
Princeton, Spring 09 Projection PCP

Lecture 4: Low Degree Polynomials - The Coding-Theoretic Perspective

Lecturer: Dana Moshkovitz Scribe:Rong Ge

1 Low Degree Polynomials and The Schwartz-Zippel Lemma

Definition 1 (Low Degree Polynomial) Let F be a finite field, m, d be natural numbers, a m-variate
polynomial of degree at most d over F is an expression of the form

f(x1, x2, ..., xm) =
∑

∑
j ij≤d

ci1,i2,...,imx
i1
1 x

i2
2 · · ·ximm

Where the coefficients are ci1,i2,...,im ∈ F.

Lemma 2 (Schwartz-Zippel)
If f , g are two different m-variate polynomial of degree at most d over F, then f(~x) = g(~x) holds for at most
d
|F| fraction of ~x in Fm.

One can prove the Schwartz-Zippel Lemma by induction on the dimension m. We will see a different
proof. For that we will need a couple of definitions:

Definition 3 (Line) A line in Fm is a set of the form {~x+ t · ~y|t ∈ F}, ~x, ~y ∈ Fm, ~y 6= ~0

Definition 4 Let f be a function from Fm to F, the restiction of f to a line l = {~x + t~y|t ∈ F} is
f |l(t) = f(~x+ t~y).

Proof:[of Schwartz-Zippel Lemma] Note that it is enough to prove that a not identically zero m-variate
polynomial h of degree exactly d over F satisfies h(~x) = ~0 only for at most d

|F| fraction of the points ~x ∈ Fm.
Let h=d be the degree-d homogeneous part of h, i.e., h ≡ h=d + h<d where all the terms in h=d are

of degree exactly d and all the terms in h<d are of degree smaller than d. Let ~y 6= ~0 ∈ Fm be such that
h=d(~y) 6= 0 (Note that such ~y must exist!). For every ~x ∈ Fm, let l~x = {~x+ t ·~y|t ∈ F} be the line in direction
~y through ~x. Note that ∪~x∈Fm l~x is a partition of Fm.

For every ~x ∈ Fm, the restriction h|l~x is a univariate polynomial of degree at most d. Moreover, this
polynomial is not identically zero! The reason is that the coefficient of td is percisely h=d(~y). Hence,
h|l~x(t) = 0 for at most d

|F| fraction of the t ∈ F. The lemma follows. 2

2 The Reed-Muller Code

Definition 5 (Reed-Muller Code) The Reed-Muller code with parameters F, m, d is the code containing
all tables of m-variate polynomial of degree at most d over F.

Each Reed-Muller Code codeword corresponds to a low degree polynomial f over field F. The codeword
is indexed by ~x ∈ Fm, and the value at ~x is exactly f(~x).

The Reed-Solomon Code with parameters F, d is the Reed-Muller Code with parameters F, m = 1, and
d. The Hadamard Code with parameters F, m is the Reed-Muller Code with parameters F, m, and d = 1.

Remark 6 By the Schwrtz-Zippel Lemma the relative distance of the Reed-Muller Code is at least 1− d
|F|

Remark 7 The Reed-Muller code is linear: the codewords of Reed-Muller code form a linear subspace of
Fm.
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23 List Decoding

Lemma 8 (Johnson bound)

Let f : Fm → F be an arbitrary function from Fm to F. For every δ ≥ 2
√

d
|F| , there are at most 2

δ polynomials

q of degree at most d such that f(~x) = q(~x) for at least δ fraction of ~x ∈ Fm.

Proof: Assume towards contradiction that there are 2
δ < l ≤ b 2

δ c + 1 different polynomials q1, q2, ..., ql as
in the statement. By Inclusion-Exclusion, since any two low degree polynomials can agree on at most d

|F|
fraction,

1 ≥ Pr
~x∈Fm

[∨li=1f(~x) = qi(~x)] ≥ δl −
(
l

2

)
d

|F|
> 1

Contradiction. 2

Note that the proof applies to any code, with d
|F| replaced by δ, where the relative distance of the code

is 1− δ.

4 Code Rate

The length of a Reed-Muller codeword is |F|m, the dimension of the code is
(
m+d
d

)
.

For the Hadamard Code (d = 1), the number of codewords is |F|m, and the rate is exponentially small.
For the case when d > m, the code rate is (Θ(d/m))m

|F|m = ( d
|F| )

m · 1
(Θ(m))m

5 Interpolation

5.1 Univariate Interpolation

Given t0, t1, ..., td ∈ F, a0, a1, ..., ad ∈ F. The unique univariate polynomial f of degree at most d such that
for all i f(ti) = ai, is given by Lagrange’s Formula:

f(t) =
d∑
i=0

aiIti(t)

Where Iti is a polynomial of degree at most d that is 1 at point ti and 0 for all other points tj , j 6= i.

Iti(t) =

∏
j 6=i(t− tj)∏
j 6=i(ti − tj)

5.2 Multivariate Interpolation

In the univariate case, we just saw that one can interpolate a polynomial given any fixing to any set of points
of size d

|F| · |F
m|+ 1. In the multivariate case this is no longer true. For example, take a line as your set.

We will choose a special set for multivariate interpolation: a sub-cube. Specifically, we pick H ⊆ F,
and let a be a function that maps Hm to F. Then there is an m-variate polynomial f of degree at most
(|H| − 1)m, satisfying f(~x) = a(~x) for all ~x ∈ Hm. The polynomial is given by the following formula:

f(x1, x2, ..., xm) =
∑

h1,h2,...,hm∈H

Ih1(x1)Ih2(x2) · · · Ihm(xm)a(h1, h2, ..., hm)
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Definition 9 (Affine Subspace) An affine subspace of dimension k in Fm is a set of the form {~x +∑k
i=1 ti~yi|t1, t2, ..., tk ∈ F}, ~x ∈ Fm. ~y1, ..., ~yk are k linearly independent vectors in Fm.

Example 10 A line is a 1-dimensional affine subspace. A plane is a 2-dimensional affine subspace.

Definition 11 (Manifold) A manifold(variety) of dimension k, degree at most r is a set of the form
{(q1(t1, ..., tk), .., qm(t1, ..., tk))|t1, ..., tk ∈ F}, where qis are polynomials of degree at most r.

Definition 12 Let f be a function Fm → F, the restriction of f to a manifold S = {(q1, q2, ..., qm)} is
f |S(t1, ..., tk) = f(q1(t1, ..., tk), ..., qm(t1, ..., tk)).

The following simple fact underlies our use of low degree polynomials:

Lemma 13 (Recursive Structure)
If f is a polynomial of degree at most d, S is a manifold of degree at most r, then f |S is a polynomial of
degree at most d · r.

7 Local Decoding

Given is a function f : Fm → F that is “very close” to low degree polynomial, i.e., there is a f̃ of degree at
most d such that f(~x) = f̃(~x) on at least 1− δ fraction of ~x ∈ Fm, for δ < 1

6 −
1
3 ·

d
|F| .

The task of local decoding is: given as input ~x0 ∈ Fm, output f̃(~x0) by making few queries to f (here by
“few” we mean |F|). The algorithm can (and has to) be randomized.

Local Decoder:

1. Pick uniformly ~y ∈ Fm, let l be the line {~x0 + t~y|t ∈ F}

2. Find polynomial of degree at most d that is closest to f |l, denote it by gl

3. Output gl(0)

Lemma 14
For every ~x0 ∈ Fm, the local decoder outputs f̃(~x0) with probability at least 2

3 .

Proof: By Markov inequality, with probability at least 2/3, for at least 1 − 3δ > 1
2 + d

|F| fraction of the

t ∈ F it holds that f |l(t) = f̃ |l(t). Let us concentrate on this event.
The restriction f̃ |l is a polynomial of degree at most d. Hence, the polynomial gl must satisfy gl(t) = fl(t)

for more than 1
2 + d

|F| fraction of the t ∈ F. By the Schwartz-Zippel Lemma, if gl 6≡ f̃ |l, then gl(t) = f̃ |l(t) for

at most d
|F| fraction of the t ∈ F. Thus, necessarily gl ≡ f̃l, and the local decoder will output gl(0) = f̃(~x0).
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