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1. Introduction

In this survey, we discuss several algorithms for the factorization of univariate polynomials
over finite fields. Fq denotes a finite field with q elements. We start by defining the
problem.

Given a monic univariate polynomial f ∈ Fq[x], find the complete factorization
f = fe11 · · · f

ek
k , where f1, . . . , fk are pairwise distinct monic irreducible polyno-

mials and e1, . . . , ek are positive integers.

Finding the factorization of a polynomial over a finite field is of interest not only inde-
pendently but also for many applications in computer algebra, algebraic coding theory,
cryptography, and computational number theory. Polynomial factorization over finite
fields is used as a subproblem in algorithms for factoring polynomials over the integers
(Zassenhaus, 1969; Collins, 1979; Lenstra et al., 1982; Knuth, 1998), for constructing
cyclic redundancy codes and BCH codes (Berlekamp, 1968; MacWilliams and Sloane,
1977; van Lint, 1982), for designing public key cryptosystems (Chor and Rivest, 1985;
Odlyzko, 1985; Lenstra, 1991), and for computing the number of points on elliptic curves
(Buchmann, 1990).

Major improvements have been made in the polynomial factorization problem during
this decade both in theory and in practice. From a theoretical point of view, asymp-
totically faster algorithms have been proposed. However, these advances are yet more
striking in practice where variants of the asymptotically fastest algorithms allow us to
factor polynomials over finite fields in reasonable amounts of time that were unassailable
a few years ago. Our purpose in this survey is to stress the basic ideas behind these
methods, to overview experimental results, as well as to give a comprehensive up-to-date
bibliography of the problem. Kaltofen (1982, 1990, 1992) has given excellent surveys of
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the more general problem of factoring polynomials, while we only discuss univariate ones
over finite fields. The scope of Bach and Shallit (1996) is even broader, but they do in-
clude a detailed account of our topic, as do the texts by Shparlinski (1999) and von zur
Gathen and Gerhard (1999).

We organize this survey as follows. In Section 2, we present a general factoring al-
gorithm. In Section 3, we discuss Berlekamp’s algorithm. In Section 4, we summarize
the probabilistic and deterministic algorithms that exist for factoring polynomials over
finite fields. The general goal is to develop algorithms with running time bounded by a
polynomial in the input size, that is, the degree of the polynomial to be factored and the
logarithm of q. All results are given for asymptotic worst-case behaviour. We also briefly
mention average-case analysis for polynomial factorization algorithms.

2. A General Factoring Algorithm

We assume that arithmetic in Fq is given. The cost measure of an algorithm will be the
number of operations in Fq, and sometimes we will use the “soft O” notation to ignore
logarithmic factors: g = O (̃n) means that g = O(n(log n)l) for some constant l.

Polynomial factoring algorithms use basic polynomial operations such as products,
divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two
polynomials of degree at most n can be done in O(n2) operations in Fq using “classical”
arithmetic, or in O(n log n loglogn) operations in Fq using “fast” arithmetic (Schönhage
and Strassen, 1971; Schönhage, 1977; Cantor, 1989; Cantor and Kaltofen, 1991; von zur
Gathen and Gerhard, 1996). A division with remainder can be performed within the same
time bounds. The cost of a gcd between two polynomials of degree at most n can be taken
as O(n2) operations in Fq using classical methods, or as O(n log2 n loglogn) operations
in Fq using fast methods (Aho et al., 1974, Section 8.9). For polynomials h, g of degree
at most n, the exponentiation hq mod g can be done by means of the classical repeated
squaring method (see Knuth, 1998, pp. 461–462), with O(log q) polynomial products, i.e.
O(n2 log q) operations in Fq using classical methods, or O(n log q log n loglogn) operations
in Fq using fast methods.

For a long time, it was widely believed that fast polynomial arithmetic was not practical
for computer algebra problems; however, Shoup (1993) showed that this is not true.
Indeed, his experiments give a crossover for the superiority of fast arithmetic already
at polynomials of degree 25 modulo a 100-bit prime (see also Shoup, 1995). However,
no comparison between fast methods and Karatsuba’s algorithm (see Karatsuba and
Ofman, 1962) seems to have been done for a general field Fq (for comparisons over F2,
see Reischert 1995 and von zur Gathen and Gerhard 1996).

Let ω be an achievable exponent for matrix multiplication, so that we can multiply
two n × n matrices with O(nω) operations in Fq. Then systems of linear equations can
be solved in O(nω) operations in Fq. Classical linear algebra methods yield ω = 3, and
the current record is ω < 2.376 (Coppersmith and Winograd, 1990).

Many (but not all) algorithms for factoring polynomials over finite fields comprise the
following three stages:

SFF squarefree factorization replaces a polynomial by squarefree ones which contain all
the irreducible factors of the original polynomial with exponents reduced to 1;

DDF distinct-degree factorization splits a squarefree polynomial into a product of poly-
nomials whose irreducible factors all have the same degree;
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EDF equal-degree factorization factors a polynomial whose irreducible factors have the
same degree.

The algorithms for the first and second part are deterministic, while the fastest algorithms
for the third part are probabilistic.

2.1. squarefree factorization

Some factoring algorithms require that the input polynomials have no repeated factors.
A polynomial f ∈ Fq[x] is squarefree if and only if for any h, g ∈ Fq[x] with f = gh2 we
have h ∈ Fq. Thus, a polynomial is squarefree if it has no proper square divisors. If f is
not squarefree, a factor can be found quickly by computing gcd(f, f

′
). In addition, we

can find the squarefree factorization of a polynomial f of degree n, i.e. monic squarefree
pairwise relatively prime polynomials g1, . . . , gk ∈ Fq[x] such that f = g1g

2
2 · · · gkk and

gk 6= 1. Thus, gi is the product of those monic irreducible polynomials in Fq[x] that
divide f exactly to the power i.

An algorithm for finding the squarefree factorization of a polynomial is given below,
with time O∼(n2 + n log q). See Yun (1976) and Knuth (1998), Exercise 4.6, 2–36, for a
method with running time O(n log2 n loglogn + n log q) or O∼(n log q). Both in theory
and practice, we can consider it a trivial step.

Algorithm Squarefree factorization (SFF).
Input: A monic polynomial f ∈ Fq[x] of degree n ≥ 1, where char (Fq) = p.
Output: A list of pairs (gi, ei), where gi is a monic squarefree polynomial and ei is an
integer, such that f =

∏
geii .

u := gcd(f, f
′
);

if u = 1, then return (f ; 1);
if 1 ≤ deg u < n, then recursively compute SFF(u) and

SFF(f/u).
Merge the output lists, and return the merged list.

if u = f, then f :=
∑

0≤i≤n/p fipx
ip with f0, fp, . . . , fn ∈ Fq.

Compute aip = f
1/p
ip for all i.

Set h :=
∑

0≤i≤n/p aipx
i, and compute SFF(h)

with output (h1, d1), . . . , (hl, dl).
Scale this by a factor of p and return SFF(hp).

To recover the squarefree factorization it is enough to collect factors with the same
number of repetitions.

2.2. distinct-degree factorization

The second step of the general factorization method is to find the distinct-degree fac-
torization, that is, to split a squarefree polynomial into polynomials whose irreducible
factors all have the same degree. Let f ∈ Fq[x] of degree n be the polynomial to be
factored. The algorithm below is based on the following fact (see Lidl and Niederreiter,
1997, p. 91, Theorem 3.20).
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Fact 2.1. For i ≥ 1, the polynomial xq
i−x ∈ Fq[x] is the product of all monic irreducible

polynomials in Fq[x] whose degree divides i.

Algorithm Distinct-degree factorization (DDF).
Input: A monic squarefree polynomial f ∈ Fq[x] of degree n.
Output: The set of all pairs (g, d), where g is the product of all monic irreducible factors
of f of degree d, with g 6= 1.

i := 1; S := ∅; f∗ := f;
while deg f∗ ≥ 2i do

g := gcd(f∗, xq
i − x mod f∗);

if g 6= 1, then S := S ∪ {(g, i)};
f∗ := f∗/g;
i := i+ 1;

endwhile;
if f∗ 6= 1, then S := S ∪ {(f∗,deg f∗)};
return S.

The correctness of the above algorithm follows from Fact 2.1. The number of operations
in Fq is O (̃n2 log q) using the repeated squaring method, with a space requirement of
O(n) elements in Fq. This algorithm was found by Gauß around 1798 and appears in his
Nachlaß. It was rediscovered several times (Galois 1830 without explicitly mentioning the
removal of factors; Serret 1866; Arwin 1918; Cantor and Zassenhaus 1981). The special
case d = 1 was given by Legendre (1785).

The computation of the required powers can be improved using the “iterated Frobe-
nius” method (von zur Gathen and Shoup, 1992, Algorithm 3.1). If R = Fq[x]/(f), the
Frobenius map on R is defined by

Φ : R −→ R,

α 7−→ αq.

Computing iterates α, αq, . . . , αq
n

of the Frobenius map for α ∈ R is a basic compo-
nent for distinct-degree factorization and several other problems in finite fields. Given
α, αq, . . . , αq

m

by their canonical representatives h0, . . . , hm ∈ Fq[x] of degree less than
n, the iterated Frobenius method obtains the next m values αq

m+1
, . . . , αq

2m
using a fast

multipoint evaluation algorithm to compute hm(αq
i

) = αq
m+i

for 1 ≤ i ≤ m. Using
the iterated Frobenius method, the above algorithm for distinct-degree factorization has
running time O (̃n2 + n log q), with a space requirement of O(n2) elements in Fq.

In a typical distinct-degree factorization, most of the gcds computed are trivial. In
order to reduce the number of these gcd’s, von zur Gathen and Shoup (1992, Section
6), introduced a distinct-degree factorization based on the following blocking strategy.
They divide the interval 1, . . . , n into about

√
n intervals of size

√
n, and then for each

interval, they compute the joint product of the irreducible factors whose degree lies in
that interval. A complete distinct-degree factorization is obtained with the help of the
distinct-degree algorithm for each interval that contains at least two irreducible factors,
and iterated Frobenius for computing powers. The running time of this algorithm is still
O (̃n2 + n log q), but the space requirement drops to O(n

√
n).
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Figure 1. Running times of some factoring algorithms.

A new distinct-degree factorization algorithm is given in Kaltofen and Shoup (1998).
They present a family of algorithms for this stage using fast matrix multiplication, and
parametrized by β with 0 ≤ β ≤ 1, that uses

O(n(ω+1)/2+(1−β)(w−1)/2 + n1+β+o(1) log q)

operations in Fq. Taking ω = 2.376 and minimizing the exponent of n, they get an
algorithm that uses O(n1.815(log q)0.407) operations in Fq. This is the first subquadratic-
time algorithm for the distinct-degree factorization step, for small q. Since the algorithm
uses fast matrix multiplication, its practicality is not clear, but they show how to adapt
their technique to derive a practical version of this algorithm; see also Shoup (1995).

The problem is described in Figure 1 (essentially from Kaltofen and Shoup, 1998). The
asymptotically fastest algorithms are compared considering the dependence between n
and log q, and using a fast matrix multiplication method. It shows the asymptotically
fastest methods to be as follows: Kaltofen and Shoup (1998) for log q < n0.4545, von zur
Gathen and Shoup (1992) for n0.4545 < log q < n1.376, and Berlekamp (1970) for larger
fields. An algorithm by Huang and Pan (1998) beats the others when log q < n0.00173,
with running time about n1.80535 log q. Their method was also used in deriving the bound
0.416x+1.806 in Figure 1 which is not explicit in Kaltofen and Shoup (1998); see von zur
Gathen and Gerhard (1999), Notes 14.8.

Major advances have occurred in the distinct-degree factorization problem over recent
years not only in theory but also in practice. Shoup (1995) presents an implementation
of a practical version of the algorithm in Kaltofen and Shoup (1998) using O(n2.5 +
n1+o(1) log q) operations in Fq, with a space requirement of O(n1.5) elements in Fq. In
addition, Shoup proposes a set of benchmarks for polynomial factorization algorithms
consisting of factoring polynomials of degree n over an n-bit prime finite field (see also
von zur Gathen 1992 and Monagan 1993). For instance, Shoup’s algorithm factored a
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polynomial of degree 2048 modulo a 2048-bit prime in 12 days on a Sparc-10 workstation;
the input size is about 0.5 MB.

An implementation over F2 of a variant of the distinct-degree factorization algorithm
is presented in von zur Gathen and Gerhard (1996). As an example of the capability
of this algorithm, it took two days to completely factor a pseudorandom polynomial of
degree 262143 over F2 on two SPARC Ultra 1 workstations.

2.3. equal-degree factorization

We concentrate on algorithms for factoring a monic squarefree univariate polynomial
f over a finite field Fq of degree n with r ≥ 2 irreducible factors f1, . . . , fr, each of degree
d. The algorithms that we present here are probabilistic.

First, we describe the algorithm in Cantor and Zassenhaus (1981). Since f1, . . . , fr are
pairwise relatively prime, the Chinese Remainder Theorem provides the isomorphism:

χ : Fq[x]/(f) −→ Fq[x]/(f1)× · · · × Fq[x]/(fr),
h mod f 7−→ (h mod f1, . . . , h mod fr).

Let us write R = Fq[x]/(f), and Ri = Fq[x]/(fi) for 1 ≤ i ≤ r. Then Ri is a field with qd

elements and so contains Fq

Fq ⊆ Fq[x]/(fi) = Ri ∼= Fqd for 1 ≤ i ≤ r.

Now fi divides h ∈ Fq[x] if and only if h ≡ 0 mod fi, that is, if and only if the ith
component of χ(h mod f) is zero. Thus if h ∈ Fq[x] is such that (h mod f1, . . . , h mod fr)
has some zero components and some nonzero components, i.e. h mod f is a nonzero
zerodivisor in R, then gcd(h, f) is a nontrivial factor of f , and we call h a “splitting
polynomial”. Therefore, we look for polynomials with this property.

First we consider odd q. We take m = (qd−1)/2 and an r-tuple (h1, . . . , hr) with each
hi ∈ R×i = F

×
qd

= Fqd \ {0}. In F×
qd

, half of the values are quadratic residues and the other
half are quadratic nonresidues. Thus, hmi = ±1, with the same probability for both values
when hi is chosen randomly. Now, choose at random (uniformly) a polynomial h ∈ Fq[x],
with deg h < n, and let us assume that gcd(h, f) = 1 (otherwise we have already found
a partial factorization). The components (h1, . . . , hr) of its image under the Chinese
remainder isomorphism are independently and uniformly distributed random elements
in R×i = F

×
qd

. Since hmi = 1 with probability 1
2 , the probability that gcd(hm − 1, f) is

not a proper factor of f , i.e. all the components in (hm1 − 1, . . . , hmr − 1) are equal, is
2 · 2−r = 2−r+1 ≤ 1

2 . Running the algorithm l times ensures a probability of failure at
most 2−l.

After producing a factorization f = g1g2, one may proceed in two ways: either by
applying the algorithm recursively to g1 and g2, or by “refining” an already calculated
factorization f =

∏s
i=1 ui by gcd(ui, hm − 1) for random h. For any 0 < ε < 1, with

2dlog r2

ε e such random choices, one obtains the complete factorization of f with proba-
bility at least 1− ε.

Algorithm Equal-degree factorization (EDF).
Input: d ∈ N, a monic squarefree polynomial f ∈ Fq[x] of degree n = rd, with r ≥ 2
irreducible factors each of degree d, and a confidence parameter ε.
Output: The set of monic irreducible factors of f , or “failure”.
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Factors := {f}; k := 1; t := 2dlog r2

ε e;
while k ≤ t do

Choose h ∈ Fq[x] with deg h < n at random;
g := gcd(h, f);
if g = 1, then

g := h(qd−1)/2 − 1 (modf)
endif;
for each u ∈ Factors with deg u > d do

if gcd(g, u) 6= 1 and gcd(g, u) 6= u, then
Factors := Factors \ {u} ∪ {gcd(g, u), u/ gcd(g, u)};

endif;
if Size(Factors) = r, then return Factors;
k := k + 1;

endwhile;
return ‘failure’.

The running time of the algorithm is O (̃n2 log q log−1 ε), and “failure” occurs with
probability at most ε. By general principles, this can be turned into an algorithm that
is guaranteed to factor f completely and whose running time is a random variable with
mean O (̃n2 log q) and exponentially decaying tails. For the special problem of finding
roots, the idea of this algorithm can already be found in Legendre (1785, Section 28),
but then was forgotten for almost two centuries.

Another probabilistic algorithm for equal-degree factorization is due to Ben-Or (1981)
(see also Rabin 1980 and von zur Gathen and Shoup 1992, Section 3, Algorithm 3.6).
These algorithms are based on trace computations of random elements in R = Fq[x]/(f).
We choose h ∈ R at random and compute its trace g =

∑d−1
i=0 h

qi . The trace function
has image (Fq)r, so raising g to the (q − 1)/2 power in the case of odd characteristic, or
computing

∑k−1
i=0 g

2i when q = 2k, leads to a nontrivial factorization of f in a similar
way, and with similar probabilities, as in Cantor and Zassenhaus (1981).

The running time of Ben-Or’s algorithm is the same as that of Cantor and Zassenhaus
(1981). A variant in the procedure for computing traces leads to the asymptotically
fastest algorithm for the equal-degree problem, with O (̃n(ω+1)/2 + n log q) operations in
Fq (von zur Gathen and Shoup, 1992, Section 5).

Kaltofen and Shoup (1997) present new progress in the case of a sufficiently large
extension Fq of its prime field Fp, with q = pk. If k = nx with x > 1, they improve the
previous methods to

O (̃n2+x + n1+1.69x + n1+x log p)

operations in Fp; here 1.69 represents (ω + 1)/2. When k = dn1.5e and p = 2, this gives
O(n(log q)1.69) bit operations compared with previous O(n(log q)2) bit operations. They
also improve equal degree factorization, obtaining, e.g. O(n2.69) bit operations for q = 2n,
compared with previous O (̃n3). Furthermore, they improve the picture of Figure 1 for
a large field F2k with k = nx and x > 1, with the particular convention that log q bit
operations count as much as one Fq-operation. Their algorithm uses

O(nmax{2,x(ω−1)/2+1})
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such operations, so that then the line y = 2 extends to x = 2/(ω − 1) ' 1.45, and then
rises as y = ω−1

2 x+ 1 ∼ 0.69x+ 1.
As things now stand, equal-degree factorization, using randomized algorithms, can be

done faster than distinct-degree factorization.

3. Algorithms Based on Linear Algebra

The pioneering modern algorithms for the factorization of polynomials over finite fields
are from Berlekamp (1967, 1968, 1970). Let f ∈ Fq[x] be a monic squarefree univariate
polynomial of degree n, and f1, . . . , fr ∈ Fq[x] its irreducible monic factors that we want
to compute. If R = Fq[x]/(f) and Ri = Fq[x]/(fi) for 1 ≤ i ≤ r, then R ∼= R1 × · · · ×Rr
by the isomorphism of the Chinese Remainder Theorem. Recall from Section 2.2 the
Frobenius map Φ on R. From Fermat’s Little Theorem it follows that Φ is Fq-linear.
Consider the fixed points of Φ, i.e. the kernel of the mapping Φ − I, where I is the
identity function from R to itself. As in Camion (1980), we call B = {h ∈ R : hq = h}
the Berlekamp algebra. For a ∈ Fqn , we have aq = a if and only if a ∈ Fq, and thus
B ∼= Fq × · · · ×Fq = (Fq)r. The equality hq − h =

∏
α∈Fq (h−α) for h ∈ Fq[x] implies that

f =
∏
α∈Fq

gcd(f, h− α)

for h ∈ Fq[x] with h = (h mod f) ∈ B. Berlekamp shows that when h runs through a basis
for the r-dimensional Fq vector space B, then the common refinement of the resulting
factorizations yields the complete factorization of f .

The running time of this algorithm is O (̃n3 + qn2) operations in Fq, using Gaussian
elimination with classical arithmetic to find a basis of B.

Parts of the above method were known before Berlekamp. For instance, the above
matrix construction appears in Petr (1937), Butler (1954) and Schwarz (1956), but it
was Berlekamp who put all the elements together.

A randomized version of the above algorithm appears in Berlekamp (1970). He chooses
v as a random element of B, and sets u = v(q−1)/2 mod f , assuming q to be odd (the
even case can be treated with the trace function as in the equal-degree algorithm of
Section 2). If u ∈ B\Fq, i.e. not all of the components of u are equal, then either gcd(f, u)
or gcd(f, u−1) gives a nontrivial factor of f . As in the equal-degree factorization process,
we have a probability of at least 1

2 having a nontrivial factor of f . Therefore, the expected
running time is O (̃n3 + n log q) operations in Fq.

For problems of large size, the basis computation in the Berlekamp algorithm can be
done faster using Wiedemann’s sparse linear system solver (Wiedemann, 1986). Kaltofen
(1992) improves the running time of the algorithm in Berlekamp (1970) to O (̃n2 log q)
in this way, and Kaltofen and Lobo (1994) give an implementation of Berlekamp’s algo-
rithm that runs in O (̃n2 +n log q) arithmetic operations. They use randomization and a
Wiedemann parallel block linear system solver (Wiedemann, 1986; Coppersmith, 1994;
Kaltofen, 1995) for finding nonzero elements of ker(Φ − I). In 1993, this algorithm fac-
tored polynomials of degree 10001 over F127 in less than 4 days. The network used was
composed of eight Sun 4 workstations with 32 Mbytes of memory each.

Another deterministic algorithm, also based on linear algebra, is presented in Nieder-
reiter (1993a,b). Let f ∈ Fp[x] with deg f = n be the polynomial to be factored and
h ∈ Fp[x] an unknown polynomial with degree less than n. Niederreiter’s method is
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based on the system of n linear equations corresponding to the differential equation

fp(h/f)(p−1) + hp = 0,

where the coefficients of h are the unknowns. Then h is used to factor f . Comparisons
with Berlekamp’s algorithm are in Miller (1992); Fleischmann (1993); Lee and Vanstone
(1995), and Gao and von zur Gathen (1994); the latter paper applies Wiedemann’s
approach to this method. Roelse’s (1999) parallel implementation of Niederreiter’s algo-
rithm can factor polynomials over F2 of degree 300000 in about three hours on an IBM
SP-2 with 256 RS6000 processors.

4. Polynomial Factorization Algorithms

In this section, we give a list of some factoring algorithms from Berlekamp (1967) to
the present. Berlekamp was the first to give a general algorithm for the problem. Some
results prior to Berlekamp can be found in Lidl and Niederreiter (1997, at the end of
Chapter 4), and Bach and Shallit (1996, pp. 195–198), give a substantial overview of the
literature.

4.1. probabilistic algorithms

Berlekamp’s 1970 paper was a pioneering result on probabilistic algorithms, whose
huge success only took off later, after the work of Solovay and Strassen (1977) and Gill
(1977). Today, probabilistic choice is used routinely in the many algorithmic applications
where it is profitable.

In Sections 2 and 3, we presented the main ideas of the algorithms featured in the table
below which lists those that gave an asymptotic improvement over previous results. In
addition, other probabilistic algorithms for the problem are found in Calmet and Loos
(1980); Lazard (1982) and Camion (1983b). For efficient factorization using fewer random
bits see Bach and Shoup (1990). Finally, two recent randomized algorithms are in Gao
and von zur Gathen (1994) and Kaltofen and Lobo (1994). An implementation of Cantor
and Zassenhaus (1981) in Axiom is described in Naudin and Quitté (1998).

Probabilistic algorithms for the special problem of finding roots of polynomials over
finite fields can be found in Berlekamp (1970); Rabin (1980); Ben-Or (1981), and van
Oorschot and Vanstone (1989). The papers Rabin (1980) and Ben-Or (1981) also present
algorithms for testing the irreducibility of polynomials over finite fields. The basic compo-
nent of these algorithms is again Fact 2.1. Other probabilistic algorithms for testing the
irreducibility of polynomials are in von zur Gathen and Shoup (1992) and Gao and Pa-
nario (1997). The fastest algorithm, with time O (̃n2 +n log q), to generate an irreducible
polynomial is in Shoup (1994).

4.2. deterministic algorithms

Deterministic algorithms are the special case of probabilistic algorithms that make no
use of their probabilistic choices. The first algorithm of this type is by Berlekamp (1967);
see Section 3. Its running time is O (̃n3 +qn2), so it is not polynomial-time in n log q. The
major open problem in this area is to find a deterministic polynomial-time algorithm for
the problem.

Deterministic algorithms are given in McEliece (1969); Camion (1983a); Menezes et
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al. (1988); Niederreiter (1993a,b); Rothstein and Zassenhaus (1994), and von zur Gathen
and Shoup (1992, Section 9). The latter paper gives the currently fastest algorithm with
O (̃n2 + n3/2k + n3/2k1/2p1/2) operations in Fq, where q = pk. Shoup (1990b) gives a
deterministic algorithm for the case of a prime field Fp with running time O (̃n2√p),
and Shparlinski (1999) gives an improvement. This algorithm factors “almost all” poly-
nomials in polynomial time (see Shoup 1990b, Shparlinski 1999, Chapter 1, and Lange
and Winterhof, 1999). Evdokimov (1994) gives an algorithm with time (nlogn log q)O(1),
under the Extended Riemann Hypothesis (ERH); see also Gao (1999).

Under the ERH, deterministic polynomial-time factoring algorithms are known for
some special cases. For the factorization of special polynomials, we have: Schoof (1985)
for factoring quadratic polynomials over Fp; Rónyai (1988) when deg f is small, Rónyai
(1992) and Huang (1991a,b) for factoring polynomials whose Galois group (over Q) is
commutative such as for xn−a with a ∈ Z. For special fields see: Moenck (1977); von zur
Gathen (1987); Mignotte and Schnorr (1988) when p − 1 has only small prime factors,
Bach et al. (1999) when some Φk(p) has this property. See Rónyai (1989a), Thiong Ly
(1989), Shoup (1991a), Shoup (1991b), and Menezes et al. (1992) for related results.

4.3. average-case analysis

Few results are known in terms of average-case analysis of polynomial factorization
algorithms. Shoup (1990b) studies his deterministic algorithm using estimates for the
number of solutions of equations over finite fields and Weil’s bounds (for a similar analysis
see Ben-Or 1981, and for background on these issues see Schmidt 1976).

Flajolet et al. (1996) present a complete average-case analysis of the general algorithm
in Section 2; see also Panario et al. (1998). For this purpose, a study of the distribution
of the degrees of irreducible factors, the probability of irreducibility, and so on, is needed.
This involves counting polynomials over finite fields verifying special characteristics. Some
of these results were known for random polynomials of large degree n over Fq. Flajolet et
al. (1996) give a unified study of parameters relevant to factoring polynomials over finite
fields.

A simple variant of the distinct-degree factorization gives an irreducibility test for
polynomials (Ben-Or, 1981). The average-case analysis of this algorithm is in Panario
and Richmond (1998). Another irreducibility test due to Rabin (1980) is analyzed in
Panario and Viola (1998). These analyses are based on a framework that includes gen-
erating functions to describe the parameters studied and asymptotic analysis to extract
coefficients (see also Panario, 1997).

4.4. further references

We list some works that were not cited in the text: Tonelli (1891), Schwarz (1939,
1940), Golomb et al. (1959), Prange (1959), Schwarz (1960, 1961), Lloyd (1964), Lloyd
and Remmers (1966), Chien et al. (1969), Prešić (1970), Agou (1976a,b), Adleman et al.
(1977), Agou (1977), Chen and Li (1977), Willett (1978), Agou (1980), Mignotte (1980),
Camion (1981), Gunji and Arnon (1981), Camion (1982), Adleman and Lenstra (1986),
Kaltofen (1987), Evdokimov (1989), Poli and Gennero (1989), Knopfmacher and Knopf-
macher (1990), Lenstra (1990), Shoup (1990a), Wang (1990), Trevisan and Wang (1991),
Evdokimov (1993), Knopfmacher and Knopfmacher (1993), Niederreiter and Göttfert
(1993), Shparlinski (1993a,b), Davis (1994), Niederreiter (1994a,b), Knopfmacher (1995),
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Knopfmacher and Warlimont (1995), Niederreiter and Göttfert (1995), Fleischmann and
Roelse (1996), Rónyai and Szánto (1996), Gao et al. (1999), Wan (1999).
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2r −axpr − bx) sur un corps fini Fps . J. Number

Theory, 12, 447–459.
Aho, A. V., Hopcroft, J. E., Ullman, J. D. (1974). The Design and Analysis of Computer Algorithms,

Reading, MA, Addison-Wesley.
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Časopis pro pěstováńımatematiky a fysiky, 69, 128–145.
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