PRINCETON, SPRING 09

PROJECTION PCP

(Soundness)

Lecture 9: Combinatorial Transformations on Projection Games: Right Degree Reduction

Lecturer: Dana Moshkovitz

Scribe: Moritz Hardt

1 Right Degree Reduction

Recall that we think of a projection game \mathcal{G} as a bipartite graph on the vertex set (A, B)so that for every edge (a, b) there is a constraint $f_{a,b} \colon \Sigma_A \to \Sigma_B$.

In this lecture, we will see a combinatorial transformation of a projection game which reduces the right degree of the instance, i.e., the degree of vertices in B, to a quantity that depends on the error ε alone, and not on the instance size n. At the same time, we maintain soundness and completeness.

THEOREM 1 (RIGHT DEGREE REDUCTION)

Let \mathcal{G} be a projection game so that the average right degree is D. Then, for any d > 0, there is an efficient transformation of \mathcal{G} into \mathcal{G}' such that:

1. The degree of all the right vertices in \mathcal{G}' is d.

2.
$$\operatorname{val}(\mathcal{G}) = 1 \Longrightarrow \operatorname{val}(\mathcal{G}') = 1$$
 (Completeness

3. $\operatorname{val}(\mathcal{G}) \leq \epsilon \implies \operatorname{val}(\mathcal{G}) \leq \epsilon + O(\frac{1}{\sqrt{d}})$

Furthermore, the size of \mathcal{G}' is bounded by $|\mathcal{G}'| \leq D|\mathcal{G}|$.

Remarks:

- 1. We take $d = \text{poly}(1/\epsilon)$ so that there is no dependence on n.
- 2. After right degree reduction, player B has a lot more information about player A's question: player B can always guess one of d possibilities.
- 3. The soundness tradeoff is essentially optimal. Indeed, for the reason mentioned above, the degree has to be at least $1/\epsilon$ if we're shooting for soundness ϵ .

1.1 Background on Expander graphs

For the sake of completeness we recall the notion of an expander graph and state the wellknown expander mixing lemma.

DEFINITION 1 (EXPANDER GRAPH) A d-regular graph H = (V, E) is an (n, d, λ) -expander, if the second largest eigenvalue of H's adjacency matrix is at most λ .

We remark that there is an efficient algorithm that given as input size n, degree d > 3and second eigenvalue $\lambda = \Omega(\frac{1}{\sqrt{d}})$ (for some specific function $\Omega(\frac{1}{\sqrt{d}})$), constructs an (n, d, λ) expander in time poly(n, d). Graphs with $\lambda = O(\frac{1}{\sqrt{d}})$ are called *Ramanujan graphs*.

LEMMA 2 (EXPANDER MIXING LEMMA)

Let H = (V, E) be an (n, d, λ) -expander. Then, for every two sets $X, Y \subseteq V$, we have

$$\left| E(X,Y) - \frac{d}{n} |X| |Y| \right| \le \lambda \sqrt{|X||Y|}.$$
(1)

PROOF: Denoting by x, y the characteristic vectors of X, Y we observe that $E(X, Y) = x^T A y$ where A is the adjacency matrix of H. On the other hand, we can write x, y as $x = \sum_i \alpha_i u_i, y = \sum_i \beta_i u_i$ where $\{u_i\}_{i=1}^n$ is an orthonormal eigenbasis of A. Let $d = \lambda_1 \ge \cdots \ge \lambda_n$ be the eigenvalues of A, where $\lambda = max\{|\lambda_2|, |\lambda_n|\}$.

We then see

$$E(X,Y) = x^T A y = \sum_{i,j} \alpha_i \beta_j \lambda_i \lambda_j \langle u_i, u_j \rangle$$

= $\sum_i \alpha_i \beta_i \lambda_i$
 $\leq \alpha_1 \beta_1 \lambda_1 + \lambda \sum_i \alpha_i \beta_i$
= $\frac{d}{n} |X| |Y| + \lambda \sum_i \alpha_i \beta_i$,

where we used that $\lambda_1 = d$ and $u_1 = 1$ (the all one's vector). Taking absolute values we get that

$$\left| E(X,Y) - \frac{d}{n} |X| |Y| \right| \le \lambda \sum_{i} |\alpha_i| |\beta_i|.$$

It only remains to observe that

$$\sum_{i} |\alpha_i| |\beta_i| \le \sqrt{\sum_{i} \alpha_i^2} \sqrt{\sum_{i} \beta_i^2} = \sqrt{|X||Y|}$$

via Cauchy-Schwarz inequality. \Box

1.2 Idea of the construction

Picture a single vertex b on the right hand side, let D_b denote its degree and N(b) its neighborhood in A. We will make D_b copies of b, call those vertices C(b). How do we connect those copies to N(b)? Suppose, we pick a random d-regular bipartite graph between N(b)and C(b). Every edge between $a \in N(b)$ and $b' \in C(b)$ will simply inherit the constraint $f_{a,b}$.

It is easy to see that this construction will satisfy completeness, since a truthful prover can simply give all vertices in C(b) the same intended label.

To argue soundness, suppose a dishonest prover labeled a large fraction of C(b) using several different labels. We can then extract a good (randomized) labeling to the old vertex b by picking at random one these labels, denoted σ , with probability proportional to the fraction of vertices in C(b) that have the label σ . Since the graph between N(b) and C(b) is random and regular, this randomized assignment will have the same *expected* value as in \mathcal{G} .

The actual construction will be deterministic and hence use expander graphs.

1.3 Construction

We will now construct \mathcal{G}' : As described earlier, we replace B by $B' = \{(b,i): b \in B, i \in [D_b]\}$. We denote the copies of b by $C(b) = \{(b,i): i \in [D_b]\}$. For each $b \in B$, let H_b be a bipartite $(D_b, d, \frac{c_0}{\sqrt{d}})$ -expander for some constant c_0 . Connect the two vertex sets N(b) and C(b) by the edges of H_b , i.e., if a is the j'th neighbor of b and (j,i) is an edge of H_b then (a, (b, i)) is an edge in the new graph. Each edge (a, (b, i)) for $i \in [D_b]$, inherits the constraint $f_{(a,b)}$.

It is clear by construction that the right degree of \mathcal{G}' is d and the instance size is increased by at most a factor of D. The left degree is multiplied by d. If the graph were left-regular, then it remains left-regular.

Soundness and completeness are proven next.

Proof of Theorem 1

Completeness: Given a labeling $\ell \colon B \to \Sigma$ that satisfies all constraints in \mathcal{G} , consider the labeling $\ell'(b,i) = \ell(b)$. It will satisfy all constraints in \mathcal{G}' .

Soundness: The claim is proven contrapositively. Fix a labeling of A and B' that achieves in \mathcal{G}' value greater than $\epsilon + \frac{c_1}{\sqrt{d}}$ where c_1 is a sufficiently large constant, say, $c_1 > c_0$. We will then show how to construct a labeling to A and B that achieves in \mathcal{G} value greater than ϵ .

Let $\ell_{B'}: B' \to \Sigma$ denote the labeling of B', we define a new labeling $\ell_B: B \to \Sigma$ as follows: The value $\ell_B(b)$ is defined by randomly picking $i \in [D_b]$ and choosing label $\ell_{B'}(b, i)$.

To analyze the value of the labeling in \mathcal{G} , let us define the following partitions:

• $X_{b,\sigma}$ are those vertices in N(b) which "vote" for σ . Formally,

$$X_{b,\sigma} = \{a \in N(b) \colon f_{a,b}(\ell_A(a)) = \sigma\},\$$

where ℓ_A is the labeling of the vertices in A.

• $Y_{b,\sigma}$ are those copies of b which are labeled by σ , i.e.,

$$Y_{b,\sigma} = \{i \in [D_b] \colon \ell_{B'}(b,i) = \sigma\}.$$

Notice that the expected value of ℓ_B is given by:

$$\frac{1}{|E|} \sum_{b \in B} \sum_{\sigma \in \Sigma} |X_{b,\sigma}| \cdot \frac{|Y_{b,\sigma}|}{D_b} = \frac{1}{|E'|} \sum_{b \in B} \sum_{\sigma \in \Sigma} |X_{b,\sigma}| |Y_{b,\sigma}| \frac{d}{D_b}.$$

Hence, we can now lower bound the value of ${\mathcal G}$ using the Expander Mixing Lemma:

$$\operatorname{val}(G) \geq \frac{1}{|E'|} \sum_{b \in B} \sum_{\sigma \in \Sigma} |X_{b,\sigma}| |Y_{b,\sigma}| \frac{d}{D_b}$$

$$\geq \frac{1}{|E'|} \sum_{b \in B} \sum_{\sigma \in \Sigma} \left(E(X_{b,\sigma}, Y_{b,\sigma}) - \lambda \sqrt{|X_{b,\sigma}|} \sqrt{|Y_{b,\sigma}|} \right) \qquad \text{(by (1))}$$

$$\geq \epsilon + \frac{c_1}{\sqrt{d}} - \frac{\lambda}{|E'|} \sum_{b \in B} \sum_{\sigma \in \Sigma} \sqrt{|X_{b,\sigma}| |Y_{b,\sigma}|}$$

$$\geq \epsilon + \frac{c_1}{\sqrt{d}} - \frac{\lambda}{|E'|} \sum_{b \in B} \sqrt{\sum_{\sigma \in \Sigma} |X_{b,\sigma}|} \sqrt{\sum_{\sigma \in \Sigma} |Y_{b,\sigma}|} \qquad \text{(Cauchy-Schwarz)}$$

$$\geq \epsilon + \frac{c_1}{\sqrt{d}} - \frac{c_0}{\sqrt{d}} > \epsilon$$