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1 Overview

In the last two lectures we proved two results on circuit lower bounds, namely PARITY /∈ AC0,
and that computing CLIQUEk,n requires superpolynomial size monotonic circuit. Recalling that
relativizing proof technique is not sufficient for proving P ̸= NP , one might wonder if there is
also a limitation for proving circuit lower bound by those combinatorial techniques. Indeed, in this
lecture, we are going to show that if a proof technique follows the “natural proof” paradigm [2],
then such technique could not separate NP from SIZE(nk).

2 The Natural Proof Paradigm

Suppose we have a proof for f /∈ C (e.g. SAT /∈ SIZE(nk)), where C is a class of circuits. Often,
the proof goes by showing that f does not satisfy some property P while every language in C does.
Now, we say that a proof is a natural proof if it has the following three attributes:

1. Usefulness: It shows that f /∈ P , but C ⊂ P, where P is a property/predicate

2. Constructivity: Given g : {0, 1}n → {0, 1}, we can decide whether g has property P in 2O(n)

time, i.e. in time polynomial of size of the truth table of g.

3. Largeness: At least 1/n of all possible functions g : {0, 1}n → {0, 1} (there are 22
n
of them)

are outside P

Here are two examples to illustrate the definition of a natural proof:

Example 1: PARITY /∈ AC0 Recall that we proved this result by using the property

P ′ = If we randomly restrict all but nϵ variables, then the function can

be computed by a polysize CNF/DNF with high probability

It could be shown that P ′ has the three attributes of a natural proof.

On the other hand, the result could also be proved by the following property

P ′′ = If we randomly restrict all but nϵ variables, then

the function is constant with high probability

This proof goes by showing that AC0 ⊂ P ′′, but PARITY /∈ P ′′. Thus, P ′′ has the Usefulness
Attribute. P ′′ also has the Constructivity Attribute, since for a function g, we can enumerate all
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possible restrictions and all possible ways of setting the remaining variables in 2O(n) time. Lastly,
it has the Largeness Attribute, as a random boolean function does not have property P ′′ with high
property.

Example 2: Monotone Circuit Lower Bound for CLIQUEk,n Although its proof has the
Usefulness and Constructivity Attributes, it does not have the Largeness Attribute, since the proof
only concerns monotone circuits.

3 A Theorem of Razborov and Rudich

Before stating the theorem, we would like to first define one-way function (OWF) and pseudorandom
function family (PRFF), which originate from cryptography, but we are utilizing these concepts
to prove the result in complexity. Intuitively, an OWF is a function that is easy to compute, but
computationally hard to invert, i.e. hard to find the preimage given the image. Moreover, it is even
computationally hard to guess the inverse correctly with reasonable probability.

Definition A function f is a one-way function if

• Given x, f(x) can be computed in poly(|x|) time.

• For all probabilistic polynomial time algorithms A, we have

Pr
x∈U{0,1}n

[f(A(f(x))) = f(x)] =
1

nω(1)
.

Next, we define a pseudorandom function family (PRFF). Intuitively, a PRFF is a family of Boolean
functions that is computationally indistinguishable from a random Boolean function.

Definition A pseudorandom function family is a set of functions {fs : {0, 1}m → {0, 1}}s∈{0,1}m
such that

• Given s, x ∈ {0, 1}m, we can compute fs(x) in poly(m) time.

• For any probabilistic 2m
ϵ
time algorithm A, where ϵ is an absolute constant, we have∣∣∣∣ Pr

s∈U{0,1}m
[Afs(1m) = 1]− Pr

fu.a.r.
[Af (1m) = 1]

∣∣∣∣ < 1

mω(1)
.

where Af denotes the algorithm A with oracle access to f .

Note that a PRFF has 2m functions, which is a very small number compared to the total number
of 22

m
possible Boolean functions.

Now we are ready to state the theorem of Razborov and Rudich:

Theorem 1 (Razborov - Rudich, 1994). Assuming that one way function exists, no natural proof
(i.e. a proof that satisfies the three attributes) can show NP ( SIZE(nk).
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Before proving this theorem, we remark that the premise is strong, since the existence of OWF
implies P ̸= NP . However, the existence of OWF is widely believed by the complexity and
cryptography community. We also note that the existence of OWF implies the existence of problems
in NP that are hard on average. Lastly, to prove the theorem, we recall the following result:

Theorem 2 (GGM, HILL). If one way function exists, then pseudorandom function family exists.

Proof. (of Razborov-Rudich Theorem) Assume for contradiction that there existed such a property
P that is natural. Let {fs}s∈{0,1}m be a PRFF, which exists by [4], assuming the existence of OWF.

Define n = mϵ/2, where ϵ is the absolute constant in the definition of PRFF. Also define, for all
s ∈ {0, 1}m and x ∈ {0, 1}n, the padded function

f∗
s (x) = fs(x0

m−n).

Now, by the Largeness Attribute, for a random f : {0, 1}n → {0, 1}, we have

Pr
fu.a.r

[f has property P] ≤ 1− 1

n
.

On the other hand, we have

Pr
s∈U{0,1}m

[f∗
s has property P] ≥ Pr

s∈U{0,1}m
[f∗

s ∈ SIZE(nk)] = 1

where the first inequality is by the Usefulness Attribute. The second equality is by the definition of
PRFF that fs, and hence f∗

s , can be computed in mO(1) = nO(1) time. This implies that there exists
a size nO(1) circuit that computes f∗

s ; we could construct a polynomial size circuit that imitates
the computation of f∗

s .

However, it contradicts the definition of a PRFF, since testing if a function has property P is
a probabilistic 2m

ϵ
time algorithms that distinguishes fs from a random boolean function f with

probability ≥ 1/n. Indeed, testing P can be done in 2m
ϵ
time, since by the Constructivity Attribute,

for all g : {0, 1}n → {0, 1}, we can determine whether g has property P in time 2O(n) ≤ 2m
ϵ
.

4 Concluding Thoughts

We have shown that no natural proof can prove that NP ( SIZE(nk), which shows us yet another
barrier to separating P vs NP or NP vs P/poly, in addition to the barrier on the relativization
technique. Nevertheless, it does not mean that the development of complexity theory is in vain. In
fact, there are proofs that are non-natural. An example would be the proof of Σ3 ( SIZE(nk) in
previous lecture.

Moreover, there are proofs that are both non-natural and non-relativizing. The a proof of from
Santhanam [5] is one such. (This can be found in Theorem 23.8 (Page 504 – 505) in the text book).
Apart from the relativization and natural proof barriers, there is also a barrier on algebraization
[1]. Nevertheless, the recent proof of NEXP ( ACC0 by Ryan Williams [6] is non-relativizing,
non-natural and non-algebraizing.
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