
6.895 PCP and Hardness of Approximation MIT, Fall 2010

Lecture 8: Composition

Lecturer: Dana Moshkovitz Scribe: Andrey Grinshpun and Dana Moshkovitz

In this lecture we finally prove the PCP Theorem:

NP ⊆ PCP1,0.9999[O(log(n)), O(1)].

We do that using the PCP Theorem with poly-logarithmic number of queries we already estab-
lished, and applying it in a recursive way.

1 Recursive Structure

Where do we see a recursive structure in PCP Theorems? Using a PCP we verify that a predicate
ϕ is satisfied by some x ∈ {0, 1}n. This is done by adding a proof π ∈ Σm, looking at a few
locations in π, and checking that the locations satisfy some other predicate φw (the locations
and the predicate depend on the randomness w of the verifier). In other words, we reduced the
problem of verifying a predicate on n bits to the problem of verifying other predicates on much
less than n bits. This is a recursive structure!

Given this observation, one comes up with the following plan: if we have a PCP that makes
relatively many queries (e.g., poly log n queries), and we want a PCP that makes much less
queries (e.g., poly log(poly logn) queries), we can verify the φw’s using a PCP, rather than
directly. The purpose of this lecture is to make this plan work.

The obstacle is that a PCP, as we defined so far, would verify that φw is satisfiable (which it
always is), rather than that the answers that the prover would have given satisfy φw. How to
define PCPs that support the latter is not at all clear. It took almost two decades of research
to come up with the definitions we present next.

2 Definitions

The PCP definitions that we give are stronger than our usual definition of PCP. Luckily, the
techniques we developed can be adapted to the stronger objects.

2.1 Locally Decode or Reject

The definition of PCP asks the proof π to certify the existence of an x ∈ {0, 1}n that satisfies a
predicate ϕ. A natural approach, which is indeed the approach we have been taking, is to make
π an encoding of x, and argue that any π that is accepted with good probability corresponds to
an x that satisfies ϕ.

In the next definition we are interested in an encoding of x from which the individual bits of
x (satisfying ϕ) can be recovered. The verifier is given an i ∈ [n] and should output xi. The
definition is adapted to the PCP setting, and makes the following points:

• On input a correct encoding π of x that satisfies ϕ, the verifier should decode xi for every
i ∈ [n] it gets as input.

1

2• It is possible that there is no x satisfying ϕ that corresponds to π, or that there is, but xi
cannot be recovered by making few queries. The verifier may reject in such cases.

• For most i ∈ [n] the verifier should work as intended (i.e., either decode xi or reject), but
there can be a small fraction of i’s on which it does not.

Formally, the definition is as follows:

Definition 1 (Locally Decode or Reject Codes). Let Φ ⊆ Σn. We say that E : Σn → Σm is a
locally decode or reject code (LDRC), if there is a verifier/decoder that given access to y ∈ Σm

and an i ∈ [n] makes q queries to y and either outputs b ∈ Σ or rejects:

• If y = E(x) for x ∈ Φ, then the verifier/decoder always outputs xi.

• If the verifier/decoder rejects with probability at most ε over the choice of i ∈ [n] and the
internal randomness, then there is x ∈ Φ, such that, with probability at least 1 − ε′, the
verifier either returns xi or rejects.

The algebraic construction that we presented can be adapted to yield an LDRC. We leave it
as a homework exercise.

2.2 Robust PCP

Suppose that the verifier picks randomness and queries the proof. We say that the answers to
the queries are α-close to satisfying the verifier, if there are answers to the queries that satisfy
the verifier and are α-close (as a string) to the answers seen.

The next definition asks for PCPs where in the soundness case, on many of the choices of
queries, not only the answers do not satisfy the verifier – they are not even close to satisfying
the verifier:

Definition 2 (Robust PCP). We say that a PCP is α-robust, if in the soundness condition,
for every proof π, with probability at most s, the answers to the verifier’s queries are α-close to
satisfying.

Every robust PCP is also a PCP, but a PCP is not necessarily (the stronger) robust PCP.
Luckily, the algebraic construction can be adapted to give a robust PCP for a small α =
poly(m)(d/ |F|)Ω(1). Moreover, any PCP can be converted to a robust PCP with large α,
bounded away from 1. These facts are left as homework.

Remark 2.1 (Projection games). Robust PCPs with low α, s are ubiquitous in hardness of
approximation, and we will revisit them later in the course. They are equivalent to PCPs with
low error and two queries that have the projection property, i.e., the answer to the first query
determines at most one answer for the second query that would make the verifier accept.

• To convert from a two query PCP with projection to a robust PCP: view the first query
as choosing the queries, and the queries as all of the possible second queries.

• To convert from a robust PCP to a two query PCP with projection: add a proof symbol
per randomness string. The symbol is supposed to be the concatenation of the answers to
all the queries made for this randomness string.

33 Composition

Now that we have the definitions we need, we turn to describe composition. We start by
describing a composition operation that does not preserve robustness, and then proceed to
present a composition that does preserve robustness. As we discussed in Remark 2.1, the latter
yields a two query PCP with projection that is important for hardness of approximation.

The latter composition, however, works with a PCP with small degree (the degree of a PCP
is the maximal number of randomness strings that may prompt the verifier to query a certain
proof location). We follow this section by describing how to reduce the degree.

3.1 Composition that does not preserve robustness

The analogy of code concatenation is a good one to keep in mind: we have an outer code with
a large alphabet, and an inner code with a smaller alphabet. (The inner code is applied only
on small messages, and so even a construction with the same message-length to alphabet size
relation as the outer code can give a smaller alphabet size). We replace the alphabet symbols
of the outer code with encodings of them via the inner code to achieve a construction with the
same alphabet size as the inner code.

In the context of PCP, there is an outer proof with a large number of queries and an inner
proof with a small number of queries. We ask that the outer PCP be robust, and that the inner
PCP be LDRC. For each block of outer symbols the outer verifier might query, the composed
proof has an encoding of the block via the inner LDRC. This allows the composed verifier to
inherit its number of queries from the inner LDRC.

More precisely, let us denote the outer and inner verifiers by V1, V2, respectively. We denote
the composed verifier by V . The proof for V is the proof for V1 along with, for each randomness
w, a proof for V2 that the q1 queries V1 would have made on randomness w satisfy φw, the test
V1 makes on randomness w. Note that the inner PCP construction is used on an input with
q1 · log(|Σ1|) bits, where q1 is the number of queries of the outer PCP and Σ1 is the alphabet
there.

The verifier V is as follows:

1. Pick randomness w1 for V1 and randomness w2 for V2.

2. Apply V2 to verify the q1 queries V1 would have made indeed satisfy φw. Use V2 to decode
a uniformly random symbol of the q1 outer symbols. Reject if V2 rejects.

3. Check that V2’s decoding matches the copy of the symbol in the proof for V1. Accept if it
does; reject otherwise.

We now consider how well this verifier performs: note that previously input sizes were always
implicit and so we just wrote, for example, q, but now they no longer are so we write q(n).

Define n′ := q1(n) · log(|Σ1(n)|).

q(n) = 1 + q2(n
′)

r(n) = r1(n) + r2(n
′)

c(n) ≥ 1− ((1− c1(n)) + (1− c2(n
′))) = c1(n) + c2(n

′)− 1

s ≤ s1(n) + s2(n
′) + α1(n) (α1 is the robustness of V1)

4|Σ(n)| = max(|Σ1(n)| ,
∣∣Σ2(n

′)
∣∣)

The analysis of the soundness is left as a homework exercise. The overall idea of the argument
is to show that the copy of the proof to V1 provided in the composed version should cause V1

to accept reasonably often.

3.2 Composition that preserves robustness

The construction of the previous section does not preserve both soundness and robustness (i.e.,
low s and low α), even when both the outer verifier and the inner verifier are sound and robust.
This is because of the two different tests the verifier makes: one is V2’s test, and the other is
the consistency test (steps 2 and 3 above). It suffice to change at most half of the symbols that
V queries to make V accept.

In this section we adapt the composition to preserve both soundness and robustness, paving
the way to a two-query PCP with projection and low error. The idea is to get rid of the outer
proof altogether, and keep only the 2r1(n) inner proofs. To check consistency between the inner
proofs, we compare decodings of outer symbols from many inner proofs.

For the construction we make the additional assumption that V1 is uniform, i.e., queries each
of its eproof locations exactly the same number of times, and, moreover, its degree, i.e., the
number of times each proof location is queried, is small. In the next section we show how to
adapt any verifier to a uniform verifier with degree ≈ 1/s.

The verifier V is as follows (below m denotes the length of V1’s proof):

1. Pick uniformly at random a location i ∈ m. Let w1, . . . , wD ∈ {0, 1}r1(n) be all the
randomness strings that make V1 query i.

2. For each 1 ≤ j ≤ D, apply V2 to verify the q1(n) queries V1 would have made on random-
ness wj indeed satisfy φwj . Use V2 to decode the value of the i’th location. Reject if V2

rejects.

3. Check that the D decodings of the i’th outer location are all consistent. Reject otherwise.

Here is how the composition operation effects the parameters:

q(n) = D · q2(n′)

r(n) = logm+ r2(n
′)

Σ(n) = Σ2(n
′)

Composition preserves perfect completeness, but may increase the completeness error if it existed
in the first place. The soundness error may slightly increase. The analysis is left as an exercise.

4 Degree Reduction

Recall that the degree of a verifier is the maximal number of randomness strings on which the
verifier queries a single location of the proof. In general, the degree can be very large. In the
algebraic construction, D = nΩ(1). In this section we show how to reduce the degree of any
verifier to (1/s)Ω(1), with a nominal damage to the other parameters (randomness, soundness,
robustness, completeness, alphabet size). Recall that from the homework we know that s ≥ 1/D,
and so the transformation is essentially optimal.

5Given a verifier V of degree D, we will construct a new verifier V ∗ of degree d = poly 1
s . The

intended proof for V ∗ is similar to the proof for V , except that each location i ∈ [m] in V ’s proof
has D copies in V ∗’s proof, which we index by ⟨i, j⟩ for j ∈ [D]. The idea is to distribute the
queries to i among the different copies ⟨i, ·⟩, so no copy is queried on more than d randomness
strings. By carefully choosing how to distribute the queries, we can ensure consistency between
the values given to different copies. The careful choice is done using a Ramanujan expander
H = ([D], EH) of degree d.

The verifier V ∗ is as follows:

1. Pick randomness w ∈ {0, 1}r for V . Let i1, . . . , iq ∈ [m] be the locations that V would
have queried on randomness w. For every l ∈ [q], assume that w is the tl’th, tl ∈ [D],
randomness string (in lexicographic order) that results in il being queried.

2. For every k ∈ [d] do the following: For every l ∈ [q], let jl ∈ [D] be the k’th neighbor of
tl in H. Query locations ⟨i1, j1⟩, . . . , ⟨iq, jq⟩ in the proof, and perform V ’s test on them.
Reject if V rejects.

3. Reject if there is l ∈ [q] such that the d queried copies ⟨il, ·⟩ not all have the same symbol
in Σ. Otherwise, accept.

The degree of V ∗ is d. The parameters of V ∗ in terms of V ’s parameters are as follows:

c∗ = c

s∗ ≤
√

2max {α, s}+ 1
4
√
d

α∗ ≤
√

2max {α, s}+ 1
4
√
d

r∗ = r

q∗ = q · d

Σ∗ = Σ

4.1 Proof of soundness and robustness

We end this section by proving the soundness and robustness of the degree reduction operation.
The claim is proven contrapositively. Assume that there is a prover P ∗ that makes V ∗ be at
least α∗-close to accept with probability at least s∗. Hence, the average closeness of V ∗ to being
satisfied is at least α∗s∗. We show how to construct a prover P so that the average closeness
of V to being satisfied is at least α∗s∗ − 1√

d
. By Markov inequality, with probability at least

α∗s∗/2− 1
2
√
d
, the verifier V is at least (α∗s∗/2− 1

2
√
d
)-close to being satisfied.

The prover P that has to decide what symbol to put in location i, picks at random j ∈ [D]
and decides on the value that P ∗ has in location ⟨i, j⟩.

For every randomness w ∈ {0, 1}r on which V ∗ is α∗-close to being satisfied, let P ∗
w ∈

Σq·d denote the satisfying assignment. By the definition of V ∗, for each one of q symbols
corresponding to V ’s test on randomness w, the symbols in P ∗

w corresponding to the d copies of
the symbol are all the same. For w ∈ {0, 1}r on which V ∗ is not α∗-close to being satisfied, let
P ∗
w be an arbitrary string in Σq·d, where the locations corresponding to different copies of the

same location receive the same symbol from Σ.
We make the following definitions for i ∈ [m] and σ ∈ Σ:

6• Xi,σ consists of the k ∈ [D] such that the k’th randomness w ∈ {0, 1}r that results in a
query to i has P ∗

w assign location i the symbol σ.

• Yi,σ consists of the j ∈ [D] for which the symbol in location ⟨i, j⟩ is σ.

By regularity, we can express the average over all w ∈ {0, 1}r of the closeness of V ∗ to being
satisfied on randomness w by:

1

mDd

∑
i∈[m]

∑
σ∈Σ

E(Xi,σ, Yi,σ)

By regularity, we can express the average over all w ∈ {0, 1}r of the expected closeness of V
to being satisfied on randomness w by:

1

mDd

∑
i∈[m]

∑
σ∈Σ

|Xi,σ| |Yi,σ|

Using the expander mixing lemma,∑
i∈[m]

∑
σ∈Σ

E(Xi,σ, Yi,σ) ≤
∑
i∈[m]

∑
σ∈Σ

(
|Xi,σ| |Yi,σ|+

√
d
√

|Xi,σ|
√

|Yi,σ|
)

=
∑
i∈[m]

∑
σ∈Σ

|Xi,σ| |Yi,σ|+
√
d
∑
i∈[m]

∑
σ∈Σ

√
|Xi,σ||Yi,σ|

(Cauchy-Schwarz) ≤
∑
i∈[m]

∑
σ∈Σ

|Xi,σ| |Yi,σ|+
√
d
∑
i∈[m]

√∑
σ∈Σ

|Xi,σ|
√∑

σ∈Σ
|Yi,σ|

=
∑
i∈[m]

∑
σ∈Σ

|Xi,σ| |Yi,σ|+mD
√
d

5 The PCP Theorem

We can now prove the PCP theorem using composition. We start with a robust PCP verifier V1

and a locally decode-or-reject verifier V2. The verifiers can be constructed using the algebraic
tools we designed in previous lectures. Together with degree reduction, we achieve arbitrarily
low constant soundness and robustness error parameters, and other parameters as follows:

q(n) = poly log n

r(n) = O(log n)

c(n) = 1

|Σ(n)| = O(1)

D(n) = O(1)

Using composition and degree reduction, we preserve low constant soundness and robustness
parameters, with:

q′(n) = poly(log log n)

r′(n) = O(log n)

7c′(n) = 1∣∣Σ′(n)
∣∣ = O(1)

D′(n) = O(1)

We can now perform a final composition of this robust PCP verifier V ′. The inner construction
is a locally decode-or-reject verifier VHad based on linearity testing (see homework). VHad has
arbitrary low constant soundness and robustness error parameters. Its other parameters are:

qHad(n) = O(1)

rHad(n) = polyn

cHad(n) = 1

|ΣHad(n)| = O(1)

The final parameters we get from composition are low constant soundness and robustness
error with:

qfin(n) = O(1)

rfin(n) = O(log n)

cfin(n) = 1

|Σfin(n)| = O(1)

