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1 Right Degree Reduction

Recall that we think of a projection game G as a bipartite graph on the vertex set (A,B)
so that for every edge (a, b) there is a constraint fa,b : ΣA → ΣB.

In this lecture, we will see a combinatorial transformation of a projection game which
reduces the right degree of the instance, i.e., the degree of vertices in B, to a qunatity that
depends on the error ε alone, and not on the instance size n. At the same time, we maintain
soundness and completeness.

Theorem 1 (Right degree reduction)
Let G be a projection game so that the average right degree is D. Then, for any d > 0,
there is an efficient transformation of G into G′ such that:

1. The degree of all the right vertices in G′ is d.

2. val(G) = 1 =⇒ val(G′) = 1 (Completeness)

3. val(G) ≤ ε =⇒ val(G) ≤ ε + O( 1√
d
) (Soundness)

Furthermore, the size of G′ is bounded by |G′| ≤ D|G|.

Remarks:

1. We take d = poly(1/ε) so that there is no dependence on n.

2. After right degree reduction, player B has a lot more information about player A’s
question: player B can always guess one of d possibilities.

3. The soundness tradeoff is essentially optimal. Indeed, for the reason mentioned above,
the degree has to be at least 1/ε if we’re shooting for soundness ε.

1.1 Background on Expander graphs

For the sake of completeness we recall the notion of an expander graph and state the well-
known expander mixing lemma.

Definition 1 (Expander graph) A d-regular graph H = (V, E) is an (n, d, λ)-expander,
if the second largest eigenvalue of H’s adjacency matrix is at most λ.
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We remark that there is an efficient algorithm that given as input size n, degree d > 3
and second eigenvalue λ = Ω( 1√

d
) (for some specific function Ω( 1√

d
)), constructs an (n, d, λ)-

expander in time poly(n, d). Graphs with λ = O( 1√
d
) are called Ramanujan graphs.

Lemma 2 (Expander Mixing Lemma)
Let H = (V, E) be an (n, d, λ)-expander. Then, for every two sets X, Y ⊆ V , we have

∣∣∣∣E(X, Y )− d

n
|X||Y |

∣∣∣∣ ≤ λ
√
|X||Y |. (1)

Proof: Denoting by x, y the characteristic vectors of X, Y we observe that E(X,Y ) =
xT Ay where A is the adjacency matrix of H. On the other hand, we can write x, y as
x =

∑
i αiui, y =

∑
i βiui where {ui}n

i=1 is an orthonormal eigenbasis of A. Let d = λ1 ≥
· · · ≥ λn be the eigenvalues of A, where λ = max {|λ2| , |λn|}.

We then see

E(X, Y ) = xT Ay =
∑

i,j

αiβjλiλj〈ui, uj〉

=
∑

i

αiβiλi

≤ α1β1λ1 + λ
∑

i

αiβi

=
d

n
|X||Y |+ λ

∑

i

αiβi,

where we used that λ1 = d and u1 = 1 (the all one’s vector). Taking absolute values we get
that ∣∣∣∣E(X, Y )− d

n
|X||Y |

∣∣∣∣ ≤ λ
∑

i

|αi||βi|.

It only remains to observe that

∑

i

|αi||βi| ≤
√∑

i

α2
i

√∑

i

β2
i =

√
|X||Y |

via Cauchy-Schwarz inequality. 2

1.2 Idea of the construction

Picture a single vertex b on the right hand side, let Db denote its degree and N(b) its
neighborhood in A. We will make Db copies of b, call those vertices C(b). How do we connect
those copies to N(b)? Suppose, we pick a random d-regular bipartite graph between N(b)
and C(b). Every edge between a ∈ N(b) and b′ ∈ C(b) will simply inherit the constraint fa,b.

It is easy to see that this construction will satisfy completeness, since a truthful prover
can simply give all vertices in C(b) the same intended label.

To argue soundness, suppose a dishonest prover labeled a large fraction of C(b) using
several different labels. We can then extract a good (randomized) labeling to the old vertex
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b by picking at random one these labels, denoted σ, with probability proportional to the
fraction of vertices in C(b) that have the label σ. Since the graph between N(b) and C(b)
is random and regular, this randomized assignment will have the same expected value as in
G.

The actual construction will be deterministic and hence use expander graphs.

1.3 Construction

We will now construct G′: As described earlier, we replace B by B′ = {(b, i) : b ∈ B, i ∈
[Db]}. We denote the copies of b by C(b) = {(b, i) : i ∈ [Db]}. For each b ∈ B, let Hb be
a bipartite (Db, d, c0√

d
)-expander for some constant c0. Connect the two vertex sets N(b)

and C(b) by the edges of Hb, i.e., if a is the j’th neighbor of b and (j, i) is an edge of Hb

then (a, (b, i)) is an edge in the new graph. Each edge (a, (b, i)) for i ∈ [Db], inherits the
constraint f(a,b).

It is clear by construction that the right degree of G′ is d and the instance size is increased
by at most a factor of D. The left degree is multiplied by d. If the graph were left-regular,
then it remains left-regular.

Soundness and completeness are proven next.

Proof of Theorem 1

Completeness: Given a labeling ` : B → Σ that satisfies all constraints in G, consider
the labeling `′(b, i) = `(b). It will satisfy all constraints in G′.

Soundness: The claim is proven contrapositively. Fix a labeling of A and B′ that achieves
in G′ value greater than ε+ c1√

d
where c1 is a sufficiently large constant, say, c1 > c0. We will

then show how to construct a labeling to A and B that achieves in G value greater than ε.
Let `B′ : B′ → Σ denote the labeling of B′, we define a new labeling `B : B → Σ

as follows: The value `B(b) is defined by randomly picking i ∈ [Db] and choosing label
`B′(b, i).

To analyze the value of the labeling in G, let us define the following partitions:

• Xb,σ are those vertices in N(b) which “vote” for σ. Formally,

Xb,σ = {a ∈ N(b) : fa,b(`A(a)) = σ},

where `A is the labeling of the vertices in A.

• Yb,σ are those copies of b which are labeled by σ, i.e.,

Yb,σ = {i ∈ [Db] : `B′(b, i) = σ}.

Notice that the expected value of `B is given by:

1
|E|

∑

b∈B

∑

σ∈Σ

|Xb,σ| ·
|Yb,σ|
Db

=
1
|E′|

∑

b∈B

∑

σ∈Σ

|Xb,σ||Yb,σ| d

Db
.
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Hence, we can now lower bound the value of G using the Expander Mixing Lemma:

val(G) ≥ 1
|E′|

∑

b∈B

∑

σ∈Σ

|Xb,σ||Yb,σ| d

Db

≥ 1
|E′|

∑

b∈B

∑

σ∈Σ

(
E(Xb,σ, Yb,σ)− λ

√
|Xb,σ|

√
|Yb,σ|

)
(by (1))

≥ ε +
c1√
d
− λ

|E′|
∑

b∈B

∑

σ∈Σ

√
|Xb,σ||Yb,σ|

≥ ε +
c1√
d
− λ

|E′|
∑

b∈B

√∑

σ∈Σ

|Xb,σ|
√∑

σ∈Σ

|Yb,σ| (Cauchy-Schwarz)

≥ ε +
c1√
d
− c0√

d
> ε


