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Sincere thanks to Venkatesan Guruswami for writing this issue’s very interesting article. Upcoming
guest articles include John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo on The Fractal
Geometry of Complexity Classes; Scott Aaronson on NP-Complete Problems and Physical Reality ;
Neil Immerman on Recent Progress in Descriptive Complexity ; and Subhash Khot on Recent results
in PCPs and Hardness of Approximating NP-Hard Problems.

Finally, let me mention that the wonderful complexity theorist (and very nice person) Jacobo
Torán has taken over from Lance Fortnow as the editor of the sister complexity theory column that
appears in the issues of the Bulletin of the EATCS. Jacobo’s tenure started with the June 2004
issue of BEATCS, and in that issue you can find his article on “Space and Width in Propositional
Resolution.” A warmest welcome to Jacobo, and let me enthusiastically commend our sister column
to all readers of this column.

Guest Column: Error-correcting Codes and Expander Graphs1

Venkatesan Guruswami2

Abstract

The central algorithmic problem in coding theory is the construction of explicit error-
correcting codes with good parameters together with fast algorithms for encoding a message and
decoding a noisy received word into the correct message. Over the last decade, significant new
developments have taken place on this problem using graph-based/combinatorial constructions
that exploit the power of expander graphs. The role of expander graphs in theoretical computer
science is by now certainly well-appreciated. Here, we will survey some of the highlights of the
use of expanders in constructions of error-correcting codes.

1 Introduction

The area of coding theory was born over 50 years ago in the seminal works of Shannon and Ham-
ming, and the problem of explicit constructions of codes with good properties and fast algorithms
has been a central pursuit of the subject ever since. Recently, this area has benefited enormously
from insights and viewpoints originating in complexity theory, and numerous interconnections be-
tween codes and complexity theory have been discovered, which are surveyed for example in [25, 27].

1 c©V. Guruswami, 2004.
2Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195.

venkat@cs.washington.edu.
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The former by Sudan [25] focuses on a notion called list decoding, and the recent survey by Tre-
visan [27] focuses mainly on sub-linear algorithms for testing and decoding codes. In this survey,
we focus on a powerful method for constructing and decoding codes, based on expander graphs.
Expander graphs have been the subject of much study in combinatorics and computer science,
and have found applications in diverse contexts. There have been significant recent breakthroughs
in explicit constructions of expanders [19, 8], and the interested reader can find further pointers
on expanders and their applications in those papers. This survey will focus on their uses in and
interconnections to coding theory. Spielman [23] wrote a brief survey on this topic soon after his dis-
covery with Sipser of linear-time decodable codes [21, 24]; there have been numerous improvements
and developments since which we hope to highlight here.

Expanders are an umbrella term to denote sparse, yet well-connected graphs, which behave like
random graphs in certain respects. At a high level, their incidence structure can be used to define
either linear constraints (like parity checks) on subsets of codeword symbols, or to move symbols
around during the encoding. The expansion properties make both of these approaches fruitful, and
till date the resulting constructions give the only known way to get codes with linear complexity
encoding/decoding algorithms.
Organization. We begin with some quick background on codes and expanders in Section 2.
Section 3 describes how expanders can be obtained from codes, which is the reverse direction of
the connection surveyed in the rest of the paper. In Sections 4 and 5, we describe how expanders
can be used to construct near-optimal codes (in terms of rate vs. error-correctability trade-off)
that also have linear time encoding/decoding algorithms. We then describe the recent development
of linear-time list-decodable codes using expanders in Section 6. Finally, we mention results for
probabilistic models where expander codes achieve capacity with a very good error exponent and
linear time decoding.

2 Preliminaries on Codes and Expanders

2.1 Error-correcting codes

An error-correcting code C of block length n over an alphabet Σ is a collection of strings called
codewords, each of which consists of n symbols from Σ. If |Σ| = q and |C| = qk, then such a code
is referred to as an (n, k)q code. The quantity k measures the number of information symbols in
each codeword, and the ratio k/n is called the rate of the code, and is denoted R(C). When Σ is a
field, and C is a subspace of dimension k of the vector space Σn, then C is called a linear code and
is denoted an [n, k]q code. Such a code can be described by an n × k generator matrix G of rank
k over Σ whose columns span C, i.e., C = {Gx | x ∈ Σk}. It can also be described as the kernel of
an (n− k)× n parity check matrix H of rank (n− k), i.e., C = {z ∈ Σn | Hz = 0}. We will often
also think of C as a map C : Σk → Σn, and denote by C(m) the encoding of a message m ∈ Σk,
and by C(m)|i the i’th symbol of C(m) for 1 ≤ i ≤ n.

The distance D(C) of a code is the minimum Hamming distance between two distinct codewords
of C. The relative distance of C is defined as δ(C) = d(C)/n. While we would like both the rate and
distance to be large, there is a natural trade-off between these. The Singleton bound implies that
R(C) ≤ 1−δ(C), and over large alphabets there are codes that match the Singleton bound (and are
thus optimal). For binary codes, the Gilbert-Varshamov bound asserts the existence of codes with
rate R(C) ≥ 1−H(δ(C)) where H(x) = −x lg x− (1− x) lg(1− x) is the binary entropy function.
This bound is non-constructive, and the best known explicit constructions achieve a weaker bound
called the Zyablov bound (and some related improvements of it). For a code C ⊂ Σn of distance d,
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the unique decoding problem consists of finding, given as input a received word y ∈ Σn, the unique
codeword c ∈ C if any that lies within Hamming distance (d−1)/2 from y. For error bounds e that
exceed d/2, the list decoding problem requires that we output all codewords of C within distance e
of the received word.

Both of the above decoding problems refer to the adversarial noise model, where we only assume
a bound on the number of errors and not how they are distributed. For a probabilistic noise model,
the intervening noisy channel is abstracted by a stochastic process and the goal is to construct codes
and decoding algorithms for the specific channel with very low probability of miscommunication
(called the error probability). Every channel has an underlying capacity which is the largest rate of a
code that can be used and still achieve error probability tending to 0 (as the block length of the code
grows). Ideally, we would like the error probability Pe(N) to go down exponentially in the block
length N , and the error exponent is then defined as infN→∞ lg(1/Pe)/N . A basic and extremely
well-studied channel is the binary symmetric channel, denoted BSCp where p, 0 < p < 1/2, is the
crossover probability, which flips a transmitted bit with probability p and leaves it unaltered with
probability (1− p). It is well-known that the capacity of BSCp equals 1−H(p). In our discussion
here, in Section 7, we will discuss linear-time encodable/decodable codes that can achieve the
capacity of BSCp and which match the best known error exponents for explicit, polynomial time
decodable, codes.

2.2 Expanders

At a high level, expanders are sparse graphs with very good connectivity properties. The precise
definition of the term expander varies according to the application. We will make use of two
definitions given below. A bipartite graph H = (X, Y,E) is said to be an (n, m, d, α, γ)-expander
if |X| = n, |Y | = m, the degree of each node in X is d, and for every A ⊆ X, |A| ≤ αn, the set of
vertices N(A) ⊆ Y that are adjacent to A satisfies |N(A)| ≥ γ|A|. A higher value of γ implies a
better expansion property; clearly γ ≤ d and when γ is very close to d (say d(1 − ε) for small ε),
the expander is called lossless.

One way to construct such unbalanced expanders, which was used by Sipser and Spielman [21]
in their first work on expander codes, is to take the edge-vertex incidence matrix of a non-bipartite
expander defined according to its spectral gap. This spectral definition of expanders is the most
commonly referred to one. A d-regular graph G = (V,E) on n vertices is said to be an (n, d, λ)-
expander if the second largest eigenvalue (in absolute value) of the adjacency matrix of G equals
λd. Note that the largest eigenvalue (with all 1’s eigenvector) equals d, and therefore λ ≤ 1. The
smaller the value of λ the better the quality of the expander, and typically for our applications
we will require expanders where λ → 0 as d grows. Such expanders have the following useful
“pseudorandom” property (as opposed to just vertex-expansion): Given two subsets A and B
of the vertex set V , the number of edges E(A,B) between A and B is very close to the expected
number of such edges in a random d-regular graph, cf. [4, Chap. 9]. This property will be quantified
in Section 4.2 (see Equation (1)). Rather surprisingly, the best possible value of λ is known to be
precisely 2

√
d− 1/d, and this can be achieved by explicit constructions [18].

3 Expanders from codes

Before we survey the constructions of codes using expanders, in this section we describe a simple
construction of logarithmic degree expanders from binary codes due to Alon and Roichman [3].

Theorem 1 Let M ∈ Fn×k
2 be the generator matrix of a binary linear code of block length n all of

whose non-zero codewords have Hamming weight between (1/2− ε)n and (1/2 + ε)n (in particular,
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such a code has minimum distance at least (1/2− ε)n). Consider the graph G = (V,E) with vertex
set V = Fk

2 such that (x, y) ∈ E precisely when x − y is one of the rows of M (in other words G
is the Cayley graph of the additive group Fk

2 with respect to generators that are the n rows of M).
Then G is a (2k, n, 2ε)-expander.

Proof Sketch: The characters of the additive group Fk
2 are given by χa for a ∈ Fk

2 where χa(x) =
(−1)a·x. The claim follows by combining two easily verified observations: (a) The 2k eigenvectors
of M are all the characters χa, with corresponding eigenvalue

∑n
i=1 χa(bi) where b1, b2, . . . , bn are

the n rows of M, and (b)
∑n

i=1 χa(bi) = n− 2 · weight(Ma). �

There are explicit constructions of binary codes with the stated property where n = O(k/ε3)
(for instance, using certain algebraic-geometric codes concatenated with a Hadamard code). Since
the number of nodes in the graph G is N = 2k, we can get degree O(log N) expanders in this
manner.

4 Linear time encodable/decodable expander codes

Expander codes are the only known construction of asymptotically good error-correcting codes
which can be decoded in linear time when a constant fraction of symbols are in error. In this
section, we discuss how such codes are constructed using expanders; for simplicity, we will focus on
binary codes.

4.1 The basic construction: Expanders as parity check matrices

A binary linear code C ⊆ Fn
2 can be specified by its parity check matrix or in other words the

linear constraints that each codeword must satisfy. These constraints can be naturally viewed in
terms of a bipartite graph with codeword positions on one side and parity checks on the other
side, and adjacency reflecting which symbol is involved in which parity check. When this graph
is sparse (say, of constant degree), the resulting codes are called low-density parity check codes
(LDPC codes) [11]. In addition, when the underlying graph is a sufficiently good expander, the
resulting code can be decoded in linear time by a natural and simple algorithm, as described below.

Theorem 2 [21, 8] Let H = (X, Y,E) be a (n, m, d, α, d(1−ε))-expander for some fixed ε, 0 < ε <
1/12.3 Let C ⊆ Fn

2 be defined by {c ∈ Fn
2 | ∀i, 1 ≤ i ≤ m,

∑
j∈Γ(i) cj = 0} where for i = 1, 2, . . . ,m,

Γ(i) ⊆ [n] is the set of neighbors in X of the i’th node in Y (the sum is calculated in the field F2).
Then C has rate at least (1−m/n) and can be decoded from a fraction α(1− 3ε) of errors in O(n)
time.

Proof Idea: The claim about rate follows since there are at most m linearly independent con-
straints posed on the codewords of C and therefore C has dimension at least n − m. We will
associate the bits of the word being decoded with nodes in X (called variable nodes) and the values
of the parity checks with nodes in Y (called check nodes) in the natural way. The algorithm will
proceed in several rounds of “bit-flipping,” and in each round will reduce the number of corrupt bits
(of X) by a constant factor, till all errors are corrected. So the number of rounds will be O(log n).
The operation of a single round is as follows. Each node in X does the following in parallel: if
flipping its value reduces the number of unsatisfied parity checks among its d neighbors by at least

3The 1/12 has not been optimized, and it is conceivable that a similar statement can be shown for weaker expansion,
i.e., somewhat larger ε, as well. The argument of [21] needed ε < 1/4.
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d/3, then it flips its value, otherwise it retains its value.4 Each round clearly has an O(n) time
implementation, leading to an O(n log n) time decoding algorithm. The runtime can be improved
to O(n) by a careful examination of which nodes need to participate in each round (the size of this
set will decrease geometrically, leading to a bound of O(n) on total number of operations).

To prove correctness of the above decoding procedure, we will argue that if the set S ⊂ X of
error positions satisfies |S| ≤ α(1 − 3ε)n, then the set S′ of error positions after one bit-flipping
round will satisfy |S′| ≤ 2|S|/3. Let N(S) ⊆ Y denote the set of neighbors of S. By the expansion
property, |N(S)| ≥ (1−ε)d|S|. This implies by a simple counting argument that at least (1−2ε)d|S|
vertices in N(S) have a unique neighbor in S (i.e., have degree 1 into S). Now each node in N(S)
that has a unique neighbor in S must correspond to an unsatisfied check. Therefore S has a lot of
unsatisfied checks as neighbors which leads to the intuition that several nodes of S will flip their
value. Formally, by an averaging argument, at least a fraction (1− 6ε) of nodes in S have at least
2d/3 unique neighbors in N(S). Therefore at least (1− 6ε)|S| vertices in S will correct their value.

We still have to worry about the nodes outside S flipping their value to an incorrect one. Call
the set of such nodes T . Each node in T has at least 2d/3 neighbors in N(S) (since the check nodes
outside N(S) are all satisfied). We claim that provided |S| ≤ (1 − 3ε)αn, |T | < b 3ε|S|

1−3εc. Indeed,

otherwise consider the set W = S ∪ T ′ where T ′ is any subset of T of size b 3ε|S|
1−3εc. We have |W | =

b |S|
1−3εc ≤ αn, and hence by the expansion property |N(W )| ≥ (1 − ε)d|W | ≥ (1 − ε)d(|S| + |T ′|).

On the other hand, since each node in T ′ has at most d/3 fresh neighbors outside of N(S), we
have |N(W )| ≤ |N(S)| + d|T ′|/3 ≤ d|S| + d|T ′|/3. These two inequalities on |N(W )| imply that
|T ′| ≤ 3ε|S|

2−3ε which contradicts the fact that |T ′| = b 3ε|S|
1−3εc (assuming, wlog, that |S| is bigger than

some small constant).
Hence the number of errors decreases by at least (1 − 6ε)|S| − 3ε|S|

1−3ε , which is at least |S|/6
for ε ≤ 1/12. Therefore, the iterative algorithm can correct all error patterns with fewer than
α(1− 3ε)n errors, as claimed. �

Recently, Capalbo et al. [8] gave an explicit construction of constant-degree lossless unbalanced
bipartite (n, m, d, α, (1−ε)d)-expanders for arbitrary ε > 0. Using their construction together with
the above lemma gives an explicit construction of binary linear codes that can be decoded from
some constant fraction of errors in linear time.5 The construction of lossless expanders in [8] is
complicated; in the next section we will present a more general way to construct codes from weaker
expanders which will also lead to better parameters.

4.2 The Tanner construction

At the time of discovery of expander codes, the lossless expanders of the kind required in above
construction were not explicitly known. Hence Sipser and Spielman [21] used a more general graph-
based code construction scheme due to Tanner [26], defined below.

Definition 1 (Tanner Codes) Given a bipartite graph H = (X, Y,E) with n variables nodes
X and m constraint nodes Y each of degree d (where we denote by Γ(i, 1),Γ(i, 2), . . . ,Γ(i, d) the d
neighbors of the i’th node of Y for 1 ≤ i ≤ m), and a binary code S of block length d, the binary code

4We point out that this is different from the original algorithm of Sipser and Spielman, where a value if flipped as
long as it decreases the number of unsatisfied checks amongst its neighbors by at least 1. The algorithm here, which
is mentioned in [8], flips only if there is an “overwhelming” reason to do so, and its analysis is simpler than that of
[21], albeit it relies on a stronger expansion factor than was needed by [21].

5In the high rate regime, the parameters of their construction yields the following trade-off: one can correct a
fraction δ/ logO(1)(1/δ) of errors with codes of rate 1− δ.
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C(G, S) consists of words (x1, x2, . . . , xn) such that for each 1 ≤ i ≤ m, (xΓ(i,1), xΓ(i,2), . . . , xΓ(i,d))
is a codeword of S.

The required unbalanced bipartite expanders H were obtained using edge-vertex incidence matrices
of an expander, i.e., taking a d-regular expander G = (V,E′) with n edges and using X = E′ and
Y = V in the above construction. It is simpler and more instructive in this context to think of the
codeword symbols as residing on edges of G where each node v of G imposes the constraint that
the symbols residing on the edges incident to v form a codeword of S. The decoding algorithm and
analysis is particularly simple when the underlying graph G itself is bipartite, as was observed in
Zémor’s beautiful recent paper [28]. We will therefore follow Zémor’s treatment in sketching the
basic idea behind the decoding.

Let A,B be the two sides of the bipartition of G. For convenience, we assume G is d-regular on
both sides and |A| = |B| = m with n = md edges. We will require the following “pseudorandom”
property from G: For every X ⊆ A and every Y ⊆ B,

E(X, Y )
d|X|

− |Y |
m

≤ 2√
d

√
|Y |
|X|

. (1)

This property can be achieved by taking G to be the double cover6 of an (m, d, λ)-expander (called
Ramanujan graphs) with λ ≤ 2

√
d [18]; the 2/

√
d factor is not important, any factor that goes

to 0 as d →∞ will suffice. A proof of the above pseudorandomness property of expanders can be
found in [4, Chap. 9].

The decoding algorithm for C(H,S) is a natural one. The symbols on the edges of G incident
to each node in A∪B must form a codeword of S. The algorithm therefore proceeds by correcting
each such local projection to a codeword of S that is close to it, if such a codeword exists. To avoid
conflicting decisions on an edge, this is done in tandem, with nodes in A and B alternating (this
is the reason taking G to be bipartite simplifies the analysis). Let γd be the minimum distance
of S. The formal decoding algorithm proceeds for O(log n) rounds, or until all errors have been
corrected, whichever is earlier, where each round involves the following steps (where x ∈ {0, 1}n is
the current value of word of being decoded):

1. (Left wing decoding) For each u ∈ A in parallel, check if there exists a vector z ∈ {0, 1}d at
distance < γd/2 from xEu (the projection of x onto edges incident upon u), if so set xEu to
z (such a z, if it exists, must be unique).

2. (Right wing decoding) Same as above, but this time for each v ∈ B in parallel.

If the fraction of errors in the initial received word x is at most γ2/4 − ε (for ε small enough
compared to d), it is shown in [28] that the above algorithm will correct all the errors in O(log n)
rounds. Clearly each round has a linear time implementation, and with a careful examination of
which subsets of nodes in A and B need to participate in each round, an O(n) time implementation
can also be achieved (cf. [5]).

The basic idea behind the analysis is to keep track of the sets Ai ⊆ A (resp. Bi ⊆ B) which are
the nodes in A (resp. B) which have some erroneous edge incident to it after the left wing (resp.
right wing) decoding in the i’th round. For a node u to be in Ai (resp. Bi), the number of errors
on the edges Eu incident upon u must be at least γd/2 just prior to the left wing (resp. right wing)

6The double cover of a graph D = (V, E) is a bipartite graph that is obtained by placing the vertices of D on both
sides, call them left and right, and for each edge (u, v) ∈ E connecting the left (resp. right) copy of u with the right
(resp. left) copy of v.
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decoding step of round i. Therefore, d|A1|/2 is a lower bound on the initial number of errors, and
so if we began with few errors, then |A1| must be small. Now consider the set Ti of edges of G
in error just after the i’th round of decoding. By the above argument, each node in Ai+1 must
be adjacent to at least γd/2 edges of Ti. Also, by the definition of Bi, the endpoint in B of each
edge in Ti must belong to Bi. The expansion property (1) can then be used to show that in such
a case, if |Bi| is small, then |Ai+1| ≤ ρ|Bi| for some constant ρ < 1. A similar argument shows
that |Bi| ≤ ρ|Ai| when |Ai| is small. Therefore, since we begin with |A1| small, the size of the Ai’s
and Bi’s decreases geometrically which implies that in O(log n) rounds they will be empty and all
errors will be corrected.

Using codes that meet the Gilbert-Varshamov bound for the code S (which have relative distance
γ =

√
δ and rate 1−H(

√
δ)), and formalizing the above ideas, yields the following result:

Theorem 3 [21, 28] For every ε > 0, and for every 0 < δ < 0.0121, there exist an explicit family
of binary linear codes of rate 1− 2H(

√
δ) and relative distance δ − ε which can be decoded from a

fraction (δ/4− ε) of errors in linear time.

A recent work by Skachek and Roth [22] improves the fraction of errors corrected in the above result
to (δ/2 − ε) by incorporating Generalized Minimum Distance (GMD) style ideas from Forney’s
work [10] and using an error-and-erasures decoder for the code S in initial iterations. Barg and
Zemor [5] improved the rate vs. distance trade-off in the above result using the idea of replicating
edges of the graph G and viewing S as both a binary code as well as an additive code over F2t for
some parameter t. This way they manage to achieve a distance δ = (1−R)H−1(1−R) for rate R
together with a linear time decoding algorithm for a fraction δ/4 of errors. Very recently, Feldman
and Stein [9], gave a linear programming (LP) decoder for the above codes, which also achieves the
trade-off of Theorem 3 (though their decoding time is not linear).

4.3 Obtaining linear time encoding

We now briefly discuss Spielman’s work [24] on getting codes that also have linear time encoding
algorithms, in addition to linear time decoding algorithms. The construction of such codes is
recursive, and involves a cascade of several expander codes. Richardson and Urbanke [20] show
how certain “Tornado codes,” which are LDPC codes drawn from a suitable ensemble and achieve
the capacity on the erasure channel, can be encoded in linear time (with high probability over the
choice of the code from the ensemble). However, for codes that handle adversarial noise, Spielman’s
method seems to be the only known way to get linear time encoding. It is an interesting question
whether the expander codes, of say Theorem 3, have any structure that can be exploited to give a
linear-time encoder for them, using say, some of the ideas in [20].

The basic entity in Spielman’s construction is the notion of an “error-reduction code.” These
are “systematic” codes (where the codeword consists of the message bits followed by some check
bits) that have a very simple encoding structure. Specifically, each output check bit is the XOR
of a fixed constant number of input bits (thus, these codes are locally encodable). Of course this
immediately implies the encoding can be performed in linear time. Also, the structure governing
which check bit depends on which message bit is given by a bipartite expander as in Theorem 2.
Therefore, in this construction, the expanders are used to specify the generator matrix of the code,
instead of the parity check matrix as in Theorem 2.

Such locally encodable objects are too weak to serve as codes in the conventional sense, however
they can still have the following useful error-reduction property. Given a word that differs from
a codeword w in t ≤ αn of the check bits, and v ≤ αn of the message bits, a simple linear-time
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decoding algorithm (similar to that of Theorem 2) will output a word that differs from w in at
most t/2 of the message bits. Note that when t = 0 and there are no errors in the check bits, then
all message bits will also be corrected (in fact, this is exactly the situation of Theorem 2 where
the parity checks all had to be met and so by default all check bits must be zero and hence we
know them without any errors.) It is not difficult to use these error-reduction codes in a recursive
scheme to construct linear-time encodable/decodable codes; we point the reader to [24, 23] for
further details. We end this section with the remark that one can also get such codes with rate
arbitrarily close to 1; specifically we can state the following result which we will later allude to in
Section 5.2.

Theorem 4 For every γ > 0, there is an explicit family of binary linear codes of rate 1/(1 + γ)
which can be encoded in linear time, and decoded from a fraction Ω(γ2/ log2(1/γ)) of errors in
linear time.

5 Expanders to boost error-resilience

The results discussed in the previous section permit linear-time error recovery from a small fraction
of errors (the fraction is about 1% for linear-time decodable codes, and only about 10−6 if we require
linear time encoding as well). In this section, we will discuss how expanders can be used (again!)
to improve the relative distance all the way up to 1/2− ε together with linear time decoding up to
fraction 1/4 − ε of errors (which is the best possible for binary codes as follows from the Plotkin
bound R(C) ≤ 1− 2δ(C)).

5.1 The basic construct

We will now describe a very useful way in which expanders can be used to distribute the symbols
of a code around in order to enhance its distance and error-correcting capabilities.

Definition 2 [2] Given a bipartite graph G = (X, Y,E) with X = {1, 2, . . . , n}, Y = {1, 2, . . . ,m},
where each node in X (resp. Y ) has degree c (resp. d), and two error-correcting codes C and C0

with the following properties: (i) C has block length n and is defined over the alphabet {0, 1}a, and
(ii) C0 is a binary code of dimension a and block length c; the code G(C,C0), of block length m over
the alphabet {0, 1}d is defined as follows. For 1 ≤ i ≤ m, let Γ(i, 1), . . . ,Γ(i, d) be the neighbors in
X of node i ∈ Y and let f(i, j) ∈ {1, 2, . . . , c} for 1 ≤ j ≤ d be such that i ∈ Y is the f(i, j)’th
neighbor of Γ(i, j) (as per some fixed ordering of the neighbors of nodes in X, Y ). Then the i’th
symbol of the encoding of a message m by G(C,C0) is a d-tuple whose j’th component, 1 ≤ j ≤ d
equals C0

(
C(m)|Γ(i,j)

)
|f(i,j)

.

The formal definition might look complicated, but the idea is very simple. The message is first
encoded by a code C, then each symbol of the codeword is encoded by C0 (so far this is just
encoding by the concatenated code of C and C0). Then the symbols of the various codewords of C0

are “pushed” along the edges of G to Y , where the `’th symbol of the r’th encoding (for 1 ≤ ` ≤ c
and 1 ≤ r ≤ n) is sent to the `’th neighbor in Y of node r ∈ X. The nodes in Y then “collect” d
symbols, one from each of its neighbors, and juxtaposes them together to get a symbol in {0, 1}d.
Note that the rate of G(C,C0) equals the product of the rates of C and C0, since G is only used to
redistribute symbols and does not introduce any redundancy.

The above scheme was introduced in [2] and has been put to good use in [2, 14]. Alon et al. [1]
had earlier introduced a special case of the above scheme with C0 being the repetition code (that
maps 0 to 0c and 1 to 1c). In this case, it is easily argued that if G is an (α, β)-disperser, namely has
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the property the neighborhood of every subset of X of size at least αn contains at least βm nodes
of Y , and C is a binary code of relative distance α, then G(C,C0) has relative distance at least β
and rate R(C)/c. Since there are explicit (0.1, 1− ε)-dispersers of degree c = O(1/ε) (constructed
for example using Ramanujan expanders), using this approach [1] gave explicit constructions of
codes of relative distance (1 − ε) (for ε > 0 as small as we like) and rate Ω(ε) over an alphabet
of size 2O(1/ε) (using for C any explicit asymptotically good binary code of relative distance 0.1).
(Algebraic-geometric codes achieve better parameters than this construction, but their construction
is complicated.) Note that by the Singleton bound, this is off from the optimal rate by only a
constant factor. Thus, with a very simple construction, expanders enable to amplify the distance
at the expense of worsening the rate and alphabet size.

Definition 3 The special case when C0 is a repetition code is itself quite useful in various contexts,
so we will use the notation G(C) in such cases, with the understanding that if G has left degree c
and C is defined over alphabet Σ, then G(C) stands for G(C,C0) where C0 is a rate 1/c repetition
code over Σ.

5.2 Near-optimal linear time codes

We now discuss how the above scheme can be used to achieve a near-optimal trade-off between rate
and relative distance, together with linear time encoding/decoding algorithms.

Theorem 5 [14] For every r, 0 < r < 1, and all ε > 0, there is an explicit family of codes of rate
r and relative distance at least (1 − r − ε) such that codes in the family can be encoded as well as
unique decoded from a fraction (1− r − ε)/2 of errors in time linear in the block length.

Proof Idea: We will use the scheme from Definition 2 with suitable components to obtain the
result. Let γ = ε/4. The code C will be drawn from the family guaranteed by Theorem 4 and will
have rate 1/(1 + γ), block length n (say), and can be decoded from a fraction β > γ3 of errors in
linear time. We will pick G = (X, Y,E) to be a d-regular bipartite graph with n nodes on each
side with pseudorandom Property (1) with d = Θ(1/βε2). For such choice of d, it can be checked
that (1) implies that for every R ⊆ Y with |R| ≥ αn, the set of nodes L ⊆ X which have at least
(α− ε/4)d of their neighbors into R satisfies |L| ≥ (1− β)n. The code C0 will be a constant-sized
Reed-Solomon code of block length d and rate r(1 + γ). To construct G(C,C0), we will block
together symbols of the codeword of C into blocks of suitable size and then encode each such block
by C0. The overall rate of G(C,C0) will be the product of the rates of C and C0 and thus equal r.
It can clearly be encoded in linear time since C can be.

We now sketch the fairly natural approach to decoding G(C,C0). Given a received word r with
at most (1 − r − ε)n/2 errors, in the first step we “invert” the encoding process via G (since G
just permutes symbols) to obtain candidate received words for each block of encoding by C0. Each
of these will be decoded to their closest Reed-Solomon codeword (even by brute-force search this
takes only constant time per block) to give a received word for C. Finally this word is decoded up
to a radius of βn using the linear time decoding algorithm for C. To prove correctness, note that
by the above stated property of G, at least (1− β)n of the received words for C0 will have at most(

1−r
2 − ε

4

)
d errors, and these will be corrected by the Reed-Solomon decoding step. Therefore, in

the final step at most βn errors will remain, which can be handled by the decoding algorithm for
C. The overall complexity is clearly linear since the decoding of C can be performed in linear time
and the prior steps can be performed in constant time per decoded symbol. �

Comments: The near-optimal trade-off (rate r for distance close to (1− r)) that almost matches
the optimal Singleton bound comes from using the Reed-Solomon codes. The overall scheme can
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be viewed as using several independent constant-sized RS codes; the role of the expander is then to
“spread out” the errors among the different copies of the RS code, so that most of these copies can
be decoded, and the remaining small number of errors can be corrected by the left code C. Since
only a small fraction of errors needs to be corrected by C it can have rate close to 1 and there is
not much overhead in rate on top of the Reed-Solomon code.

The above codes are defined over a large alphabet (whose size depends exponentially on 1/ε).
But they can be concatenated with constant-sized binary codes that lie on the Gilbert-Varshamov
bound to give constructions of binary codes which meet the so-called Zyablov bound. In particular,
we can have linear-time binary codes of rate Ω(ε3) to correct a fraction (1/4 − ε) of errors for
arbitrary ε > 0. We point the reader to [14, 13] for further details.

6 Linear time list decoding

Under the adversarial error model, with the restriction that the decoder output a unique codeword,
the maximum fraction of correctable errors is half the relative distance. In particular, this limits
the maximum tolerable noise fraction to 50%. A notion called List Decoding has been proposed
and studied in the literature to deal with error fractions bigger than 1/2. In fact, one can perform
meaningful recovery using list decoding even when the fraction of errors approaches 1! We refer
the reader to the survey by Sudan [25] for detailed information on list decoding, and here focus
only on a specific construction of list-decodable codes using expanders.

A code C of block length n is said to be (ρ, L)-list decodable if every Hamming ball of radius ρn
contains at most L codewords of C. Below we will sketch the idea behind the work of Guruswami
and Indyk [15] who prove the following result.

Theorem 6 For every ε > 0, there exists an explicit family of (1− ε, O(1/ε))-list decodable codes
of positive rate R(ε) > 0 which can be encoded as well as list decoded from a fraction (1 − ε) of
errors in linear time.7

Expanders play a prominent role throughout the above construction and proof. The notion of list
recoverable codes also plays a pivotal role. A code C of block length n over alphabet Σ is said to
be (α, `, L)-list recoverable if for every n-tuple of sets (S1, . . . , Sn) with each Si ⊂ Σ, |Si| ≤ `, the
number of codewords c = 〈c1, . . . , cn〉 ∈ C with the property that ci ∈ Si for at least αn values of i
is at most L. Such a code is said to be (α, `, L)-list recoverable in time T (n) if in addition there is a
time T (n) algorithm that produces the list of up to L such codewords given the input sets Si. The
problem of constructing such list-decodable codes is first reduced to the problem of constructing
linear-time (1−γ, `, `)-list recoverable codes for every integer ` ≥ 1, for some γ = γ` > 0. (Roughly,
such codes imply (1 − 2/`, `)-list decodable codes.) This reduction is achieved by using the G(C)
from Definition 3 for a suitable expander G, and with C being the list recoverable code. The details
are quite simple and may be found in [15, Lemma 1].

The construction (1 − γ`, `, `)-list recoverable codes proceeds recursively. For the recursion,
it is convenient to construct a slightly stronger object; for a fixed small α, we will construct
(1−γ`, α, `, `)-list recoverable codes which will have at most ` codewords “consistent” with (1−γ`)
of the input sets Si, even if a fraction α of the sets Si are not constrained by |Si| ≤ ` and are
allowed to be the entire alphabet (these positions correspond to “erasures” where we get no useful
information about the codeword symbol). Suppose we already have a code C`−1 of block length n
which is (1−γ`−1, α, `−1, `−1)-list recoverable. A code C` which is (1−γ`, α, `, `)-list recoverable is
constructed as C` = G2(G1(C`−1)) where both G1, G2 are n×n bipartite constant-degree expanders

7The dependence of the rate on ε is rather poor—it is R(ε) = 2−2O(1/ε)
.
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(with degrees d1, d2 say) with appropriate properties. Let G1 = (X, Y,E1) and G2 = (Y, Z, E2), so
that we identify the left side of G2 with the right side of the bipartition of G1 in a natural way.
Clearly, linear time encodability as well as positive rate is maintained in this process. The alphabet
of C` is Σ` = Σd1d2

`−1 .
The list recovering of C` proceeds in two steps/cases as described below. Note that the input

is a collection of sets S1, S2, . . . , Sn with each Si ⊆ Σ` where all but αn of them have at most `
elements. In the first step, each i ∈ Y collects a set L2(i, j) ⊆ Σd1

`−1 of at most ` possible symbols
from the set Sj for each of its d2 neighbors, and then computes Ki = ∩(i,j)∈E2

L2(i, j). Since the
fraction of “errors” ε` is very small, for each candidate codeword that has to be output, most of
the Ki’s will have the correct symbol. Clearly |Ki| ≤ ` for all i. Suppose that in fact at least αn
of the Ki’s satisfy |Ki| ≤ `− 1. In this case intuitively we have made progress since the amount of
“ambiguity” in the those symbols has gone down to `− 1 from `. However, this happens only for a
small fraction α of symbols, but this can be transferred to a large (say, 1− α) fraction of symbols
of C`−1 using the expander G1 (the specific property needed for G1 will thus be that any α fraction
of nodes in Y are adjacent to at least a (1− α) fraction of nodes in X). We are now in a position
to apply the list recovering algorithm for C`−1 (since there are at most a fraction α of “erased”
positions) to finish the decoding.

The more difficult and interesting case is when |Ki| < ` for less than a fraction α of the
nodes i ∈ Y . This means that for most nodes i ∈ Y , all the sets L2(i, j) are in fact equal to
Ki (and contain ` distinct elements). One can then define a certain kind “consistency graph”
H̃ = (X × {1, 2, . . . , `}, Y × {1, 2, . . . , `}, Ẽ) whose vertex set corresponds to the ` possible choices
for the correct symbol at each node of X, Y and the edge set is defined based on which symbol
of L2(i, j) matches the r’th symbol of Ki for r = 1, 2, . . . , ` (as per some fixed ordering of the
elements in each Ki and L2(i, j)). The problem of finding a consistent codeword can then be cast
as finding a very dense subgraph (which internally is closely resembles a copy of the expander G2)
with few outgoing edges in the graph G. Using the fact that this subgraph resembles G2 and that
G2 is a high quality Ramanujan expander, the authors of [15] demonstrate how spectral techniques
can be used to find such subgraphs and thus all the solution codewords in O(n log n) time (and
this suffices to get a linear time decoding algorithm in the RAM model using codes over a growing
alphabet). The detailed formalism of the above vague description as well as the technical details of
the spectral partitioning are quite complicated, so we will refrain from trying to elaborate further
and instead point the interested reader to the paper [15].

We note that since ` reduces by 1 at each step, and there is at least a constant factor loss in rate
at each recursive step, the best rate one can hope for using the above approach is 2−O(`). However,
due to the intricacies of the spectral partitioning step and the resulting dependencies amongst the
various parameters, the rate achieved is in fact worse and is only 2−2O(`)

. For the case ε` = 0 or
“error-free” list recovering where the goal is to only output codewords c that satisfy ci ∈ Si for
every i, Guruswami and Indyk [16] present a more efficient recursive construction of linear-time
codes that achieve a rate of 1/`O(1) (this is accomplished by reducing ` by a constant multiplicative
factor as opposed to the above additive amount at each step). They also manage to achieve a rate
of Ω(1/`) which matches the best known construction with polynomial time algorithms for an even
simpler model, namely that of recovering a garbled mixture of codewords. These results hopefully
mark the first (small) steps in the program of using expander-based or related combinatorial ideas
to construct linear time list-decodable codes that come close or even match the performance of the
best known constructions with polynomial time decoding algorithms.

We conclude by mentioning a recent result due to the author [12] which uses certain extractors
as the list-recoverable code in the above general scheme to construct explicit list-decodable codes
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of close-to-optimal rate to correct a fraction (1− ε) of errors in sub-exponential time (specifically,
the achieved rate is ε/ logO(1)(1/ε), with the best possible rate that one could hope for being O(ε)).
This result is the first to beat the quadratic (rate ε2) barrier for list decoding from a fraction (1−ε)
of errors (Reed-Solomon codes achieve a rate ε2 [17] with polynomial time list decoding). This work
shows that expander-based constructions are useful not only to achieve faster algorithms, but hold
the promise of sometimes obtaining better rate or trade-offs than other constructions.

7 Probabilistic Noise Models

We have so far discussed results for adversarial noise assuming only a bound on the total number
of errors effected by the channel. Here the hallmark of expander codes was that we could achieve
what was earlier possible with polynomial time algorithms with linear time encoding/decoding
algorithms. Expander codes also provide good constructions (with good performance and linear
time algorithms) of codes for probabilistic channels like the binary symmetric channel BSCp. We
briefly mention some of the results in this direction.

A decoding algorithm that corrects a fraction p+ε of adversarial errors also achieves, by Chernoff
bounds, exponentially small error probability on the BSCp. But the adversarial setting is too general
and this reduction fails to achieve the capacity of BSCp, i.e., does not permit communication at
rates close to 1−H(p). However, using slight variants of the decoding algorithms of Section 4.2, it
is possible to not only achieve capacity, but also a very good error exponent [5, 6, 7].

By an inspection of the argument in Section 4.2, we recall that the decoding succeeds whenever
|A1| is smaller than some bound, say s, i.e., whenever the very first round of left wing decoding
corrects the errors on all the edges incident on most vertices of A. Since S is a code of constant
size, we can replace the first left wing decoding step by a maximum likelihood decoding of S.
Picking a good S (which in particular performs at least as well as a random code) leads to an
exponentially small probability that |A1| > s, and this same probability serves as an upper bound
on the probability of incorrect or unsuccessful decoding. This was analyzed in [5] and shown to
already suffice to achieve capacity. This was the first such result for low-density parity check
codes and simple iterative decoding procedures. By using the idea of replicating edges of the
expander and using the properties of S viewed as a 2t-ary code, they improved the error exponent
to f2(R, p) = maxR≤R0<1−H(p) E(R0, p)(R0−R)/2− ε (i.e., they gave a linear time algorithm with
an error probability of 2−f2(R,p)N for codes of rate R where N is the block length). We note that
f2(R, p) > 0 for all R < C where C = 1 − H(p) is the capacity of BSCp. In follow-up work [7],
the behavior of the error exponent was further analyzed for code rates approaching the capacity.
The improved estimates obtained therein relied on non-trivial modifications of the basic expander
decoding scheme.

The best known error exponent for explicit constructions has long been achieved by Forney’s
concatenated codes coupled with GMD decoding [10] (the decoding time of this scheme can be
made near-linear). In particular, the above referred to exponent f2(R, p) is worse than the Forney
exponent. Since the work of Guruswami and Indyk [14] gives codes almost matching the Singleton
bound with a linear-time errors-and-erasures decoding algorithm, their result also implies linear-
time codes that attain the Forney error exponent; the journal version [13] has more details on this.
Recently, Barg and Zémor [6] showed how to attain the Forney exponent using expander codes and
simple iterative decoding by modifications to the basic construction in Section 4.2 together with
the use of “soft decision decoding” in initial iterations of the iterative decoding algorithm.

Feldman and Stein [9] have given a linear programming (LP) based approach to decoding
expander codes and they prove that it achieves a positive error exponent for all rates less than the
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capacity. The LP decoder is not as simple as the iterative decoding algorithms (in particular, the
decoding complexity is super-linear in the block length) and the proven error exponent is worse
than those shown in above works for iterative decoding. However, their work could lead to further
insights in decoding expander codes (or related LDPC codes) and it also possesses an elegant
“ML certificate” property—if the decoder outputs a codeword, then that must be the maximum
likelihood answer and thus output codewords come with a proof of optimality.

8 Concluding thoughts

Expander-based code constructions have by now matched the performance of previously known
algebraic counterparts in settings that include unique decoding under adversarial errors and decod-
ing under probabilistic channels like the binary symmetric channel. In addition, these codes come
equipped with encoding and decoding algorithms that run in linear time (and they are so far the
only such codes known). Expander-based constructions, being combinatorial, are more “hands-on,”
and this enables the design and analysis of simple and fast iterative decoding algorithms. In our
opinion, the potential of expanders and related pseudorandom objects in coding theory is yet to be
fully tapped. In particular, constructing simple combinatorial constructions of list-decodable codes
that better the trade-offs achieved in [15] is a good, concrete challenge.
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