
6.895 PCP and Hardness of Approximation MIT, Fall 2010

Lecture 9: The PCP Theorem Via gap Amplification

Lecturer: Dana Moshkovitz Scribe: Alan Deckelbaum and Dana Moshkovitz

In this lecture, we discuss gap amplification, a procedure which enables us to go directly from
the NP-hardness of Sat to the basic PCP theorem:

NP ⊆ PCP1,0.999[O(log n), 2]Σ.

The proof uses the techniques we developed in the previous lecture (composition and degree
reduction), but does not require the algebraic machinery we discussed before (sum check, low
degree testing). The advantage of the algebraic machinery is that it in fact allows to prove a
strong PCP theorem

NP ⊆ PCP1,0.001[O(log n), 2]Σ.

while the technique we discuss in this lecture does not.

1 Graph Theoretic Formulation of PCP

We start by presenting a PCP system with two queries as a graph. The vertices correspond to
locations of the proof. The edges correspond to tests made by the verifier on the two endpoints.
Each vertex is assigned a symbol from an alphabet Σ by the prover. Each edge is associated
with a constraint on pairs in Σ×Σ. Note that the definition of “degree” we had before coincides
with the definition of the maximal degree in the graph.

We consider the following gap problem: given a graph as above, distinguish between the
following two cases:

• There exists an assignment to the vertices which satisfies all edges.

• For all assignments to the vertices, at most s fraction of the edges are satisfied.

Note that showing that this problem is NP -hard is equivalent to proving the PCP theorem:

NP ⊆ PCP1,s[O(log n), 2]Σ.

We define gap(G) to be 1− s.

2 Iterative Construction

We observe that, since the graph 3-coloring problem is NP-hard, we already have a PCP with
a very small gap 1/poly(n) (corresponding to the NP-hardness of deciding whether a graph can
be 3-colored so that there is no edge that is monochromatic, or every 3-coloring leaves at least
one edge monochromatic). The overall goal of gap amplification is to enlarge the gap to 0.001
without significantly harming the other parameters.

The gap amplification operation (“powering”) doubles the gap (as long as the gap is not too
large, say at most 0.001) with a tolerable damage to the other parameters. After doubling the
gap Θ(logn) times, the gap will be at least 0.001.

1

23 Properties of Powering

The powering operation with parameter t maps G to a new graph G′. As long as G meets
certain restrictions specified in the next section, we are guaranbteed that:1

gap(G′) ≥ Ω(
√
t)min{gap(G),

1

t
}, (1)

where the Ω(·) hides a constant that is smaller than 1.
Hence, by taking t to be large enough with respect to the constant in the Ω(·), we can use

the powering operation to double the gap. This is as long as the gap is not too large already
(i.e., as large as 1

t).
The powering operation has the following effects on the other parameters:

• The number of queries remains q = 2, and the completeness remains c = 1.

• size(G′) = C ·size(G), where C is a constant depending on t. (We call the “size” of G′ the
number of its vertices plus the number of its edges.) Therefore, after Θ(logn) iterations
of the powering operation, the resulting graph will have polynomial size.

• The alphabet of G′ is Σdt/2 , where d = deg(G).

4 Requirements of Powering

The powering operation works as specified above only assuming certain restrictions on G:

• Constant Degree: The graph is regular and its degree d = deg(G) is a constant D.

• Constant Alphabet: The alphabet Σ is constant.

• Expansion: The graph has a self-loop on every vertex, and has second eigenvalue λ < D.

We remark that the constants in inequality (1) and in the bound on size(G′) depend on the
degree of G and on the alphabet size.

While relying on the requirements above, the powering operation does not preserve them: it
increases the degree and the alphabet significantly (it in fact preserve the expansion require-
ment). Hence, in the next sections we explain how to transform any PCP to a PCP that satisfies
the requirements, using degree reduction, composition and a new trick. The transformation will
have to take place before every application of powering. It, too, comes with a price: it slightly
increases the size of the graph, and slightly decreases the gap. However, this modest cost is
swallowed in the parameters of powering as described in Section 3.

4.1 Reducing Degree

The degree may be non-constant to begin with, and powering may increase it further. However,
in Lecture 8 we saw how to set the degree to any desired D at the price of increasing the
soundness error by ≈ 1/D and multiplying the size by Θ(D). Perfect completeness is preserved.
Unfortunately, the transformation of Lecture 8 also multiplies the number of queries by a factor
of D. Nonetheless, the number of queries can be brought back to 2 at the expense of decreasing

1A more careful analysis of the powering procedure, as in [RS07], can improve the
√
t term to t.

3the gap to ≈ poly(1
D) (see first homework). By choosing as D an appropriate constant, the

decrease in the gap after degree-reduction is swallowed in inequality 1, and the increase in the
size is swallowed in the size bound following it.

4.2 Reducing Alphabet

The alphabet is initially constant, but the powering operation makes its size increase dramati-
cally, as it raises it to the power of Dt/2. Applying the powering operation i times will result in
an alphabet of size |Σ|(Dt/2)i . For non-constant i (e.g., i = Θ(log n)), the alphabet size becomes
non-constant (and even exponential).

We solve this problem by using the composition operations from Lecture 8 together with a
Hadamard-based construction (see Lecture 8). Composition multiplies the size by a term that

depends only on |Σ|Dt/2
(a constant), and preserves perfect completeness. The gap multiplies

by a constant. While the number of queries is not preserved, as before, it can be brought back
to 2 at an acceptable cost.

4.3 Forming Expansion

We can guarantee that there are self loops on all the vertices, if we simply add them to the
graph. We can similarly guarantee that the graph’s second eigenvalue is small by adding an
expander H (over the same vertex set) on top of our graph G. We make the constraints on
self loops and on the edges from H be trivial (satisfied by all assignments). This procedure
decreases the gap by a multiplicative factor of D

D+1+deg(H) , where D is the original degree of our
graph. This is because we have the same number of unsatisfied edges, but the degree of each
vertex increases from D to D + 1 + deg(H), since every vertex has an additional self-loop and
edges from H.

We claim that by adding self-loops and H to our graph in the second bullet above, the
resulting graph has small second-eigenvalue. We prove this by using the Rayleigh quotient.

Claim 4.1 (Rayleigh Quotient). Let A be the adjacency matrix of a regular graph. Then the
second eigenvalue satisfies

λ(A) = max
x̸=0⃗, x⊥1⃗

|⟨x,Ax⟩|
⟨x, x⟩

= max
||x||=1, x⊥1⃗

|⟨x,Ax⟩|.

The Rayleigh quotient formula follows from the fact that the second eigenvalue is the largest
eigenvalue when we restrict A to act on the space perpendicular to the first eigenvector. (Since
A is a real symmetric matrix, it has an orthonormal eigenbasis.)

Corollary 4.2. Let A and B be adjacency matrices of regular graphs on the same vertex set.
Then

λ(A+B) ≤ λ(A) + λ(B).

The above corollary implies that λ(A+ I +H) ≤ deg(A)+ 1+λ(H). Since λ(H) < deg(H), we
conclude that λ(A+ I +H) < deg(A+ I +H), where A+ I +H is the graph we get by adding
self-loops and H to our original graph.

45 The Powering Operation

We now describe the graph powering operation. We start with a graph G = (V,E), an alphabet
Σ and constraints associated with the edges of E. We pick some parameter t, and construct a
new graph G′ as follows:

• The vertices of G′ are V .

• The alphabet is Σdt/2 , where d is the degree of G. An assignment to a vertex in G′

corresponds to assigning a value from Σ to all of its radius-t/2 neighbors. (Note- We
needed to insist that the degree of G was small so that no vertex has more than dt/2

radius-t/2 neighbors.)

• We have an edge (u, v) in G′ for every length-t walk between u to v in G.

• The constraint on an edge (u, v) in G′ checks that all the assignments on the intersection
of the radius-t/2 neighborhood about u and the radius-t/2 neighborhood about v are
consistent. (That is, we check that they obey all appropriate constraints from G, and that
any vertex in the overlapping neighborhood is assigned the same symbol from u and from
v.)

We notice that the above construction preserves the perfect completeness property and pre-
serves 2 queries. Moreover, the size is multiplied by O(dt−1).

Therefore, the main analysis which remains is to study the soundness of G′. We notice that
any assignment σ′ to G′ naturally induces an assignment σ to G by taking the “plurality vote”:
each vertex picks an assignment that repeats the maximal amount of times in other vertices
whose labels contain assignments for it (we break ties arbitrarily):

σ(u) = argmax
s∈Σ

|{ t
2
-step walk from u ending at v satisfies σ′(v)u = s}|.

Notice that the following can be deduced immediately.

P

(
t

2
-step random walk from u ending at w satisfies σ′(w)u = σ(u)

)
≥ 1

|Σ|
. (2)

Recall that while 1/ |Σ| may be small, in our setup it is a constant.
Suppose that G is not satisfiable and has gap α. Further assume that α ≤ 1

t (otherwise, we
are done). Then, by soundness of G, we know that σ has at least an α fraction of rejecting
edges. The intuition is that, since G is an expander, at least ≈ 1 − (1 − α)t ≈ αt fraction
of all t-step walk in G pass through at least one rejecting edge of σ. Moreover, at least α

√
t

fraction of the t-step walks pass through a rejecting edge of σ in their “middle”, i.e., in step i

for t
2 −

√
t
2 ≤ i ≤ t

2 +
√

t
2 . We will show that a constant fraction of those walks correspond to

rejecting edges for σ′. This will prove inequality (1).
The intuition for the above claim is that, if we let (u, v) be a rejecting edge of G in the

middle of the walk, and w1, w2 be the endpoints of the walk, then the events σ′(w1)u = σ(u)
and σ′(w2)v = σ(v) are: (i) independent events; and (ii) (less obviously) each happens with
probability Ω(1/ |Σ|) (a constant). The point (ii) follows from inequality 2 and the realization

that due to self-loops, walks of length t
2 ±

√
t
2 are essentially equivalent to walks of length

exactly t
2 .

56 Soundness Analysis

In this section we formally prove the soundness of the graph powering operation.
Fix an assignment σ′ for G′, and let the corresponding plurality vote assignment σ for G be

as in the previous section. By soundness of G, we know that an α fraction of the edges of G
reject the assignment σ. Denote the set of rejecting edges F . We may assume that α ≤ 1

t . We
show that Ω(

√
t)α fraction of the edges in G′ are rejecting.

6.1 Walks in G

We say that the “middle” of a t-step walk is

I = {t/2−
√

t/2 ≤ i ≤ t/2 +
√

t/2}.

We say that a walk (v0, v1, . . . , vt) is hit by the ith edge if

1. (vi−1, vi) ∈ F

2. σ′(v0)vi−1 = σ(vi−1)

3. σ′(vt)vi = σ(vi).

For a t-step random walk, we let Ni be the indicator that the walk is “hit” by the ith edge. We
set N =

∑
i∈I Ni. We show that

Pr [N > 0] ≥ Ω(α
√
t).

In order to prove the above result, we use the “second moment method”. The second moment
of N is E

[
(N −E [N])2

]
= E

[
N2
]
−E [N]2. We lower bound E [N]2 and upper bound E

[
N2
]
:

Claim 6.1. E [N] ≥ Ω(α
√
t).

Claim 6.2. E
[
N2
]
≤ O(α

√
t).

Since we have the inequality

P [N > 0] ≥ E[N]2

E[N2]
,

the two above claims will imply that P [N > 0] ≥ Ω(α
√
t), as desired.

6.2 Proof of Claim 6.1

We obtain a lower bound on E [Ni] for all i ∈ I. The result of the claim then follows by linearity.
Since G is undirected and regular, we can view a choice of a random walk as follows:

• Pick (vi−1, vi) uniformly from the set of all edges in G.

• Do a random walk of length i−1 starting from vi−1. This will give the vertices (vi−2, . . . , v0)
of the walk.

• Do a random walk of length t− i starting from vi. This gives the vertices (vi+1, . . . , vt) of
the walk.

6Therefore, we have

P [Ni > 0] = α · P [σ′(v0)vi−1 = σ(vi−1)] · P [σ′(vt)vi = σ(vi)].

We prove that for every vertex v, for any length l ∈ I, it holds that

P [l-step random walk from v to w satisfies σ′(w)v = σ(v)] ≥ Ω(1)

|Σ|
.

The lower bound on P [Ni > 0] follows.
Notice that for l = t/2, this result is clear, since σ is the plurality vote over all t/2-step walks.

Because the graph has self-loops, we see that the above probability is equal to∑
k

P (stay in place (l − k) times) · P (length-k r.w. without self-loops has σt(w)v = σ(v))

where k in the above expression represents the number of times that the random walk takes an
edge other than a self-loop, and where w and v are the start and end vertices of the length-k
random walk without self-loops, respectively.

Since each vertex in G has degree d and exactly one edge at each vertex is a self-loop, we
know that the number of times that an l-step random walk takes a self-loop is distributed as a
Binomial(l, 1/d) distribution.

We now make a technical claim about the properties of the binomial distribution, without
proof:

Claim: For any c, l1, l2 such that

• l1 −
√
l1 ≤ l2 ≤ l1 +

√
l1

• l1 is sufficiently large

• |k − pl1| ≤ c
√
l1

there exists a constant τ (depending on c) such that

τ ≤ P (B(l1, p) = k)

P (B(l2, p) = k)
≤ 1

τ
.

The above claim follows from the properties of the binomial distribution. Intuitively, we think
of the first condition as saying that l1 ≈ l2, and the third condition as saying that k is approxi-
mately equal to the expectation of B(l1, p).

We now pick c such that P (|k− pt
2 | > c

√
t
2) <

1
2|Σ| where p = 1− 1

d (the probability of a step

of the random walk not being a self-loop), k is a Binomial(t/2, p) random variable, l1 = t/2,

and l2 = l. We denote the set of all values of k such that |k− pt
2 | ≤ c

√
t
2 by K. Using the above

claim, we know that

∀k ∈ K : P (B(l, p) = k) ≥ τ · P (B(t/2, p) = k).

We can now lower-bound the probability that a length-l random walk satisfies σt(w)v = σ(v)
(where v is the start vertex of the walk and w is the end vertex) by

7∑
k∈K

P (stay put l − k times) · P (a rand. walk of length k with no self-loops has σt(w)v = σ(v))

≥ τ
∑
k∈K

P (B(t/2, p) = k) · P (a rand. walk of length k with no self-loops has σt(w)v = σ(v))

≥ τ ·
(
P

(
t

2
-step walk satisfies σt(w)v = σ(v)

)
− 1

2|Σ|

)
≥ τ

(
1

|Σ|
− 1

2|Σ|

)
=

τ

2|Σ|
.

Thus, since we’ve shown that

P [l-step random walk from v to w satisfies σt(w)v = σ(v)] ≥ τ

2|Σ|
,

the proof of the claim is complete.

6.3 Proof of Claim 6.2

We will define the random variable Z to be the number of steps in I that the random walk
reaches an edge in F . We clearly have N ≤ Z. Therefore, to upper bound E[N2], it suffices
to upper bound E[Z2]. Let Zi be the indicator for the ith step of the walk hitting F . We now
compute

E[Z2] =
∑
i,j∈I

E[ZiZj] =
∑
i∈I

E[Zi] + 2
∑

i<j; i,j∈I
E[ZiZj].

Since |I| = O(
√
t), it follows that

∑
i∈I E[Zi] = O(α

√
t).

In the third problem set, we show that the expander property of G implies that

P [Zj = 1|Zi = 1] ≤ α+

(
λ

d

)j−i+1

.

Therefore, we compute

E[ZiZj] = P [Zi = 1] · P [Zj = 1|Zi = 1] = α · P [Zj = 1|Zi = 1] ≤ α ·

(
α+

(
λ

d

)j−i−1
)

and hence

∑
i<j; i,j∈I

E[ZiZj] ≤ α
∑

i<j; i,j∈I

(
α+

(
λ

d

)j−i−1
)

< |I|2α2 + |I|α

√
t∑

i=1

(
λ

d

)i

= O(α2t) +O(α
√
t).

Since α ≤ 1
t , we conclude that

∑
i<j; i,j∈I E[ZiZj] = O(α

√
t) (where the constant depends

on λ
d .) This concludes the proof of the claim.

References

[RS07] J. Radhakrishnan and M. Sudan. On Dinur’s proof of the PCP theorem. Bulletin of
the AMS, 44(1):19–61, 2007.

