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1. Introduction 

 

In the 1970’s, the landscape of algorithms research changed dramatically. It was 

discovered that an efficient algorithm for any one of numerous innocent-looking 

algorithmic problems would imply something that sounds too fantastic to be true: 

an algorithm that given a provable mathematical statement, efficiently finds the 

shortest proof for the statement. To get some estimate for how fantastic the 

latter is, such an algorithm, if exists, is currently worth at least $6,000,000 – 

promised by the Clay Institute to whoever solves six central math problems; $1 

million dollars per problem. The algorithm would have efficiently solved all six 

problems. Amusingly, one of the six problems is to determine whether such an 

algorithm exists. This problem is known as the P vs. NP problem.  

The innocent-looking algorithmic problems mentioned above, on the other hand, 

look like they could have easily had an efficient algorithm -- they are incredibly 

similar to problems for which we do know efficient algorithms. One example is 

Max-Cut: find the best way to separate the nodes of a network into two, so there 

are as many links as possible between the two parts. If you replace “as many” 

with “as little”, you get Min-Cut, whose flow-based algorithm is studied by all 

Computer Science undergrads to this day. An efficient algorithm for Max-Cut, on 

the other hand, would imply the $6,000,000 worth algorithm, or, put in technical 

terms, Max-Cut is “NP-hard”.  

 



 

2. Approximation 

 

A few years passed, and researchers observed something interesting: while they 

indeed did not come up with efficient algorithms for problems like Max-Cut, they 

could sometimes prove that certain algorithms will not do much worse than the 

optimum for the problems. For instance, here is a way to generate a Max-Cut 

partition such that the number of links between the two parts is at least half of 

the maximum (in technical terms this is a “½-approximation”): pick the partition 

at random. That is, for each node flip a coin. If the coin shows “heads”, put the 

node in the first part, and if coin shows “tails”, put the node in the second part. 

The probability that the two endpoints of a link belong to different parts is exactly 

half. Hence, on average, half of all links will connect nodes belonging to different 

parts. As it turns out, there is a better algorithm for Max-Cut, one that finds a 

partition in which the fraction of links between different parts is about 0.878 

times the optimum (i.e., a 0.878-approximation). This algorithm was discovered 

by Michel Goemans and David Williamson in the 1990’s and we will not describe 

it here. That algorithm has not been improved upon for the last two decades. 

While Max-Cut has an approximation to within a constant factor, for other 

problems such approximations were not found; sometimes the best 

approximation depended on the size of the input, so as the input size grew bigger, 

the approximation worsened. In sharp contrast, some problems could be 

approximated arbitrarily well (to within 0.9999..9 for any number of 9’s). This left 

researchers wondering whether they were way off with the other problems – 

could there exist better approximation algorithms that had not been discovered? 

The salvation came from an unexpected source. 

3. Hardness of Approximation 

 

By the early 1990’s researchers realized how to show NP-hardness of 

approximation problems. This explained the little success algorithmists had with 

improving their approximations for some problems.  



 

The conceptual path that led to this breakthrough was long and intertwined. It 

started a decade earlier with works of Goldwasser, Micali and Rackoff on zero-

knowledge proofs, and a work of Babai on interactive proofs. Back then, no one 

foresaw these could have any implications to approximation algorithms, but this 

is what ended up happening.  

Both works suggested models for proving and checking proofs that were different 

from the standard model of writing down a proof, and checking it step by step. 

The new models viewed theorem proving as a discussion between a prover and a 

verifier. The verifier may ask the prover questions, and the questions may be 

randomized. If the verifier’s impression of the validity of the proof is correct with 

probability, say, 0.99, they said, this is good enough.  

Those models and related models then became the subject of study and 

classification that showed that they were surprisingly powerful. This research 

eventually created the know-how that led to hardness of approximation. 

 

4. Robust Proofs and the PCP Theorem 

 

- So what implies hardness of approximation? “Merely” the following theorem 

that no one who has ever written or checked a mathematical proof would 

consider possible, but nevertheless turns out to be true: 

“Every mathematical proof can be written in a format that can be checked 

probabilistically by reading only two statements (no matter how many statements 

there are in the proof).“ 

A standard proof of size n is a sequence of statements, ordered 1,…,n. Every 

statement is implied by some of the previous statements and the premises. The 

last statement is what we want to prove. Importantly, the only way to make sure 

the last statement is correct using the standard proof is to follow the reasoning, 

statement by statement. If there’s a mistake in any one of the implications, the 

statement may be wrong.  



 

In contrast, in the new proof format, many statements can each imply the same 

statement. For example, it is possible that the statement in the 5’th position 

determines the statement in the 10’th position, but also that the statement in the 

16’th position determines the statement in the 10’th position.  This structure 

makes the following “robustness” property possible: even if only a small fraction 

of all implications in the new format holds, one can still deduce the entire 

reasoning of the original proof. 

This robustness property makes probabilistic checking possible: To check the 

proof, one picks a random pair of positions such that the statement in the first 

position is supposed to imply the statement in the second position. One then 

tests that this is indeed the case. For a correct proof, the first statement implies 

the second. On the other hand, if the bottom line of the proof is false, i.e., there is 

no reasoning that implies it, then almost all implications must not hold. Hence, 

the probability that the first statement implies the second is low.  

The theorem became known as the PCP Theorem, where PCP stands for 

“Probabilistically Checkable Proofs”.  

Incidentally, as some readers may recognize, PCP also stands for 
“Phenylcyclohexyl Piperidine”, a recreational dissociative drug. According to Muli 
Safra, a researcher who participated in proving one of the first versions of the PCP 
theorem, the name commemorates an incident in which a police force mistakenly 
suspected that Safra and his friends were running a PCP lab. Safra thought that 
the least they could do after being falsely accused is to actually run a PCP lab 
(albeit of a different nature). 

 

5. How the PCP Theorem Implies Hardness of Approximation 

 

To complete the picture, let us explain how PCP is relevant to hardness of 

approximation.1 

                                                           
1
 The explanation will be self-contained, but might be difficult to follow without any background 

in NP-hardness. 



 

Suppose that you want to prove hardness of 0.95-approximation for Max-Cut. We 
claim that you will be done if you show the following: given a network, it is NP-
hard to distinguish between the case where there is a partition of the nodes into 
two sets such that an X-fraction of all links is between different parts, and the 
case where in every partition of the nodes into two parts, at most Y-fraction of 
the links is between different parts, assuming Y/X=0.95. Why will you be done? 
Because if you could approximate the maximal fraction of links between two parts 
to within 0.95, you could distinguish between the two cases. The distinguishing 
problem is often called a gap problem because of the gap between the fractions X 
and Y. 

Next you want to show that the gap problem is as hard as testing whether a proof 
of size n exists for a given math statement, since this would show that 0.95-
approximating Max-Cut is NP-hard. This is done by means of a reduction: showing 
an efficient way of translating the testing problem to the gap problem so that an 
efficient algorithm for the gap problem implies an efficient algorithm for the 
testing problem, which in turn means that the gap problem is at least hard as the 
testing problem. Concretely, you translate a math statement and the problem “is 
there a proof of size at most n for the math statement, or does every proof 
require size larger than n?” into a network and the problem “is there a way to 
partition the nodes of the network into two parts such that the fraction of links 
between the different parts is at least X, or does the best partition have at most a 
Y-fraction of the links?”. 

Assuming your reduction is correct, then a correct proof of size n for the math 
statement translates into a partition of the nodes in the network that has at least 
an X –fraction of the links between the two parts. The new format of the proof is 
thus an assignment of each one of the nodes to either “part 1” or “part 2”.  
Interestingly, to check the new proof, it is enough to pick a random link and check 
whether its endpoints are in different parts (i.e., whether the first endpoint being 
in one part implies that the second endpoint is in the other part). A correct proof 
guarantees that the probability of correct implication is at least X, while an 
incorrect proof guarantees that the probability of implication is at most Y. Overall, 
the reduction from “is there a proof of size n?” to the gap problem is essentially 
equivalent to a transformation of a proof to a probabilistically checkable format. 
In other words, it is a PCP Theorem. 

 



 

This PCP Theorem is slightly different from the PCP theorem we described before: 
X, the probability of rejecting a correct proof, is not 1. Moreover, while the 
probability Y of accepting a proof for an incorrect statement is lower than X, it 
may not be much lower than X. These are artifacts of checking a proof using 
“Max-Cut tests”. If we change the type of tests we allow, there are methods to 
get the probability of rejecting a correct proof to 0, and the probability of 
accepting a proof for an incorrect statement to close to 0. 

6. The Proof of the PCP Theorem 

 

The PCP theorem has a reputation for being difficult and complicated to prove, 

which, in the author’s opinion, is unjustified. We are going to outline the proof in 

this section. The purpose of the outline is to get a feel for the proof, rather than 

full details. Thus, we will often skip technical details, and omit in-depth 

explanations of some of the components.  

The proof of the PCP theorem repeatedly decreases the number of statements 

one needs to read from the proof, so it eventually goes down from n (all 

statements) to 2. Below we describe only one decrease, which can then be 

applied recursively. The recursion, called “composition” in PCP jargon, is tricky, 

and, while we nowadays know of elegant ways to do it, they still involve 

significant loss in parameters. We skip the details of composition in this 

presentation. 

We assume a proof format and a probabilistic verifier that reads q statements 
from the proof. We describe a new proof format and a probabilistic verifier that 
reads much fewer than q statements. The new format is an encoding of the 
existing proof by what is known in the theory of error correcting codes as a Reed-
Muller code. This code is an algebraic code - its definition involves finite fields and 
multivariate polynomials. This may seem surprising to readers who encounter 
such constructions for the first time, but indeed there are numerous examples of 
mathematical arguments that have nothing to do with polynomials in which 
polynomials turn out to be very useful. 

Consider a finite field F and let H be a small set of finite field elements so that 
n=|Hm| for some parameter m. The Reed-Muller code interpolates an m-variate 



 

low degree polynomial over a finite field from the existing proof, interpreting the 
bits of the existing proof as the evaluations of the polynomial on the product 
subset Hm. The new format also contains some auxiliary data as described below. 
Low degree multivariate polynomials serve two purposes: the first- they form an 
error correcting code, which means that to move from one polynomial to another 
one has to change the values of most of the points in Fm; the second- they have a 
recursive structure: the restriction of a polynomial to fewer variables, by 
substituting values to the other variables, is again a low degree polynomial. 

One can show (and we’ll skip the details here) that, without loss of generality, in 

order to verify the proof it suffices to check whether the sum of a certain low 

degree polynomial p(x1,…,xm) over Hm is 0 (p is not exactly the Reed-Muller 

polynomial, but it depends on it and on the given verifier). Note that a-priori it 

seems like one needs to read  n=|Hm| positions from the proof to check the sum, 

just like one would need to read n statements from the proof to check it. We are 

going to show that reading only about |H|·m positions suffices! We will do that 

by adding auxiliary data to the new proof format.  

The auxiliary data is the “partial sums” of the sum x1,…xm in Hp(x1,…,xm) we want to 

check. A partial sum fixes the first i coordinates, and sums only over the 

remaining coordinates: 

Si(x1,…,xi):= xi+1,…xm in Hp(x1,…,xi,…,xm), for i=0,…,m. 

In the new format of the proof, we will store Si(x1,…,xi) for all i=0,…,m and all 

x1,…,xi in F (“the table of Si”). 

By definition, the partial sums are related to each other and to p. The exact 

equations they satisfy are these: 

1. S0()=x1,…xm in Hp(x1,…,xm) 

2. Si-1(x1,…,xi-1)= xi in H Si(x1,…,xi) for i=1,…,m+1 

3. Sm(x1,…,xm)= p(x1,…,xm) 

Next we describe the verifier. The verifier first checks that the tables of the Si‘s 

are (approximately) low degree polynomials. This can be done by reading 

evaluations on a random line, and is known as “low degree testing”. As we 



 

mentioned above, polynomials of low degree have a remarkable property: two 

different low degree polynomials differ on almost all the points. Thus, the equality 

in 3 can be checked probabilistically by checking it on a single random point, and 

the m+1 equalities in 2 can be checked probabilistically by checking each on 

|H|+1 points. By equality 1, this allows verification of the sum over all n points.  

The total number of queries is (m+1)(|H|+1)+2, instead of |H|m. The large saving 

in the number of queries was made possible by the pre-computing done by the 

partial sums. Importantly, this pre-computing can be checked using the recursive 

structure and the code property of the multivariate polynomials. 

In 2005, Dinur found a different, beautiful, proof for the PCP theorem based on 

expanders. This proof only gives high error probability, say 0.999, as opposed to 

the very low error probability that can be derived from the proof we sketched 

above. That error probability can then be decreased by other means. 

 

7. Optimal Hardness Results 

 

While the PCP theorem yielded the first hardness of approximation results in the 

early 1990’s, it took until around 1997 before such hardness results could match 

the best approximations known for various problems. 

The path from the PCP theorem to optimal hardness results is typically comprised 

of the following steps: 

1. Soundness amplification - in case the PCP theorem has a high error probability, 
one first lowers this probability. This is usually done by the parallel repetition 
lemma of Raz (1994), whose proof is based on information-theoretic ideas. 
 

2. Composition of the PCP with the “long code”, a specialized construction due to 
Bellare-Goldreich-Sudan (1995), which allows one to tailor the PCP to the 
specific approximation problem in question.  

 



 

3. Analysis of the long code by means of Fourier analysis, as was first done by 
Håstad (1997). The analysis relies on the low error of the PCP. 

8. The Unique Games Conjecture 

 

So how hard is it to approximate Max-Cut? Håstad showed that Max-Cut is NP-

hard to approximate better than 16/17  0.941. Is there a better algorithm than 

the Goemans-Williamson  0.878-approximation? We do not know. However, as 
often is the case in theoretical computer science, we can make a “Ramsfeldian” 
assertion about our state of knowledge: we might know how to know if there is 
not.  

In 2002 Khot put forward the Unique Games Conjecture (UGC), which postulates 
the existence of a certain special PCP to be explained below.  The UGC, if true, 
settles the approximability of Max-Cut, and determines that the Goemans-
Williamson algorithm is optimal [Khot-Kindler-Mossel-O’Donnell, 2004]. If true, 
the UGC also settles a host of other problems, including NP-hard problems 
concerning covering, partitioning and ordering. More than that, the conjecture 
points to a certain algorithmic technique, called “semi-definite programming”, 
that would yield optimal approximation algorithms [Raghavendra, 2008]. 

What is the Unique Games Conjecture? The “uniqueness” refers to checking two-
sided implication instead of a one-sided implication: the statement in the first 
position implies the statement in the second position, and vice versa, the 
statement in the second position implies the statement in the first position. It 
may seem unlikely to check any proof using only if-and-only-if’s. However, the 
unique games conjecture states that it is possible -- at least as long as one uses an 
interesting trick: a tiny fraction of the if-and-only-if’s are allowed to be false even 
in a correct proof. This makes unique verification plausible, and the conjecture is 
that arbitrarily low error probability can be achieved by such a verification 
process. 

The PCP obtained from Max-Cut is unique: if there is a partition of the nodes into 
two parts, such that at least X fraction of the links are between the two parts, 
then for all links, except for at most 1-X fraction, one endpoint of the link is in one 
part if and only if the other endpoint is in the other part. The unique games 



 

conjecture states that very low error probability is achievable if one considers a 
generalization of Max-Cut in which there are many possible parts, not just two.  

9. More Open Problems 

 

Even if the Unique Games Conjecture is resolved, other problems will remain 
open. For instance, for the traveling salesman problem, in which a salesman 
wants to minimize the cost of tour through given destinations, we do not even 
have a candidate approach for proving tight hardness of approximation results. 

Various intriguing open problems remain regarding the original PCP theorem. One 
is minimizing the error probability. At present, the lowest error probability we 
know for the theorem (for the “two query projection” version that was 
introduced in this article) is logarithmically small in the size of the proof [M-Raz 
2008]. One could a-priori hope for polynomially small error (the “projection 
games conjecture”/”sliding scale conjecture”). Another open problem is 
minimizing the blow-up introduced by the probabilistically checkable format: by 
research that was done in the 2000’s, we know that the size of the proof format 
does not have to increase by more than a sub-linear factor to make the format 
probabilistically checkable. Will an increase by a constant factor suffice? 

A different question is whether PCP can be applied in practice. The small blow-
ups, low error probabilities and conceptually simpler constructions we know 
today might lead to a practical “PCP technology”. When would it be useful? This 
requires an asymmetric setting, in which the prover is willing to invest some extra 
work in preparing the proof, and the verifier is required to be extremely efficient. 
The verifier may not trust the prover, and must be certain that the prover 
committed to a proof, e.g., by writing it down. One can envision settings in which 
such conditions hold - a server and weak agents for example.  

 

10. Bibliographic Remarks and Further Reading 

 

The first proof of the PCP theorem by Arora-Safra and Arora-Lund-Motwani-

Sudan-Szegedy appeared in 1992. Weaker PCP theorems, with a larger number of 



 

queries were known before, by works of Lund-Fortnow-Karloff-Nisan, Babai-

Fortnow-Lund and Babai-Fortnow-Levein-Szegedy. The connection between local 

checking of proofs and hardness of approximation first emerged in a 1991 work 

by Feige-Goldwasser-Lovász-Safra-Szegedy. Papadimitriou and Yannakakis 

presented a family of candidate hard-to-approximate problems. After the proof of 

the PCP theorem, Lund and Yannakakis provided further hardness results. 

References to further developments were made in the body of the article.  

There are various lecture notes and surveys about the PCP theorem. In particular, 

the author gives a course on PCP, and lecture notes are available from her 

website.  

 


