Problem Set 3

Instructor: Dana Moshkovitz

Due: November 22, 2011.

Question 1 - Sparse, unbiased, codes have many low density parity checks

Suppose that a code $C \subseteq\{0,1\}^{n}$ is: (i) sparse, in the sense that $|C| \leq n^{2}$ (rather than $\left.|C|=2^{\Omega(n)}\right)$; (ii) $2 / n^{0.1}$-biased.

Show that for a sufficiently large constant k, the number of parity checks in C^{\perp} of weight k is:

$$
\left(1+o\left(n^{-1}\right)\right) \cdot \frac{\binom{n}{k}}{|C|}
$$

You may use the following fact about the Krawtchouk polynomials: for $\alpha \geq 1 / 2$ and sufficiently large k, for $\left(n-n^{\alpha}\right) / 2 \leq i \leq\left(n+n^{\alpha}\right) / 2$, it holds that $\left|P_{k}(i)\right| \leq 2 n^{\alpha k}$.

Question 2 - Decoding BCH

Show an efficient algorithm for decoding BCH codes when the number of errors approaches half the distance.

Question 3 - List decoding algebraic geometry codes

In class we saw a toy example of an algebraic geometry code:
Let q be prime. Let $\mathbb{F}=G F\left(q^{2}\right)$ be a finite field. Let $S=\left\{(x, y) \in \mathbb{F}^{2} \mid N(x)=\operatorname{Tr}(y)\right\}$. The code contains a codeword per bivariate polynomial p of degree at most q over \mathbb{F}. The codeword is of length $|S|=q^{3}$. Position $(x, y) \in S$ of the codeword is $p(x, y)$.

Design and analyze an efficient list decoding algorithm for this code.

