
6.841: Advanced Complexity Theory Fall 2012

Lecture 16 — November 6th, 2012 (Prasad Raghavendra)

Prof. Dana Moshkovitz Scribe: Geng Huang

1 Overview

In this lecture, we will begin to talk about the “PCP Theorem” (Probabilistically Checkable Proofs
Theorem). Since the discovery of NP-completeness in 1972, researchers had mulled over the issue
of whether we can efficiently compute approximate solutions to NP-hard optimization problems.
They failed to design such approximate algorithms for most problems. They then tried to show
that computing approximate solutions is also hard, but apart from a few isolated successes this
effort also stalled. Researchers slowly began to realize that the Cook-Levin-Karp-style reductions
do not suffice to prove any limits on approximation algorithms [1].

The PCP Theorem states that every decision problem in the NP complexity class has probabilis-
tically checkable proofs (proofs that can be checked by a randomized algorithm) of constant query
complexity and logarithmic randomness complexity. The PCP Theorem gave a new definition of
NP and provided a new starting point for reductions to show hardness of approximation [1].

We know that

NP = {L | ∃ a polynomial time verifier V s.t. x ∈ L ⇐⇒ ∃ a proof y, |y| = poly(|x|) s.t. V (x, y) = 1}

Our question is: how much work does the polynomial time verifier needs to do?

We know that IP = PSPACE and MIP = NEXP [2] [3] [4], where MIP is akin to the class
IP, but now the verifier may interact with multiple provers that cannot communicate with each
other. These two results showed that the verifier doesn’t have to perform that much computation
relative to the amount it would have to perform by itself, without a given proof. This motivated
researchers to “scale” this result down to the class NP.

In this lecture, we will formally define what a probabilistically checkable proof system is, and how
it is intimately related to the notion of hardness of approximation.

2 The PCP Theorem

Definition 1. Let α = 5/6. PCPΣ(q(n), r(n)) is set of languages L such that a randomized
polynomial time verifier V that uses r(n) random coins and queries q(n) locations in the proof
y ∈ Σ∗, and has the property that for all x,

1. (Completeness) x ∈ L,∃y ∈ Σ∗ such that Pr[V (x, y)] = 1

2. (Soundness) x ̸∈ L,∃y ∈ Σ∗ such that Pr[V (x, y)] ≤ α

1

Observe that the length of the proof is bounded by q(n)2r(n), because there are only 2r(n) possible
choices of random bits, and for each, the verifier can query at most q(n) new places. For a concrete
instantiation, we consider PCP{0,1}(O(1), O(log n)), and it is easy to see that the proof length for
this class of PCPs is polynomially bounded in n – hence, PCP{0,1}(O(1), O(log n)) ⊆ NP. From
converse is the hard, and more interesting, part of the PCP Theorem.

Theorem 2 (PCP Theorem). NP = PCP{0,1}(O(1), (log n)).

2.1 A new kind of proof checking

Imagine that we want to verify the proof for a3+b3+c3 = (a+b+c)(a2+b2+c2−ab−bc−ac). A proof
of this identity is usually presented in a sequential manner. The standard verification procedure is
to read through such a proof sequentially, checking that each line follows from previous ones, and
that the last line is a tautology (e.g. 0 = 0).

Suppose we wanted to have a more efficient verification procedure – one where one only exams a few
locations of the proof. Intuitively, it seems impossible to have a sound proof checking procedure:
suppose the given proof was completely consistent except for a single mistake or contradiction (e.g.
1 = 0). Every other line will follow from previous ones, but since a false statement implies any
statement (true or false), one can arrive at any conclusion. So if the verification procedure does
not examine the offending line, the verification procedure is liable to accept an obviously incorrect
proof.

In this sense, traditional proofs are not robust : the slightest changes can convert a correct proof
to an incorrect proof, or an incorrect proof to a (nearly) correct proof. The PCP Theorem gives a
way of making proofs and proof checking robust: proofs can be written in a format such that small
changes to a proof will not drastically alter its correctness.

3 Hardness of Approximation

In this section, we will discuss a seemingly unrelated topic, approximation problems, hardness of
approximation, and see how it is closely related to the notion of probabilistic proof checking.

First, let us informally review what an optimization problem is: there is an objective function
f : U → R over some universe U that one would like to, say, maximize. Many important problems
can be easily described using this description. For example, the problem of deciding 3SAT can be
described as determining whether, given a 3SAT formula φ, all of it φ’s clauses can be satisfied by
an assignment to φ’s variables. Here, U is the set of all variable assignments, and f counts the
number of satisfied clauses by the input assignment. Usually, the optimum of an objective function
f on an instance I of an optimization problem is denoted OPT(I).

In an approximation problem, on the other hand, one is willing to settle for an approximation
of OPT. An optimization problem is α-approximable if there is an algorithm A such that, given
instance I of the optimization problem, A(I) ≥ α·OPT(I), assuming that the optimization problem
is one of maximization. Usually, one cares about approximation algorithms that run in polynomial
time, as many optimization problems are NP-hard to solve exactly.

As we will see by the end of this lecture, the PCP Theorem implies that there are many optimization

2

problems that are NP-hard even to approximate.

As an example, we will discuss the MAX-3SAT problem:

Definition 3. MAX-3SAT is the problem of finding, given a 3CNF Boolean formula φ as input, an
assignment that maximizes the number of satisfied clauses.

This problem is NP-hard, because the corresponding decision problem, 3SAT, is NP-complete. We
define an approximation algorithm for MAX-3SAT in the following way.

Definition 4. For every 3CNF formula φ, the value of φ, denoted by val(φ), is the maximum
fraction of clauses that can be satisfied by any assignment to φ’s variables. In particular, φ is
satisfiable iff val(φ) = 1.

For every ρ ≤ 1, an algorithm A is a ρ-approximation algorithm (which may be randomized) for
MAX-3SAT if for every 3CNF formula φ with m clauses, A(φ) outputs an assignment satisfying at
least ρ · val(φ)m of φ’s clauses.

Basically, a algorithm A is a ρ-approximation for MAX3SAT if ∀φ, valA(φ) ≥ ρ · opt(φ).

3.1 7
8
-approximation for MAX-3SAT

There is a very simple algorithm that can approximate MAX-3SAT to within 7/8: simply choose
an assignment to the variables uniformly at random, and output that assignment. In expectation,
the fraction of satisfied clauses will be 7/8’s. Let x denote the randomly chosen assignment. For
any clause, we have Prx[(xi ∨ x̄j ∨ xk) = 1] = 7

8 . So, we know E[number of clauses satisfied] =
7
8 · number of clauses ≥ 7

8 ·OPT(φ).

3.2 Gap3SAT1,α

Although the PCP Theorem implies hardness of approximation for optimization problems, it will
be more convenient to reframe optimization problems as decision problems, because then we can
formally show that such problems are NP-hard and thus imply the original approximation problem
is also computationally intractable (modulo P ̸= NP).

Definition 5. Gap3SAT1,α is the promise problem where, on input φ, decide whether

1. OPT(φ) = 1, or

2. OPT(φ) < α,

promised that one is the case.

Case (1) is usually referred to as the “YES” case, or the “Completeness” case, and case (2) is usually
referred to as the “NO” case, or the “Soundness” case. The following theorem demonstrates an
equivalence between the optimization formulation of 3SAT and the gap formulation.

3

Theorem 6. Suppose A is a polynomial time α-approximation algorithm for MAX3SAT. Then,
Gap3SAT1,α is solvable in polynomial time.

Proof. Suppose A is an α-approximation algorithm for MAX-3SAT. Given φ ∈ Gap3SAT1,α, we run
A on φ. We know that opt(φ) ≥ A(φ) ≥ α · opt(φ). Consider the following two cases:

1. (case 1) OPT = 1, A(φ) ≥ α

2. (case 2) OPT < α, A(φ) < α.

To distinguish, we simply output whether A(φ) ≥ α or not.

The following theorem expresses the equivalence between hardness of approximation and the PCP
Theorem.

Theorem 7. Gap3SAT1,α is NP-complete for some α < 1 ⇐⇒ The PCP Theorem is true.

Proof. (=⇒) Suppose Gap3SAT1,α is NP-hard for some α < 1. This implies that ∀L ∈ NP, ∃ a
polynomial reduction to Gap3SAT1,α such that all x gets mapped to an input φx where

1. x ∈ L ⇒ OPT(φx) = 1 (Yes Case)

2. x ̸∈ L ⇒ OPT(φx) < α (No Case).

The PCP system for L will be as follows: on input x, the verifier will perform a polynomial-time
transformation from x to φx. Then, the verifier will perform the following check on the given proof
y:

1. The verifier samples a random clause C of φx.

2. The verifier then tests if y satisfies the clause C. If so, then accept. Otherwise, reject.

Suppose x ∈ L. Then OPT(φx) = 1, so ∃y such that Pr[V (x, y) = 1] = 1. Suppose that x ̸∈ L.
Then OPT(φx) < α, so ∀y, Pr[V (x, y) = 1] < α, by definition of Gap3SAT1,α. This shows that
L ∈ PCP{0,1}(O(1), O(log n)). Although the definition of PCP above required α < 5/6, any
constant suffices. We have shown that any problem in NP admits a PCP system.

(⇐=) Here, we assume that the PCP Theorem is true, and want to show that Gap3SAT1,α is
NP-hard for some α < 1. For simplicity, let us assume that the PCP system for 3-coloring per-
forms 3 queries. If it performs some larger number of queries q, then we would actually prove
a hardness result for GapqSAT instead. We know that 3-coloring ∈ NP, so 3-coloring ∈
PCP{0,1}{O(1), O(log n)} by assumption.

We show how to reduce 3-coloring to Gap3SAT. There is some associated proof string for the PCP
system for 3-coloring, call it y ∈ {0, 1}poly{n}. Suppose an input to the 3-coloring problem were
x. Then, for every choice of randomness in {0, 1}r(n), the PCP verifier V will query 3 bits of the
proof y and perform a test, accepting or rejecting based on the values of those 3 bits. Suppose for
some setting of randomness z, the verifier queries bits yz1 , yz2 , yz3 , and accepts or rejects based on

4

a predicate Cz(yz1 , yz2 , yz3). Observe that Cz can be expressed as a constant-sized 3SAT formula
in terms of yz1 , yz2 , and yz3 . Let the conjunction of all these 3SAT formulas be φ(x).

Suppose x ∈ L. Then by definition, all of the checks of the verifier V pass, so OPT(φ(x)) = 1.
Suppose x /∈ L. Then, less than α fraction of the checks pass, and since each clause of φ(x)
corresponds to a check, OPT(φ(x)) < α. Thus, we have successfully reduced 3-coloring to
Gap3SAT1,α.

Next time, we will start the proof of the PCP Theorem.

References

[1] S. Arora and B. Barak, Computational Complexity - A Modern Approach, Cambridge Univer-
sity Press, ISBN 978-0-521-42426-4.

[2] L. Babai, L. Fortnow, L.A.Levin, and M. Szegedy Checking computations in polylogarithmic
time, In STOC, pages 21-32. ACM, 1991.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy Proof of verification and the
hardness of approximation problems, In J. ACM, 45(3):501-555, 1998. Prelim version FOCS
’92.

[4] S. Arora and S. Safra Probabilistic checking of proofs: A new characterization of NP, In J.
ACM, 45(1):70-122, 1998. Prelim version FOCS ’92.

5

