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Having seen a probabilistic verifier for linearity of Boolean functions, we now move on to the
goal of general low degree testing. Let us restate what we wish to show:

Theorem 1 (Low Degree Testing). There are constants δ, γ, γ′ > 0, such that given the table of
a function f : Fm → F and a degree d ≤ δ |F|, there is a probabilistic verifier for the statement
“deg f ≤ d”. The verifier is given access to f and to an auxiliary proof and satisfies the
following:

• Completeness: If deg f ≤ d, then there is a proof that the verifier always accepts.

• Soundness: If f is γ-far from degree d, then for any proof, the verifier rejects with proba-
bility at least γ′.

The verifier uses O(log(|F|m)) random bits. It makes only |F|O(1) queries to f .

1 The Line vs Point Test

If we were in the case m = 1, then there is a natural solution to the low degree testing problem:
we simply ask for the prover to give us a polynomial P of degree d which supposedly equals f ,
and then we pick a random point x and test that f(x) = P (x). For any P , the probability that
this test fails is exactly ∆(f, P ); thus we get the desired completeness and soundness conditions.

The following test generalizes this idea to higher dimensions by working with lines in Fm.

Line vs. Point Test (Rubinfeld-Sudan). The auxiliary proof π consists of a list of polynomials
of degree ≤ d, one for each line ℓ in Fm. Each polynomial is given by d+1 coefficients, and the
polynomial π(ℓ) is supposed to represent f restricted to the line ℓ.

For the test, pick a random line ℓ and a random point x ∈ ℓ. Check that π(ℓ)(x) = f(x),
where the left side is an evaluation of the polynomial π(ℓ) and the right side is a table value.

There is a technical issue in the statement of the Line vs. Point Test, namely in how we
represent a function on ℓ. The natural way to do this is to parameterize ℓ as {x+ ty} for some
x, y ∈ Fm (y ̸= 0); then a function on Fm restricted to ℓ may be thought of as a univariate
function of t. This has the caveat that the parameterization is not unique. However, this is not
a concern for us; we simply choose a parameterization for each line arbitrarily.

Some basic properties of the Line vs. Point Test are obvious. We need to randomly pick a line
and a point on that line; we can do that by just randomly picking two distinct points, so the
randomness is 2 log |Fm|. (In fact, this is an overestimate by about log |F|, but that observation
is irrelevant for the asymptotics.) The test clearly has completeness 1, as the restriction of a
low degree multivariate polynomial to a line is a low degree univariate polynomial. The number
of queries is 2, if we think of π as being a table whose alphabet is of size |F|d+1 (so that we can
look up all d+ 1 coefficients at once). If we instead think of the alphabet as being F, then the
test makes d+ 2 queries (1 for f(x), and d+ 1 to look up π(ℓ)).

The soundness of the Line vs. Point Test is the interesting part of the analysis. The original
Rubinfeld-Sudan analysis proved that the Line vs. Point Test satisfies Theorem 1:
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2Theorem (Rubinfeld-Sudan). For some ϵ, ϵ′ > 0, for all f , if there exists π such that

Pr[Line-Point accepts f, π] ≥ 1− ϵ,

then f is 1− ϵ′-close to degree d.

If the probability of acceptance is close to 1, then we get a bound on the minimum distance
of f to a low degree polynomial. Such results are sometimes referred to as “high-end” results.
The theorem says nothing when the acceptance probability is not close to 1. However, it was
later shown that any non-negligible acceptance probability corresponds to proximity of f to low
degree:

Theorem (Arora-Sudan, ’97). For all f : Fm → F, maxπ Pr[Line-Point rejects f, π] is the same

as the distance of f from degree d, up to an additive error in mO(1)dO(1)/ |F|Ω(1).

2 The Plane vs Point Test

Instead of analyzing the Line vs. Point test, we shall analyze the following closely related and
easier to analyze test, the Plane vs. Point Test. This is basically the same as the Line vs. Point
Test; we have just replaced “line” with “plane”.

Plane vs. Point Test (Raz-Safra). The auxiliary proof π consists of a list of bivariate poly-
nomials of degree ≤ d, one for each plane s in Fm. Each polynomial is given by a list of
(d+1)(d+2)/2 coefficients, and the polynomial π(s) is supposed to represent f restricted to the
plane s.

For the test, pick a random plane s and a random point x ∈ s. Check that π(s)(x) = f(x),
where the left side is an evaluation of the polynomial π(s) and the right side is a table value.

Note that the same technical issue of representation of the polynomials arises as in the Line
vs. Point test; we resolve it by choosing an arbitrary parameterization for every plane.

As above, all of the properties except soundness are fairly obvious. The randomness is
asymptotically 3 log |Fm|, as we can just pick the point x and then two (linearly independent)
vectors supporting the plane s. The number of queries is 2, if we think of the alphabet for π
as being of size |F|(d+1)(d+2)/2; otherwise, if we use F as the alphabet, the number of queries is
(d+ 1)(d+ 2)/2 + 1. The test certainly has completeness 1, as the restriction of a multivariate
polynomial of low degree to a plane is a bivariate polynomial of low degree.

The following theorem shows the soundness of the Plane vs. Point Test.

Theorem (Raz-Safra, ’97). For all f , maxπ Pr[Plane-Point rejects f, π] is the same as the
distance of f from degree d, up to an additive error in mO(1)(d/|F|)Ω(1).

Comparing with above, we see that the Line vs. Point Test has better randomness and
alphabet size (or number of queries, depending on one’s point of view). On the other hand,
comparing the Raz-Safra Theorem with the Arora-Sudan Theorem, the soundness bound on the
Plane vs. Point Test has better degree to field size tradeoff. These differences do not matter for
our application.



33 Analyzing the Plane vs Point Test

The advantage of the Plane vs. Point Test is that it admits a nicer analysis than the Line vs.
Point Test. Our plan is to give a form of the Raz-Safra analysis for m = 3. (The Plane vs.
Point Test is only interesting for m ≥ 3, as if m = 2 then there is exactly one plane, and if
m = 1, then there are no planes) One can then extend the result via induction to general m.
We will skip this induction here, although we shall feel free to use the general m result later.
The interested reader may consult [1], where the analysis of the Plane vs. Point Test can be
found as a special case of a more general test.

The remainder of this section is devoted to proving the Raz-Safra Theorem for m = 3.
First note that for every γ > 0, if f is γ-close to a polynomial p of degree at most d, then

necessarily maxπ Pr[Plane-Point rejects f, π] ≥ γ. This is by taking π(s) to be the restriction
of p to s. Thus, to prove the Raz-Safra theorem, it is enough to show the following: Assume
there exists π such that

Pr[Plane-Point accepts f, π] ≥ γ,

for some γ sufficiently large with respect to mO(1)(d/|F|)Ω(1). Then, there exists a polynomial
p : Fm → F of degree at most d, such that the agreement between f and p, 1−∆(f, p), is & γ,
where the & hides an additive mO(1)(d/|F|)Ω(1).

Our overall strategy for this proof is to define a graph encoding the agreement between
different planes, and then analyze that graph’s combinatorial properties. These properties will
yield the polynomial we want.

The vertices in our graph are the planes in F3, and a pair (s1, s2) of planes has an edge
between them if π(s1) and π(s2) agree on their intersection. Note that there always exists
an edge between parallel planes, as distinct parallel planes are disjoint (so trivially agree on
their intersection, as the intersection is empty). As the proof will be rather lengthy, we first
summarize what we shall prove:

(a) The graph has a lot of edges, where “a lot” is related to the probability γ of acceptance
of the Plane vs. Point Test. The edges correspond to agreement of π with f .

(b) By removing a small number of the edges, we are left with a disjoint union of cliques.
From this we deduce that most edges are in large cliques.

(c) Each large clique corresponds to a single low degree polynomial that agrees with all of the
planes in the clique.

(d) One of these polynomials must be close to f .

Whenever convenient, we shall refer to the graph as G = (V,E); so two edges s1, s2 ∈ V agree
on their intersection iff (s1, s2) ∈ E. In an abuse of notation, we shall write that (s, s) ∈ E for
any plane s, even though we do not think of the graph G as having self-loops. (This just gives
us a convenient notation for when two planes agree on their intersection.)

3.1 Step (a): The Consistency Graph is Dense

The first bound we will establish relies on Jensen’s Inequality, a basic but useful result in
integration theory.

Theorem (Jensen). If f is a convex (real) function and X is a random (real-valued) variable,
E[f(X)] ≥ f(E[X]).



4Corollary 3.1. If X is a random (real-valued) variable, then E[X2] ≥ E[X]2.

Proof. Take f(x) = x2 in Jensen’s Inequality. Note that this result has the simple description
of “the variance is positive”, as one formula for the variance is VarX = E[X2]− E[X]2.

Claim 3.2. Prs1,s2,x∈s1∩s2 [π(s1)(x) = f(x) = π(s2)(x)] ≥ γ2.

Proof. Note that the left side above requires some explanation: we think of it as the probability
of the event π(s1)(x) = f(x) = π(s2)(x) when we sample x at random, and then randomly (and
independently) choose planes s1 and s2 which contain x.

For a plane s and a point x ∈ s, let Is,x denote the indicator variable for the event π(s)(x) =
f(x). Then the left side is exactly

Prs1,s2,x∈s1∩s2 [π(s1)(x) = f(x) = π(s2)(x)] = ExEs1,s2∋x[Is1,xIs2,x].

Because s1 and s2 are independent and identically distributed, we can rewrite this as

Ex

[
(Es∋xIs,x)

2
]
.

Applying Corollary 3.1, this is ≥ (Ex[Es∋xIs,x])
2 = (Es,x∈s[Is,x])

2 = γ2, as desired.

To extend this claim, note that there are only three possibilities for how two planes in F3

intersect: they may be disjoint, they may be equal, or they may intersect in a line. (This
observation is a homework exercise.) Thus if we have x ∈ s1 ∩ s2, then either s1 ∩ s2 is a line or
s1 = s2. With this, we can show the following.

Claim 3.3. Prs1,s2,x∈s1∩s2 [(s1, s2) ∈ E, π(s1)(x) = π(s2)(x) = f(x)] ≥ γ2 − d

|F|
.

Proof. Suppose we have planes s1, s2 ∈ V such that (s1, s2) ̸∈ E. Then s1 ̸= s2 and s1 ∩ s2 ̸= ϕ,
so s1∩ s2 is a line on which π(s1) and π(s2) do not agree. The restrictions of π(s1) and π(s2) to
the line s1∩s2 are univariate polynomials of degree ≤ d. Thus if these polynomials are not equal
identically, then they are equal in at most d points, and so Prx∈s1∩s2 [π(s1)(x) = π(s2)(x)] ≤
d/|F|.

Now, suppressing the subscript s1, s2, x ∈ s1 ∩ s2 for all probabilities,

Pr[(s1, s2) ∈ E, π(s1)(x) = π(s2)(x) = f(x)]

is at least

Pr[π(s1)(x) = π(s2)(x) = f(x)]− Pr[π(s1)(x) = π(s2)(x) = f(x), (s1, s2) ̸∈ E].

By the combination of the bounds from the last paragraph and from the previous claim, we see
that this is ≥ γ2 − d/|F|, as desired.

The error bound of mO(1)(d/|F|)Ω(1) allows us to absorb the d/|F| from the claim above. In
addition, since we are working with m = 3, a uniformly random pair of planes intersect each
other with high probability > 1−1/ |F|. Thus, the error bound also allows us to absorb the error
< 1/ |F| coming from the difference between picking a uniformly random pair of intersecting
planes (as in Claim 3.3) and picking a uniformly random pair of planes. Let us explain what
we mean by this. Note that in the expression in the claim above, we end up sampling from



5pairs (s1, s2) with a not-quite-uniform distribution. Ignoring the case s1 = s2, which is rare
enough to be absorbed into the error bound, we will never sample pairs (s1, s2) that are parallel.
Because all other pairs of planes intersect at a line, i.e. they intersect at the same number of
points, we end up uniformly sampling from the set of pairs of intersecting planes. As parallel
planes are rare (in particular, they make up < 1/ |F| of the total pairs of planes), we can absorb
this non-uniformity into the error bound. Thus when we write &, we need not worry about the
exact probability distribution being used to sample pairs of edges.

With this technical discussion out of the way, one high-level interpretation of the above claim
is that Pr[(s1, s2) ∈ E] & γ2, i.e. G contains at least (roughly) γ2 of the possible edges. We can
be more precise, though. Define the weight of a pair (s1, s2) of planes to be

w(s1, s2) = Prx∈s1∩s2 [π(s1)(x) = f(x) = π(s2)(x)].

(If s1 ∩ s2 = ϕ, then we arbitrarily choose to define w(s1, s2) = 1, say. This is not important, as
s1∩s2 = ϕ is rare.) Then the claim tells us that the total weight of all of the edges in the graph
G is & γ2 of its maximum possible value (which equals the total number of pairs of vertices).

4 Step (b): The Consistency Graph is Close to a Disjoint Union
of Cliques

We have shown that G contains a lot of edges, completing step (a) in our roadmap. We next
begin work on step (b), showing that the graph is almost a disjoint union of cliques. The key
here is to show that G satisfies an “almost transitive” property.

Definition 2. A graph G = (V,E) is β-almost transitive if, for all pairs of distinct vertices
(a, b) ̸∈ E, Prc∈V [(c, a), (c, b) ∈ E] ≤ β.

To help clarify this definition, note that 0-almost transitivity is just regular transitivity, which
corresponds to the graph being a disjoint union of cliques.

Lemma 4.1. Our graph G is d+1
|F| -almost transitive.

Proof. Suppose we have a pair (a, b) ̸∈ E. Then, by definition, the planes a and b intersect in a
line, say ℓ, and the polynomials π(a) and π(b) do not agree on ℓ. Pick a random plane c ∈ V ;
we want to bound the probability that c is adjacent to both a and b. There are two cases to
consider.

First, c be parallel to the line ℓ (but not containing it). But for this to happen, any normal
to c must be perpendicular to ℓ, and this happens with probability < 1/|F|. (A random normal
of c is uniform on the nonzero vectors of Fm. If we sample uniformly from Fm, then the dot
product with the direction of ℓ is uniform on F, so vanishes with probability 1/|F|. If we exclude
the zero vector, then the probability of vanishing decreases by a tiny amount.)

In the second case, c is not parallel to ℓ, so it intersects ℓ at exactly one point. It is clear that
the intersection point is uniform on ℓ. As π(a) and π(b) do not restrict to the same polynomial
on ℓ, they can agree on at most d points. Thus if we randomly sample a point x ∈ ℓ, then the
probability that π(a)(x) = π(b)(x) is at most d/|F|. This of course upper bounds the probability
that π(a)(x) = π(c)(x) = π(b)(x), which in turn upper bounds the probability that c is adjacent
to both a and b in our graph G.

Adding the bounds of the last two paragraphs, we see that c is adjacent to both a and b with
probability ≤ (d+ 1)/|F|, as desired.



6The almost transitivity property is exactly what we need to deduce that our graph is almost
a disjoint union of cliques. For this we use the following graph-theoretic lemma.

Lemma 4.2. Given a graph on n vertices which is β-almost transitive, the graph can be made
transitive by removing ≤ O(n2

√
β) edges.

Proof. We prove this result by presenting an algorithm which does not cut too many edges
but terminates with a transitive graph. The algorithm is simple, but the fact that it has the
desired properties is somewhat delicate. We just repeat the following procedure until the graph
is transitive:

(1) If there is a vertex which is adjacent to ≤
√
β of the vertices, then remove all edges incident

upon that vertex (i.e. isolate that vertex).

(2) If there are no vertices satisfying (1), then pick a vertex v such that there exist elements
in v’s connected component which are not adjacent to v. Remove all edges between the set of
vertices adjacent to v and the rest of the connected component.

It is clear that this process terminates in a transitive graph. (In particular, if the graph is not
transitive then a vertex v can always be found in step (2). Also, every step removes at least
one edge, so there can only be finitely many steps.) We just need to show that this removes
O(n2

√
β) edges.

Let n be the number of vertices in the graph. Each time we are in step (1), we remove at
most n

√
β edges. We of course do not apply step (1) to any vertex twice, so at the end of the

algorithm the total number of edges removed in step (1) must be ≤ n2
√
β.

Suppose we are in the situation of step (2). Let N(v) be the set of neighbors of v, and let
D(v) be the rest of the connected component of v. (That is, the connected component of v is the
disjoint union of {v}, N(v), and D(v).) Choose u ∈ D(v). Then u is not adjacent to v, so by the
almost transitivity property, there are at most βn common neighbors of u and v. Rephrasing
this, there are at most βn edges from u to N(v). Summing over all u, we see that there are at
most |D(v)|βn edges removed in this application of step (2). There are |D(v)| · |N(v)| potential
edges between the vertices in D(v) and the vertices in N(v), so the fraction we remove is at
most

|D(v)|βn
|D(v)| · |N(v)|

=
βn

|N(v)|
≤ βn

n
√
β

=
√

β.

To restate this, every time we apply step (2), we are looking at a set of |D(v)| · |N(v)| pairs
of vertices, and remove edges from at most

√
β of them. These pairs of vertices should be

considered unordered as we are not double-counting any pair (t, u) and (u, t).
Now observe that if the unordered pair (t, u) is considered in a given application of step (2),

then in this step we remove all edges between the connected components of t and u. Thus
afterwards t and u will not be in the same connected component, so cannot be considered again
in a future application of step (2). Hence every (unordered) pair of vertices is considered at
most once in the course of all applications of step (2). Every time we consider a set of pairs, we
remove edges from at most

√
β of them. Thus the total number of edges removed by step (2) is

≤
√
β ·
(
n
2

)
< 1

2n
2
√
β.

Putting this together, the algorithm removes at most n2
√
β+ 1

2n
2
√
β = 3

2n
2
√
β edges, which

is certainly O(n2
√
β).



7Note that since we can make any graph a disjoint union of cliques by removing all of the
edges, for the lemma to be meaningful the graph must be dense. As we showed in step (a), our
graph is dense.

To complete step (b) in our proof roadmap, we just need to observe the corollary that most
of the edges in our graph lie in large cliques. The proof is basically that small cliques contain
very few edges. The reason for our precise choice of “large” in the corollary will become clear
in the next step.

Corollary 4.3. By removing O(|V |2
√

d/|F|) edges from our graph G, we obtain a graph which
is the disjoint union of cliques, all of which are either singletons or of relative size more than
(2d+ 1)/|F|.

Proof. As the original graph is (d+1)/|F|-almost transitive, by applying Lemma 4.2, we obtain a
disjoint union of cliques by removing O(|V |2

√
d/|F|) edges. Next, we remove all edges present in

cliques of relative size ≤ (2d+ 1)/|F|. Let these small cliques have sizes c1, . . . , cr, and suppose
without loss of generality that c1 is the largest. Then the number of edges present in these
cliques is

r∑
i=1

(
ci
2

)
<

1

2

r∑
i=1

c2i ≤
1

2

r∑
i=1

c1ci =
1

2
c1

(
r∑

i=1

ci

)
≤ (2d+ 1) |V |2

2 |F|
.

This is in O(|V |2 d/|F|). As d/|F| < 1, it is also in O(|V |2
√

d/|F|), as desired.

5 Step (c): Large Cliques Correspond to Low Degree Polyno-
mials

The following interpolation lemma addresses step (c) in our roadmap, and at the same time
answers why we made the particular choice of (2d+ 1)/|F| above.

Lemma 5.1. Suppose C ⊆ V is a clique containing more than (2d + 1)/|F| of the vertices
(planes). Then there is a polynomial P of degree ≤ 2d such that P agrees with π(s) for every
plane s ∈ C.

Proof. We can partition all planes into classes, where each class is identified with linear plane
in F3 (i.e., a plane through 0⃗). A plane in F3 is in the class if it is an affine shift of the linear
plane. Each class contains |F| planes. Averaging over all classes, the expected proportion of
planes from the class in C is more than (2d + 1)/|F|. Thus there certainly exists some linear
plane s1 (with normal y1, say) such that 2d+ 1 affine shifts {ci1y1 + s1}2di=0 are in C.

There are (|F|3 − 1)/(|F| − 1) = |F|2 + |F|+1 total linear planes, because we can specify each
by choosing a normal vector, which is well-defined up to scaling. There could theoretically be
as many as |F| affine shifts of s1 in C. If every other linear plane s ̸= s1 had ≤ 2d affine shifts
in C, then we would have

|C| ≤ |F|+ (|F|2 + |F|)2d = 2d |F|2 + (2d+ 1) |F| .

Now there are |F| (|F|2 + |F|+ 1) total planes, so our assumption says that

|C| ≥ 2d+ 1

|F|
· |F| (|F|2 + |F|+ 1) = (2d+ 1)(|F|2 + |F|+ 1).



8The last two inequalities are contradictory. Thus we deduce that there is at least other linear
plane s2 (with normal y2, say) such that 2d+ 1 affine shifts {ci2y2 + s2}2di=0 are in C.

Now we have a collection of 2d + 1 polynomials {π(ci1y1 + s1)}2di=0, each of degree ≤ d and
each on a distinct (parallel) plane. By an interpolation exercise, we can find a polynomial P1

on F3 of degree ≤ 2d which agrees with each π(ci1y1 + s1) on the plane ci1y1 + s1. Similarly, we
can find a polynomial P2 on F3 of degree ≤ 2d which agrees with each π(ci2y2+ s2) on the plane
ci2y2 + s2.

The idea is that 2d+1 shifts are enough to ensure that any plane in the clique agrees with the
polynomial P1 (and, symmetrically, with P2 as well). To demonstrate this idea, we first show
that P1 = P2. Towards this end, fix i ∈ {0, 1, . . . , 2d} and consider the plane ti1 = ci1y1 + s1.
We shall show that P1 and P2 have the same restriction to ti1. To do this, let j ∈ {0, 1, . . . , 2d}
be arbitrary and consider also the plane tj2 = cj2y2 + s2. As ti1 and tj2 are not parallel, they

intersect at a line ℓ = ti1 ∩ tj2. Now both ti1 and tj2 are in the clique C, so they are adjacent in

the graph G, and thus the polynomials π(ti1) and π(tj2) agree on the intersection ℓ. Now π(ti1)

is the restriction of P1 and π(tj2) is the restriction of P2, by definition. Thus we have identified
|ℓ| = |F| points x ∈ ti1 on which P1(x) = P2(x).

Repeating this for all j, we get a total of |F| (2d + 1) points. (Note that we do indeed get
all distinct points this way, as the planes cj2y2 + s2 are disjoint for distinct values of j.) As P1

and P2 both have degree ≤ 2d, the restrictions of P1 and P2 to the plane ti1 both have degree
≤ 2d. Hence by Schwartz-Zippel, the fact that they agree on |F| (2d + 1) of the |F|2 points in
the plane tells us that they agree on the entire plane.

We have shown that P1 and P2 have the same restriction to the plane ti1, which consists of
|F|2 points. Now repeating this for varying i, we find that P1 and P2 have the same restriction
to every plane ci1y1+s1, which is a total of |F|2 (2d+1) points. Again applying Schwartz-Zippel
(this time in three dimensions), we deduce that P1 = P2, as claimed. With this in mind, we
now define P to be the polynomial P1 = P2.

At this point we are almost done. Indeed, let s ∈ C be any plane in the clique C. Then s
cannot be parallel to both s1 and s2. Assume without loss of generality that it is not parallel
to s1. Then s intersects each affine shift ci1y1 + s1 at a line, and the clique condition gives us
consistency on those lines, so we can apply the same argument as above to deduce that the
restriction of P to s agrees with π(s). That completes the lemma.

6 Step (d): Deducing f is Close to a Low Degree Polynomial

By the corollary above, we can remove a small number of edges and obtain a graph consisting
of a disjoint union of large cliques. Let C1, . . . , Ct be the resulting cliques. Applying the
interpolation lemma, we obtain a polynomial Pi for each clique Ci such that π(s) agrees with
the restriction of Pi to s for every plane s ∈ Ci. For each i, let Ai = {x ∈ F3 : f(x) = Pi(x)}.
Our goal in step (d) is to show that at least one of the sets Ai is large.

For the analysis we use the following lemma proved in the homework:

Lemma 6.1 (Sampling). Let A ⊆ F3. Let ε > 0. Then, if we select uniformly at random a line
l in F3,

Prl

[∣∣∣∣ |l ∩A|
|F|

− |A|
|F|3

∣∣∣∣ ≥ ε

]
≤ 1

ε2
1

|F|
|A|
|F|3

.



9Corollary 6.2. Let ε > 0. If we select uniformly at random a line l in F3,

Prl

[
∃1 ≤ i ≤ t,

∣∣∣∣ |l ∩Ai|
|F|

− |Ai|
|F|3

∣∣∣∣ ≥ ε

]
≤ 1

ε2
1

|F|

(
1 +

d

|F|

)
.

Proof. We apply a union bound to Lemma 6.1 to get:

Prl

[
∃1 ≤ i ≤ t,

∣∣∣∣ |l ∩Ai|
|F|

− |Ai|
|F|3

∣∣∣∣ ≥ ε

]
≤

t∑
i=1

1

ε2
1

|F|
|Ai|
|F|3

.

The corollary follows from bounding
∑t

i=1
|Ai|
|F|3 ≤ 1 + d/ |F|: By the inclusion-exclusion formula

together with the Schwartz-Zippel Lemma,

|F|3 =

∣∣∣∣∣
t∪

i=1

Ai

∣∣∣∣∣ ≤
t∑

i=1

|Ai| −
∑

1≤i<j≤t

|Ai ∩Aj | ≤
t∑

i=1

|Ai| − d |F|2 .

Next we prove the main statement of Step (d):

Claim 6.3. For some 1 ≤ i ≤ t, we have |Ai|/|F|3 & γ2/4.

Proof. Combining Claim 3.3, Corollary 4.3 and Lemma 5.1, we arrive at the conclusion that with
probability & γ2, if we pick uniformly at random a pair of planes s1, s2 and a point x ∈ s1 ∩ s2,
the following hold:

(i) The intersection s1 ∩ s2 is a line in F3;

(ii) π(s1), π(s2) agree with a polynomial Pi;

(iii) Pi(x) = f(x).

Let δ > 0 be a parameter we set shortly. Then, if we pick uniformly at random a pair of planes
s1, s2, with probability at least δ the following hold:

(i) The intersection s1 ∩ s2 is a line l in F3;

(ii) π(s1), π(s2) agree with a polynomial Pi;

(iii) |l∩Ai|
|F| & γ2 − δ.

Since l is distributed uniformly over all lines, we deduce that if we pick uniformly at random a
line l, with probability at least δ there exists 1 ≤ i ≤ t such that |l∩Ai|

|F| & γ2−δ. By Corollary 6.2

invoked with ε = γ2/2, with probability at least δ − 4
γ4

1
|F|(1 + d

|F|), both
|l∩Ai|
|F| & γ2 − δ and

|l∩Ai|
|F| ≤ |Ai|

|F|3 + γ2/2; hence, |Ai|
|F|3 & γ2/2 − δ. Take δ = γ2/4. For sufficiently large γ with

respect to mO(1)(d/ |F|)Ω(1), we have that δ− 4
γ4

1
|F|(1+

d
|F|) > 0, and, thus, |Ai|

|F|3 & γ2/4 for some

1 ≤ i ≤ t.

As Ai is a set on which f agrees with a polynomial of degree ≤ 2d, we have shown that f is
& γ2/4-close to degree 2d. This is not quite what the Raz-Safra Theorem asserts – we wanted
to show that f is & γ-close to degree d. Thus to get the theorem we should reduce the degree
from 2d to d, and replace γ2/4 with γ. We leave it to homework to show how to obtain these
stronger conclusions.
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