6.440 Essential Coding Theory

MIT, Fall 2011

Problem Set 1

Instructor: Dana Moshkovitz

September 13, 2011

Due: September 27, 2011.

Question 1

In this question we consider different ways to generalize the (7, 4, 3) Hamming code we saw in class.

For $l \ge 1$, consider the $l \times (2^l - 1)$ parity check matrix H_1 , whose columns are the binary representations of the numbers 1 to 2^l . Let \mathcal{H}_1 be the Hamming code defined by H_1 .

- 1. What are the rate and distance of \mathcal{H}_1 ? How many errors can it correct?
- 2. Show that \mathcal{H}_1 is a *perfect code*, i.e., has the largest possible number of codewords given its length and distance

Consider the following encoding $E_2 : \{0,1\}^{4r} \to \{0,1\}^{7r}$: Think of $x \in \{0,1\}^{4r}$ as consisting of r blocks of 4 bits each. E_2 encodes each of the blocks using the (7,4,3) Hamming code. Let \mathcal{H}_2 be the code that is defined by E_2 .

- 3. What are the rate and distance of \mathcal{H}_2 ? How many errors can it correct?
- 4. Is \mathcal{H}_2 also a perfect code? When would you rather use \mathcal{H}_1 , and when would you rather use \mathcal{H}_2 ?

Question 2

In the following X and Y are random variables over a finite sample space Ω . Prove:

- 1. $H(X) \ge 0$. Equality holds iff X is constant.
- 2. $H(X) \leq \log |\Omega|$. Equality holds iff X is uniform over Ω .
- 3. $H(X|Y) \ge 0$. Equality holds iff Y determines X.
- 4. $H(X|Y) \leq H(X)$. Equality holds iff X and Y are independent.
- 5. H(X) H(X|Y) = H(Y) H(Y|X).

Let the volume of a Hamming Ball of radius γn in $\{0,1\}^n$ be $B := \sum_{i=0}^{\gamma n} {n \choose i}$.

- 6. $B \leq 2^{H(\gamma)n}$. Hint: use the binomial expansion of $(\gamma + (1 \gamma))^n$.
- 7. $\lim_{n\to\infty} \frac{\log B}{n} = H(\gamma)$. Hint: use Stirling's formula.