6.841: Advanced Complexity Theory

Fall 2012

Problem Set 5 – PCPs and Counting

Prof. Dana Moshkovitz/TA: Henry Yuen

Due Date: December 6, 2012

Turn in your solution to each problem on a separate piece of paper. Mark the top of each sheet with the following: (1) your name, (2) the question number, (3) the names of any people you worked with on the problem. We encourage you to spend time on each problem individually before collaborating!

Problem 1 – PCP basics

Recall that $PCP_{c,s}[r,q]_{\Sigma}$ is the class of all decision problems L that have a probabilistically checkable proof that can be verified by a polynomial time Turing Machine that uses r random bits to make q queries to the given proof (over the alphabet Σ), and has completeness c and soundness s (i.e. if $x \in L$, then the verifier accepts with probability c, and if $x \notin L$, then the verifier accepts with probability s).

Show the following:

- (a) $PCP_{c,s}[r,q]_{\Sigma} \subseteq PCP_{c,s}[r,q \cdot \log |\Sigma|]_{\{0,1\}}.$
- **(b)** $PCP_{1,s}[r,q]_{\{0,1\}} \subseteq PCP_{1,1-\frac{1}{a}+\frac{s}{a}}[r+\log q,2]_{\{0,1\}^q}.$
- (c) If $|\Sigma| \leq \text{poly}(n)$, then $PCP_{c,s}[O(\log n), 1]_{\Sigma} \subseteq \mathsf{P}$.
- (d) If $|\Sigma|^q \leq \operatorname{poly}(n)$, then $PCP_{1,\left(\frac{1}{|\Sigma|}\right)^q}[O(\log n), q]_{\Sigma} \subseteq \mathsf{P}$.

(e) Recall from class that a *Projection Game* can be described as a bipartite graph G = (A, B, E) with a constraint on each edge; furthermore, the constraints are *projections*, meaning that for each edge e = (a, b), there is a projection $\pi_e : \Sigma_A \to \Sigma_B$ such that if a is assigned some value $\alpha \in \Sigma_A$, then b must be assigned value $\pi_e(\alpha) \in \Sigma_B$ to satisfy the constraint on e. Projection Games where all the projection functions π_e are bijections are called *Unique Games*.

Show that the following computational problem is efficiently solvable: given an instance of Unique Games (i.e. a bipartite graph G along with the constraints and projections), decide whether there exists an assignment to the vertices such that all the constraints are satisfied.

[The famed Unique Games Conjecture says that, however, the problem of distinguishing between the case that $1 - \delta$ fraction of the constraints are satisfiable and the case that at most δ fraction of the constraints are satisfiable is NP-hard, for all $\delta > 0$.]

Problem 2 – Dictator Testing with the Not-All-Equals Predicate

In this problem you will analyze a dictator test that's based on the *Not-all-equals* (NAE) predicate: NAE(a, b, c) = 1 iff $\neg(a = b = c)$. Recall from class that a function $f : \{\pm 1\}^n \rightarrow \{\pm 1\}$ is a *dictator* if there exists an index *i* such that $f(x) = x_i$. Consider the following test for f:

- 1. Choose $x, y, z \in \{\pm 1\}^n$ by choosing the triples (x_i, y_i, z_i) uniformly and independently from the set of 6 assignments such that $NAE(x_i, y_i, z_i) = 1$.
- 2. Accept if NAE(f(x), f(y), f(z)) = 1, otherwise reject.
- (a). Show that this test has perfect completeness, i.e., all dictator functions f pass with probability 1.

(b). Show that

$$\Pr[\text{NAE}(f) \text{ passes}] = \frac{3}{4} - \frac{3}{4} \sum_{S \subseteq [n]} \left(-\frac{1}{3} \right)^{|S|} \widehat{f}(S)^2.$$

Hint: Use the Fourier expansion of the NAE predicate.

(c). Prove that if f passes the test with probability at least $1 - \epsilon$, then $\sum_{|S|=1} \widehat{f}(S)^2 \ge 1 - O(\epsilon)$.

(d) Recall from class that in Hastad's test, we can assume that f is given to us in a *folded* manner, meaning f(-x) = -f(x). Using the theorem by Friedgut, Kalai, and Naor that was mentioned in class, show that if a folded f passes the test with probability $1 - \epsilon$, there exists a dictator function or anti-dictator function d such that $\Pr_x[f(x) = d(x)] \ge 1 - O(\epsilon)$ (an anti-dictator function is such that $d(x) = -x_i$ for some i).

Problem 3 – Hardness of approximate counting

Fix some small $\epsilon < 1$. Consider the following computational problem: given a polynomial time computable function $f : \{0,1\}^n \to \mathbb{Z}$, estimate $\sum_x f(x)$ to within a factor $(1 \pm \epsilon)$. Show that given an oracle for this problem, one can solve any $\#\mathsf{P}$ problem in polynomial time.