Problem Set 2

Instructor: Dana Moshkovitz

Due: October 18, 2011.

Question 1 - Useful Approximations

Formalize and prove:

1. For a small $\delta>0, H(\delta) \approx \delta \log \frac{1}{\delta}$.
2. For a small $\epsilon>0, H\left(\frac{1}{2}-\epsilon\right) \approx 1-\Theta\left(\epsilon^{2}\right)$.
3. For a large $q>1, H_{q}(\delta) \approx \delta+O\left(\frac{1}{\log q}\right)$, where $H_{q}(\delta)=\delta \log _{q} \frac{q-1}{\delta}+(1-\delta) \log _{q} \frac{1}{1-\delta}$.

Question 2 - Random Codes

Let $0<p<1 / 2$.

1. Show that the expected distance of a random code $C \subseteq\{0,1\}^{n}$ of rate $1-H(p)$ is $\ll p n$.
2. Show that by deleting a small fraction of the codewords in a random code $C \subseteq\{0,1\}^{n}$ of rate $1-H(p)$ one can obtain a code of distance $\approx p n$ with high probability.
3. Show that a random binary generator matrix whose dimensions are $n \times(1-H(p)) n$ yields a linear code $C \subseteq\{0,1\}^{n}$ of distance $\approx p n$ with high probability.

Question 3-q-ary Plotkin Bound

Prove that for any code of rate R and relative distance δ over an alphabet of size q,

$$
R+\frac{q}{q-1} \delta \leq 1
$$

Question 4 - k-wise Independence

Let $m=2^{r}-1$ and $k=2 t+1$ such that $k \leq m$. Define $N \doteq 2(m+1)^{t}$. Describe an explicit construction of a $0-1$ matrix A with columns $a^{(1)}, \ldots, a^{(m)} \in\{0,1\}^{N}$ such that:

- For every $1 \leq i \leq m$, the column $a^{(i)}$ has the same number of 0's and 1's.
- For every $1 \leq i_{1}<\ldots<i_{k} \leq m$, the k columns $a^{\left(i_{1}\right)}, \ldots, a^{\left(i_{k}\right)}$ contain every binary string of length k in $N / 2^{k}=2^{r t-k+1}$ rows.
(Such a matrix is very useful for construction of hash families and for derandomization of certain algorithms; see, for example, Luby and Wigderson's survey "Pairwise independence and Derandomization").

Question 5- ε-Biased Sets/Balanced Codes

We say that $S \subseteq\{0,1\}^{n}$ is ε-biased if for every $c \neq \overrightarrow{0} \in S$, the weight of c (i.e., the number of non-zeros) satisfies:

$$
\frac{1-\varepsilon}{2} n \leq w t(c) \leq \frac{1+\varepsilon}{2} n .
$$

Show how to convert an $(n, k, d)_{q}$ code C with distance $d=\left(1-\frac{1}{q}-\varepsilon\right) n$ into a $(\varepsilon+1 / q)$-biased set $S \subseteq\{0,1\}^{n q}$ of the same size.

Question 6 - Finite Fields Drill

Show the following:

1. For every $\gamma \neq 0 \in \mathbb{F}_{q}$, there are $q+1$ elements $\alpha \in \mathbb{F}_{q^{2}}$ such that $N(\alpha)=\gamma$.
2. For every $\gamma \in \mathbb{F}_{q}$, there are q elements $\alpha \in \mathbb{F}_{q^{2}}$ such that $\operatorname{Tr}(\alpha)=\gamma$.
