6.440 Essential Coding Theory

MIT, Fall 2011

Problem Set 2

Instructor: Dana Moshkovitz

October 4, 2011

Due: October 18, 2011.

Question 1 - Useful Approximations

Formalize and prove:

- 1. For a small $\delta > 0$, $H(\delta) \approx \delta \log \frac{1}{\delta}$.
- 2. For a small $\epsilon > 0$, $H(\frac{1}{2} \epsilon) \approx 1 \Theta(\epsilon^2)$.
- 3. For a large q > 1, $H_q(\delta) \approx \delta + O(\frac{1}{\log q})$, where $H_q(\delta) = \delta \log_q \frac{q-1}{\delta} + (1-\delta) \log_q \frac{1}{1-\delta}$.

Question 2 - Random Codes

Let 0 .

- 1. Show that the expected distance of a random code $C \subseteq \{0,1\}^n$ of rate 1 H(p) is $\ll pn$.
- 2. Show that by deleting a small fraction of the codewords in a random code $C \subseteq \{0,1\}^n$ of rate 1 H(p) one can obtain a code of distance $\approx pn$ with high probability.
- 3. Show that a random binary generator matrix whose dimensions are $n \times (1 H(p))n$ yields a linear code $C \subseteq \{0, 1\}^n$ of distance $\approx pn$ with high probability.

Question 3 - q-ary Plotkin Bound

Prove that for any code of rate R and relative distance δ over an alphabet of size q,

$$R + \frac{q}{q-1}\delta \le 1.$$

Question 4 - k-wise Independence

Let $m = 2^r - 1$ and k = 2t + 1 such that $k \le m$. Define $N \doteq 2(m+1)^t$. Describe an explicit construction of a 0-1 matrix A with columns $a^{(1)}, \ldots, a^{(m)} \in \{0, 1\}^N$ such that:

- For every $1 \le i \le m$, the column $a^{(i)}$ has the same number of 0's and 1's.
- For every $1 \le i_1 < \ldots < i_k \le m$, the k columns $a^{(i_1)}, \ldots, a^{(i_k)}$ contain every binary string of length k in $N/2^k = 2^{rt-k+1}$ rows.

(Such a matrix is very useful for construction of hash families and for derandomization of certain algorithms; see, for example, Luby and Wigderson's survey "Pairwise independence and Derandomization").

Question 5 - ε -Biased Sets/Balanced Codes

We say that $S \subseteq \{0,1\}^n$ is ε -biased if for every $c \neq \vec{0} \in S$, the weight of c (i.e., the number of non-zeros) satisfies:

$$\frac{1-\varepsilon}{2}n \le wt(c) \le \frac{1+\varepsilon}{2}n.$$

Show how to convert an $(n, k, d)_q$ code C with distance $d = (1 - \frac{1}{q} - \varepsilon)n$ into a $(\varepsilon + 1/q)$ -biased set $S \subseteq \{0, 1\}^{nq}$ of the same size.

Question 6 - Finite Fields Drill

Show the following:

- 1. For every $\gamma \neq 0 \in \mathbb{F}_q$, there are q+1 elements $\alpha \in \mathbb{F}_{q^2}$ such that $N(\alpha) = \gamma$.
- 2. For every $\gamma \in \mathbb{F}_q$, there are q elements $\alpha \in \mathbb{F}_{q^2}$ such that $Tr(\alpha) = \gamma$.