1 Low Degree Polynomials and The Schwartz-Zippel Lemma

Definition 1 (Low Degree Polynomial) Let \mathbb{F} be a finite field, m, d be natural numbers, a m-variate polynomial of degree at most d over \mathbb{F} is an expression of the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sum_{\sum_{j} i_{j} \leq d} c_{i_{1}, i_{2}, \ldots, i_{m}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{m}^{i_{m}}
$$

Where the coefficients are $c_{i_{1}, i_{2}, \ldots, i_{m}} \in \mathbb{F}$.
Lemma 2 (Schwartz-Zippel)
If f, g are two different m-variate polynomial of degree at most d over \mathbb{F}, then $f(\vec{x})=g(\vec{x})$ holds for at most $\frac{d}{|\mathbb{F}|}$ fraction of \vec{x} in \mathbb{F}^{m}.

One can prove the Schwartz-Zippel Lemma by induction on the dimension m. We will see a different proof. For that we will need a couple of definitions:

Definition 3 (Line) A line in \mathbb{F}^{m} is a set of the form $\{\vec{x}+t \cdot \vec{y} \mid t \in \mathbb{F}\}, \vec{x}, \vec{y} \in \mathbb{F}^{m}, \vec{y} \neq \overrightarrow{0}$
Definition 4 Let f be a function from \mathbb{F}^{m} to \mathbb{F}, the restiction of f to a line $l=\{\vec{x}+t \vec{y} \mid t \in \mathbb{F}\}$ is $\left.f\right|_{l}(t)=f(\vec{x}+t \vec{y})$.

Proof:[of Schwartz-Zippel Lemma] Note that it is enough to prove that a not identically zero m-variate polynomial h of degree exactly d over \mathbb{F} satisfies $h(\vec{x})=\overrightarrow{0}$ only for at most $\frac{d}{|\mathbb{F}|}$ fraction of the points $\vec{x} \in \mathbb{F}^{m}$.

Let $h_{=d}$ be the degree- d homogeneous part of h, i.e., $h \equiv h_{=d}+h_{<d}$ where all the terms in $h_{=d}$ are of degree exactly d and all the terms in $h_{<d}$ are of degree smaller than d. Let $\vec{y} \neq \overrightarrow{0} \in \mathbb{F}^{m}$ be such that $h_{=d}(\vec{y}) \neq 0$ (Note that such \vec{y} must exist!). For every $\vec{x} \in \mathbb{F}^{m}$, let $l_{\vec{x}}=\{\vec{x}+t \cdot \vec{y} \mid t \in \mathbb{F}\}$ be the line in direction \vec{y} through \vec{x}. Note that $\cup_{\vec{x} \in \mathbb{F}^{m}} l_{\vec{x}}$ is a partition of \mathbb{F}^{m}.

For every $\vec{x} \in \mathbb{F}^{m}$, the restriction $h_{\mid l_{\vec{x}}}$ is a univariate polynomial of degree at most d. Moreover, this polynomial is not identically zero! The reason is that the coefficient of t^{d} is percisely $h_{=d}(\vec{y})$. Hence, $h_{\mid l_{\vec{x}}}(t)=0$ for at most $\frac{d}{|\mathbb{F}|}$ fraction of the $t \in \mathbb{F}$. The lemma follows.

2 The Reed-Muller Code

Definition 5 (Reed-Muller Code) The Reed-Muller code with parameters \mathbb{F}, m, d is the code containing all tables of m-variate polynomial of degree at most d over \mathbb{F}.

Each Reed-Muller Code codeword corresponds to a low degree polynomial f over field \mathbb{F}. The codeword is indexed by $\vec{x} \in \mathbb{F}^{m}$, and the value at \vec{x} is exactly $f(\vec{x})$.

The Reed-Solomon Code with parameters \mathbb{F}, d is the Reed-Muller Code with parameters $\mathbb{F}, m=1$, and d. The Hadamard Code with parameters \mathbb{F}, m is the Reed-Muller Code with parameters \mathbb{F}, m, and $d=1$.
Remark 6 By the Schwrtz-Zippel Lemma the relative distance of the Reed-Muller Code is at least $1-\frac{d}{|F|}$
Remark 7 The Reed-Muller code is linear: the codewords of Reed-Muller code form a linear subspace of \mathbb{F}^{m}.

Lemma 8 (Johnson Bound)
Let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ be an arbitrary function from \mathbb{F}^{m} to \mathbb{F}. For every $\delta \geq 2 \sqrt{\frac{d}{|\mathbb{F}|}}$, there are at most $\frac{2}{\delta}$ polynomials q of degree at most d such that $f(\vec{x})=q(\vec{x})$ for at least δ fraction of $\vec{x} \in \mathbb{F}^{m}$.

Proof: Assume towards contradiction that there are $\frac{2}{\delta}<l \leq\left\lfloor\frac{2}{\delta}\right\rfloor+1$ different polynomials $q_{1}, q_{2}, \ldots, q_{l}$ as in the statement. By Inclusion-Exclusion, since any two low degree polynomials can agree on at most $\frac{d}{|\mathbb{F}|}$ fraction,

$$
1 \geq \operatorname{Pr}_{\vec{x} \in \mathbb{F}^{m}}\left[\vee_{i=1}^{l} f(\vec{x})=q_{i}(\vec{x})\right] \geq \delta l-\binom{l}{2} \frac{d}{|\mathbb{F}|}>1
$$

Contradiction.
Note that the proof applies to any code, with $\frac{d}{|\mathbb{F}|}$ replaced by δ, where the relative distance of the code is $1-\delta$.

4 Code Rate

The length of a Reed-Muller codeword is $|\mathbb{F}|^{m}$, the dimension of the code is $\binom{m+d}{d}$.
For the Hadamard Code $(d=1)$, the number of codewords is $|\mathbb{F}|^{m}$, and the rate is exponentially small.
For the case when $d>m$, the code rate is $\frac{(\Theta(d / m))^{m}}{|\mathbb{F}|^{m}}=\left(\frac{d}{|\mathbb{F}|}\right)^{m} \cdot \frac{1}{(\Theta(m))^{m}}$

5 Interpolation

5.1 Univariate Interpolation

Given $t_{0}, t_{1}, \ldots, t_{d} \in \mathbb{F}, a_{0}, a_{1}, \ldots, a_{d} \in \mathbb{F}$. The unique univariate polynomial f of degree at most d such that for all $i f\left(t_{i}\right)=a_{i}$, is given by Lagrange's Formula:

$$
f(t)=\sum_{i=0}^{d} a_{i} I_{t_{i}}(t)
$$

Where $I_{t_{i}}$ is a polynomial of degree at most d that is 1 at point t_{i} and 0 for all other points $t_{j}, j \neq i$.

$$
I_{t_{i}}(t)=\frac{\prod_{j \neq i}\left(t-t_{j}\right)}{\prod_{j \neq i}\left(t_{i}-t_{j}\right)}
$$

5.2 Multivariate Interpolation

In the univariate case, we just saw that one can interpolate a polynomial given any fixing to any set of points of size $\frac{d}{|\mathbb{F}|} \cdot\left|\mathbb{F}^{m}\right|+1$. In the multivariate case this is no longer true. For example, take a line as your set.

We will choose a special set for multivariate interpolation: a sub-cube. Specifically, we pick $H \subseteq \mathbb{F}$, and let a be a function that maps H^{m} to \mathbb{F}. Then there is an m-variate polynomial f of degree at most $(|H|-1) m$, satisfying $f(\vec{x})=a(\vec{x})$ for all $\vec{x} \in H^{m}$. The polynomial is given by the following formula:

$$
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sum_{h_{1}, h_{2}, \ldots, h_{m} \in H} I_{h_{1}}\left(x_{1}\right) I_{h_{2}}\left(x_{2}\right) \cdots I_{h_{m}}\left(x_{m}\right) a\left(h_{1}, h_{2}, \ldots, h_{m}\right)
$$

6 Recursive Structure

Definition 9 (Affine SUBSPace) An affine subspace of dimension k in \mathbb{F}^{m} is a set of the form $\{\vec{x}+$ $\left.\sum_{i=1}^{k} t_{i} \vec{y}_{i} \mid t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{F}\right\}, \vec{x} \in \mathbb{F}^{m} . \vec{y}_{1}, \ldots, \vec{y}_{k}$ are k linearly independent vectors in \mathbb{F}^{m}.

Example 10 A line is a 1-dimensional affine subspace. A plane is a 2-dimensional affine subspace.
Definition 11 (Manifold) A manifold(variety) of dimension k, degree at most r is a set of the form $\left\{\left(q_{1}\left(t_{1}, \ldots, t_{k}\right), . ., q_{m}\left(t_{1}, \ldots, t_{k}\right)\right) \mid t_{1}, \ldots, t_{k} \in \mathbb{F}\right\}$, where q_{i} s are polynomials of degree at most r.

Definition 12 Let f be a function $\mathbb{F}^{m} \rightarrow \mathbb{F}$, the restriction of f to a manifold $S=\left\{\left(q_{1}, q_{2}, \ldots, q_{m}\right)\right\}$ is $\left.f\right|_{S}\left(t_{1}, \ldots, t_{k}\right)=f\left(q_{1}\left(t_{1}, \ldots, t_{k}\right), \ldots, q_{m}\left(t_{1}, \ldots, t_{k}\right)\right)$.

The following simple fact underlies our use of low degree polynomials:
Lemma 13 (Recursive Structure)
If f is a polynomial of degree at most d, S is a manifold of degree at most r, then $\left.f\right|_{S}$ is a polynomial of degree at most $d \cdot r$.

7 Local Decoding

Given is a function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ that is "very close" to low degree polynomial, i.e., there is a \tilde{f} of degree at most d such that $f(\vec{x})=\tilde{f}(\vec{x})$ on at least $1-\delta$ fraction of $\vec{x} \in \mathbb{F}^{m}$, for $\delta<\frac{1}{6}-\frac{1}{3} \cdot \frac{d}{|\mathbb{F}|}$.

The task of local decoding is: given as input $\vec{x}_{0} \in \mathbb{F}^{m}$, output $\tilde{f}\left(\vec{x}_{0}\right)$ by making few queries to f (here by "few" we mean $|\mathbb{F}|$). The algorithm can (and has to) be randomized.

Local Decoder:

1. Pick uniformly $\vec{y} \in \mathbb{F}^{m}$, let l be the line $\left\{\vec{x}_{0}+t \vec{y} \mid t \in \mathbb{F}\right\}$
2. Find polynomial of degree at most d that is closest to $\left.f\right|_{l}$, denote it by g_{l}
3. Output $g_{l}(0)$

Lemma 14

For every $\vec{x}_{0} \in \mathbb{F}^{m}$, the local decoder outputs $\tilde{f}\left(\vec{x}_{0}\right)$ with probability at least $\frac{2}{3}$.
Proof: By Markov inequality, with probability at least $2 / 3$, for at least $1-3 \delta>\frac{1}{2}+\frac{d}{|\mathbb{F}|}$ fraction of the $t \in \mathbb{F}$ it holds that $\left.f\right|_{l}(t)=\left.\tilde{f}\right|_{l}(t)$. Let us concentrate on this event.

The restriction $\left.f\right|_{l}$ is a polynomial of degree at most d. Hence, the polynomial g_{l} must satisfy $g_{l}(t)=f_{l}(t)$ for more than $\frac{1}{2}+\frac{d}{|\mathbb{F}|}$ fraction of the $t \in \mathbb{F}$. By the Schwartz-Zippel Lemma, if $\left.g_{l} \not \equiv \tilde{f}\right|_{l}$, then $g_{l}(t)=\left.\tilde{f}\right|_{l}(t)$ for at most $\frac{d}{|\mathbb{F}|}$ fraction of the $t \in \mathbb{F}$. Thus, necessarily $g_{l} \equiv \tilde{f}_{l}$, and the local decoder will output $g_{l}(0)=\tilde{f}\left(\vec{x}_{0}\right)$.

