halving time at time � is the time
for half of the nodes alive at time � to depart. The
half life at time � is the smaller of the doubling and
halving times at time � . Finally, the half life of the en-
tire system is the minimum half life over all times � .
Intuitively, a half life of � means that after time ��� � ,
only half the state of the system can be extrapolated
from its state at time � .

For example, consider a Poisson model of ar-
rivals/departures [2]: nodes arrive according to a
Poisson process with rate ! , while each node in the
system departs independently according to an expo-
nential distribution with rate parameter " (i.e., ex-
pected node lifetime is #%$&"). If there are 	 nodes in
the system at time � , then the expected doubling time
is 	�$�! and the expected halving time is �'#%$&"(�)�+*-, .
(The probability . that a node fails in time � is
#0/21�354%6 ; setting �879�'#%$&"(�)�+*-, makes .:79#%$�, .)
The half life is then ;�<+*=�>���+*?,@�>$&"BA�	�$�!C� .

If ! and " are fixed and the system is in a steady
state, then the arrival rate of ! must be balanced by
the departure rate of 	D" (each of 	 nodes is leaving
at rate "), implying 	E7F!C$&" . Then the doubling
time is #%$&" and halving time and half life are both
�'#%$&"(�)�G*H, . This reflects a general property: in any
system where the number of nodes is stable, the dou-
bling time, halving time, and half life are all equal to
within constant factors.

Using this Poisson model, we derive a lower
bound on the rate at which bandwidth must be con-
sumed to maintain connectivity of the P2P network.

Theorem 2.1. Consider any P2P system with any
initial configuration. Suppose that there is some
node I that, on average, receives notification about

2

// ask node � to find the successor of
���

��� ���
	 ��
�������������� �����
if (
����� ���������! �"�#�#%$% � %&�'�()
return ���) �"�#�#*$% * %&�' ;

else�,+.- /0#�1!&� 2$% �3 45'�$6#*$67�8:9<; 95&7=$=� ����� ;
return �>+�� ?@957 *"�#�#*$% � 2&A'5� ����� ;

��� B2�DC:�E���,+ �45'�$67=$6#*$% � %&�'�- /F�.C:G ;H - /I�,+J� ?@957 �"�#*#*$% � %&�'5��� � ;K "<8�1!7 ?�9<;=$%'* =� H � ; �"�#�#*$% � %&�'L- / H ;
// periodically refresh finger table entries.��� ��M ���ON5�<����� �K "<8�1!7 ?�9<;=$%'* ���� � ;
��� P��
CQG:	 ���.N����A����� + �
// get first non-trivial finger entry.��R - /TS:U!V�WD�X *"�#�#*$% � 2&A'B�Y� �[Z]\ � ;
for each

�]^_��R
index into ?�9<;=$%'�` (;?�9<;=$%'�` � (
- /a� + � ?�9D7 �"�#�#*$% * %&�'���� _b�c�d � � ;

// search the local table for the highest predecessor of
���

��� ��Ge�D������f g
�h���i��	
C:�ON �.�>	.�,� �����
for

� - /aj downto �
if �!?@9=;=$%'�` � (� ����� �����6�

return ?�9<;=$%'�` � (;
return � ;

// periodically verify n’s immediate successor,
// and tell the successor about n.� .stabilize()k - /l *"�#�#*$% � 2&A'�� 45'�$67=$6#*$% � %&�' ;

if � k � ������ �"�#�#*$% � %&�' �6� �"�#�#*$% � %&�'L- / k ; �"�#*#*$% � %&�'��)95&�3�8 m%n5��� � ;
// � + thinks it might be our predecessor.��� �.��fCQo�pE���>+ �

if �:45'6$67=$6#%$% � %&�'q/ nil or �,+ � �:4�'�$67=$6#*$% * %&�'��6� �6�45'�$67=$6#*$% � %&�'L- /F� + ;
��� ��M ��
���i������5� GQC:��f=� �r H � ��2���O� HAs�t - /u �"�#�#%$% � %&�'��) �"�#�#*$% * %&�' 1 8Q *3 ; �"�#�#*$% * %&�' 1 8Q *3]- / r �"�#�#%$% � %&�'�� H � � Hhv ������>� H s d � t ;

Figure 1: Pseudocode for the Chord P2P system.

fewer than w new nodes per � time.
Then there is a sequence of joins and leaves with

half life � and a time � so that node I is disconnected
from the network by time � with probability �'#%$5x@�Ay .

Corollary 2.2. Consider any 	 -node P2P network
that remains connected with high probability for ev-
ery sequence of joins and leaves with half life � .

Then every node must be notified with an average
of � �������
	�� new nodes per � time.

In a half life, the probability that any particular node
in the network fails is #%$�, . Thus, if any node has less
than �+���
	 neighbors, then the probability that they
all fail during this half life is larger than #%$. In
each half life, then, each node loses about ������� 	�>$�,
neighbors; it must replace its failed neighbors to re-
main connected in the next half life.3

3 A DYNAMIC MODEL FOR CHORD

This section outlines and analyzes two mainte-
nance protocols in Chord. The first is weak stabi-
lization from [5], which maintains a small amount

3Note that this does not require that each node z can learn
about {|��U!ViWC� � nodes every half life, since z may receive a
message containing information about many new nodes; instead,
it requires that z receive information about new nodes at an av-
erage rate of {|��U!V�W � � per half life.

of correct routing information in the face of concur-
rent arrivals and departures. The second is strong
stabilization, which ensures a correct routing over-
lay from an arbitrary initial condition.

Background on Chord. Chord nodes4 and keys are
hashed into a random location on the unit circle; a
key is assigned to the first node encountered mov-
ing clockwise from it. Each node knows its succes-
sor node—the node immediately following it on the
circle—which allows correct lookup of any key w by
walking around the circle until reaching w ’s succes-
sor. We speed this search using fingers: I~} ���.�O����� �6�
is the first node following I��D,,� on the identifier cir-
cle. Intuitively, any node always has a finger point-
ing halfway to any destination, so that a sequence of
�+��� 	 “halvings” of the distance take us to the key.
Each node � also maintains its predecessor, the node
closest to � that has � as its successor.

Each node I periodically executes a weak sta-
bilization procedure to maintain the desired rout-
ing invariants: it contacts its successor � , and if
�>} �]�h�h�>�A�����A���D� 78. falls between nodes I and � , sets

4For load balancing, each “real” Chord node maintainsU)V�W � virtual nodes with different identifiers; since our load bal-
ancing is not our concern, we omit virtual nodes from our dis-
cussion, and consider work per virtual node.

3

I~}:���������i�����5��� 72. . To maintain finger pointers, each
node I periodically searches for improved fingers by
running � �]� �����A�����A�=�5�5� I � ,5� 3 � � for each finger � .

A node departing the Chord ring can cause dis-
connection of the ring because another node may no
longer be able to contact its successor. To alleviate
this, each node keeps a successor list of the first �
nodes following it on the ring. A node I maintains
its successor list by repeatedly fetching the succes-
sor list of � 7 I~}:�����������A���D� , removing its last entry,
and prepending � to it. If node � fails, then I sets
I~}:���������i�����5� to the next node on its successor list.
Node I also periodically confirms that its predeces-
sor has not failed; if so, it sets I~} �]��A�>�h�i�i�����5� 7�� 	�
 .

See Figure 1 for pseudocode.

A note on our model. For simplicity, we limit our-
selves to a synchronous model of stabilization. We
can thus refer to a round of stabilization. With mild
complications, we can handle (without an increase
in running time) a network with a reasonable degree
of asynchrony, where machines operate at roughly
the same rate, and messages take roughly consistent
times to reach their destinations.

The ring-like state. The state of a correct Chord
ring can be characterized as follows. Each node has
exactly one successor, so the graph defined by suc-
cessor pointers is a pseudoforest, a graph in which
all components are directed trees pointing towards
a root cycle (instead of a root node). We will limit
our consideration to connected networks, where the
graph is a pseudotree. The network is (weakly) sta-
ble when all nodes are in the cycle. For each cycle
node � , there is a tree rooted at � which we call � ’s
appendage, denoted �� . We insist that a node � join-
ing the system invoke � } �����[�B� I(� for an existing node
I that is already on the cycle.

Definition 3.1. A Chord network with successor
lists of length � ���+��� 	� is ring-like if, for some � ,

1. Each cycle node’s successor is the cycle node
with the next-highest identifier. The nodes in
each appendage � fall between � and � ’s cy-
cle predecessor. Every node’s path of successor
pointers to the cycle has increasing identifiers.

2. Every node � that joined the network at least
� ������� 	 rounds ago is “good”: � is on the cycle
and � never lies between �?��,D� and �@} � �O�O�=��� ��� ,
for any � and � .

N1

N8

N14

N21

N48

N56

N32

Figure 2: (a) An example of the ring-like state—
unfilled nodes are on the cycle, filled nodes are in ap-
pendages; (b) an example of a network that is weakly
stable but not strongly stable.

3. At least a third of the nodes are good.
4. Any ����� 	 consecutive appendages �� contain

only ��������� 	�� nodes in total.
5. Nodes that failed at least � ������� 	 rounds

ago are not contained in any successor
lists, and no more than a quarter of the
nodes in any successor list have failed
at all. Successor lists are consistent—no
� }:���������i�����5� ���J��� skips over a live node that is
contained in �[� } � ��A�>�h�i�i�A�=�5� ��}:�����A�����A�=�5� ������� —
and include all nodes that joined the cycle at
least � ����� � 	 rounds ago.

An example is given in Figure 2(a).
The ring-like state is the “normal” operating con-

dition of a Chord network. Our main result is that
a Chord network in the ring-like state remains in the
ring-like state, as long as nodes send � ������� � 	�� mes-
sages before 	 new nodes join or 	�$�, nodes fail.

Theorem 3.2. Start with a network of 	 nodes in

4

the ring-like state with successor lists of length
� ������� 	� , and allow 	 random joins and 	�$�, ran-
dom failures at arbitrary times over at least �C�+��� � 	
rounds. Then, with high probability, we end up in the
ring-like state.

Intuitively, the theorem follows because appendages
are not too big, and not too many nodes join them.
Thus over � ����� � 	 rounds, the appendage nodes
have time to join the cycle.

Theorem 3.3. In the ring-like state, lookups require
� ���+���
	�� time.

This theomem follows from Properties 2 and 3
of Definition 3.1. For every node � and � , the
pointer � } � �O�O�=��� ��� is accurate with respect to good
nodes. Thus our analysis showing logarithmic time
search when all fingers are correct can be easily
adapted to show that, in logarithmically many steps,
a ��� � �����A�����A�=�5�5�6w5� search ends up at the last good
node I preceeding key w . Since at least a third of
the nodes in the network are good, there are, with
high probability, only � ���+���
	�� non-good nodes be-
tween I and the successor of w . Even passing over
these one-by-one using successor pointers requires
only logarithmically many additional steps.

The correctness of lookups is somewhat subtle in
this dynamic setting since, e.g., searches by nodes
on the cycle will only return other nodes on the cycle
(even if the “correct” answer is on an appendage).
However, lookups arrive at a “correct” node, in the
following sense: each ���]� ���������i�����5�5�6w5� is correct
at the instant that it terminates, i.e., yields a node �
that is responsible for a key range including w . If �
does not hold the key w , one of the following cases
holds: (1) w is not yet available because it is being
held at a node in an appendage (but, by Property
2, it will join the cycle within a half life); (2) � is
on the ring and responsible for the key w , but is in
the process of transferring keys from its successor
(but this transfer will complete quickly, and then �
will have key w); or (3) � was previously responsible
for the key w , but has since transferred w to another
node. We can handle (3) by modifying the algorithm
to have each node maintain a copy of all transferred
data for one half life after the transfer.

STRONG STABILIZATION. The previous section
proved, given our model, that Chord’s stabilization

protocol maintains a state in which routing is done
correctly and quickly. But, fearful of bugs in an im-
plementation, or a breakdown in our model,5 we now
wish to take a more cautious view. In this section,
we extend the Chord protocol to one that will stabi-
lize the network from an arbitrary state, even one not
reachable by correct operation of the protocol. This
protocol does not reconnect a disconnected network;
we rely on some external means to do so.

This approach is in keeping with our focus on the
behavior of our system over time. Over a sufficiently
long period of time, extremely unlikely events (such
as the simultaneous failure of all nodes in a successor
list) can happen. We need to cope with them.

A Chord network is weakly stable if, for all nodes
� , we have �[� }:�����A�����A�=�5� ��} �]��A�>�h�i�i�����5� 7 � and
strongly stable if, in addition, for each node � , there
is no node � so that ������� � }:�����A�i�i�A�=�5� . A loopy
network is one which is weakly but not strongly
stable; see Figure 2(b). Previous Chord protocols
guaranteed weak stability only; however, such net-
works can be globally inconsistent—e.g., no node �
in Figure 2 has the correct �����A�i�i�����5�5�[� � . The re-
sult of this scenario is that � } ���]� �����������A���D� ���@���7
�]} ���]� ���������i�����5�5���@� for some nodes � and � and
some query � , and thus data available in the network
will appear unavailable to some nodes.

The previous Chord stabilization protocol guaran-
tees that all nodes have indegree and outdegree one,
so a weakly stable network consists of a topological
cycle, but one in which successors might be incor-
rect. For a node � , call � ’s loop the set of nodes
found by following successor pointers starting from
� and continuing until we reach a node � so that
�����A�����A�=�5�5��� �	� � . In a loopy network, there is a
node � so that � ’s loop is a strict subset of � ’s com-
ponent; here, lookups may not be correct.

The fundamental stabilization operation by which
we unfurl a loopy cycle is based upon self-search,
wherein a node � searches for itself in the net-
work. If the network is loopy, then a self-search
from � traverses the circle once and then finds the
first node on the loop succeeding � —i.e., the first
node � found by following successor pointers so that

5For example, a node might be out of contact for so long that
some nodes believe it to have failed, while it remains convinced
that it is alive. Such inconsistent opinions could lead the system
to a strange state.

5

��� B��DCQ� ��� + �&�9 #2n�#�1)$~- /ao��5GQ��� ;45'�$67=$6#*$% � %&�'�- /F�.C:G ;H - /I� + � ?@957 �"�#*#*$% � %&�'5��� � ;
while (� H �e&�9 #2ni#�1)$) doH - / H � ?@9D7 *"�#�#*$% � 2&A'5���,+ � ; �"�#�#*$% � %&�'5` � (O- / H ; �"�#�#*$% � %&�'5` �2(O- / H ;

��� �.g@	���f����~�.�5fCeoJpE� �J�H - /u *"�#�#*$% � 2&A'5` � (k - / H � 45'�$67=$6#*$% � 2&A' ;
if � k � ����� H �6� �"�#*#*$% � %&�'5` � (.- / k ;H �!9D&A3�8 m%nD��� � ;

��� ��f���P�C:G:C	�i�.� �z - /l *"�#�#*$% � 2&A'�` � (�� ?@957 *"�#�#*$% � 2&A'5��� � ;&�9 #2ni#�1)$~- /0��z /I� � ;
if (*"�#�#*$% � 2&A'5` � (D/l �"�#�#*$% * %&�'�` �2(

and z � ������ �"�#�#*$% * %&�'�` �2(�6� �"�#�#*$% � %&�'5` �2(O- /Fz ;
for � � - / � � � �"h4�7�
�3J$�� 9D&�3�8 m%n,� �J� ;

Figure 3: Pseudocode for strong stabilization.

�]�h�h�>�A�����A���D� ��� � � � � � . We extend our previ-
ous stabilization protocol by allowing each node �
to maintain a second successor pointer. This second
successor is generated by self-search, and improved
in exactly the same way as in the previous protocol.
See Figure 3.

Theorem 3.4. A connected Chord network strongly
stabilizes within ����	 � � rounds if no nodes join it,
and in ����	 � rounds if there are no joins and at
most ����	� failures occur over � �������
	�� rounds.

Corollary 3.5. A connected loopy Chord network
strongly stabilizes within � ��	 � � rounds with no fail-
ures, and � ��	 � rounds if there are at most ����	�
failures occur over �����+���
	�� rounds.

The requirement on the failure rate exists solely to
allow us to maintain a successor list with sufficiently
many live nodes, and thus maintain connectivity.

The corollary follows because a loopy Chord net-
work will never permit any new nodes to join until its
loops merge—in a loopy network, for all � , we have
� }��D� ���,� ��� 7����
���� , since � ’s self-search never re-
turns � in a loopy network. Thus, no node attempting
to join can ever find a node � on the cycle to choose
as its successor.

While the runtime of our strong stabilization pro-
tocol is large, recall that strong stabilization needs to
be invoked only when the system gets into a patho-
logical state. Such pathologies ought to be extremely
rare, which means that the lengthy recovery is a small
fraction of the overall lifetime of the system. For ex-
ample, if pathological states occur only once every
	�� rounds, then the system will only be spending
a #%$ 	 fraction of its time on strong stabilization.
Nonetheless, it would clearly be preferable to de-
velop a strong stabilization protocol that, like weak
stabilization, simply executes at a low rate in the
background, rather than bringing everything else to
a halt for lengthy periods.

4 CONCLUSION

We have described the operation of Chord in a
general model of evolution involving joins and de-
partures. We have shown that a limited amount of
housekeeping work per node allows the system to
resolve queries efficiently. There remains the pos-
sibility of reducing this housekeeping work by log-
arithmic factors. Our current scheme postulates that
the half life of the system is known; an interesting
question is whether the correct maintenance rate can
be learned from observation of the behavior of neigh-
bors. Another area to address is recovery from patho-
logical situations. Our protocol exhibits slow recov-
ery from certain pathological “disorderings” of the
Chord ring. Although it is of course impossible to
recover from total disconnection, an ideal protocol
would recover quickly from any state in which the
system remained connected.

REFERENCES

[1] FIAT, A., AND SAIA, J. Censorship resistant peer-to-peer
content addressable networks. In Proc. SODA 2001.

[2] PANDURANGAN, G., RAGHAVAN, P., AND UPFAL, E.
Building low-diameter peer-to-peer networks. In Proc.
FOCS 2001.

[3] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R.,
AND SHENKER, S. A scalable content-addressable net-
work. In Proc. SIGCOMM 2001.

[4] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable,
distributed object location and routing for large-s cale peer-
to-peer systems. In Proc. Middleware 2001.

[5] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK,
M. F., AND BALAKRISHNAN, H. Chord: A scalable peer-
to-peer lookup service for internet applications. In Proc.
SIGCOMM 2001.

[6] ZHAO, B., KUBIATOWICZ, J., AND JOSEPH, A. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Tech. Rep. UCB/CSD-01-1141, Computer Science
Division, U. C. Berkeley, Apr. 2001.

6

