Lecturer: Dana Moshkovitz
Scribe: Moritz Hardt

1 Right Degree Reduction

Recall that we think of a projection game \mathcal{G} as a bipartite graph on the vertex set (A, B) so that for every edge (a, b) there is a constraint $f_{a, b}: \Sigma_{A} \rightarrow \Sigma_{B}$.

In this lecture, we will see a combinatorial transformation of a projection game which reduces the right degree of the instance, i.e., the degree of vertices in B, to a qunatity that depends on the error ε alone, and not on the instance size n. At the same time, we maintain soundness and completeness.

Theorem 1 (Right degree reduction)

Let \mathcal{G} be a projection game so that the average right degree is D. Then, for any $d>0$, there is an efficient transformation of \mathcal{G} into \mathcal{G}^{\prime} such that:

1. The degree of all the right vertices in \mathcal{G}^{\prime} is d.
2. $\operatorname{val}(\mathcal{G})=1 \Longrightarrow \operatorname{val}\left(\mathcal{G}^{\prime}\right)=1$
(Completeness)
3. $\operatorname{val}(\mathcal{G}) \leq \epsilon \Longrightarrow \operatorname{val}(\mathcal{G}) \leq \epsilon+O\left(\frac{1}{\sqrt{d}}\right)$
(Soundness)
Furthermore, the size of \mathcal{G}^{\prime} is bounded by $\left|\mathcal{G}^{\prime}\right| \leq D|\mathcal{G}|$.
Remarks:
4. We take $d=\operatorname{poly}(1 / \epsilon)$ so that there is no dependence on n.
5. After right degree reduction, player B has a lot more information about player A 's question: player B can always guess one of d possibilities.
6. The soundness tradeoff is essentially optimal. Indeed, for the reason mentioned above, the degree has to be at least $1 / \epsilon$ if we're shooting for soundness ϵ.

1.1 Background on Expander graphs

For the sake of completeness we recall the notion of an expander graph and state the wellknown expander mixing lemma.

Definition 1 (Expander graph) A d-regular graph $H=(V, E)$ is an (n, d, λ)-expander, if the second largest eigenvalue of H 's adjacency matrix is at most λ.

We remark that there is an efficient algorithm that given as input size n, degree $d>3$ and second eigenvalue $\lambda=\Omega\left(\frac{1}{\sqrt{d}}\right)$ (for some specific function $\Omega\left(\frac{1}{\sqrt{d}}\right)$), constructs an (n, d, λ) expander in time poly (n, d). Graphs with $\lambda=O\left(\frac{1}{\sqrt{d}}\right)$ are called Ramanujan graphs.
Lemma 2 (Expander Mixing Lemma)
Let $H=(V, E)$ be an (n, d, λ)-expander. Then, for every two sets $X, Y \subseteq V$, we have

$$
\begin{equation*}
\left|E(X, Y)-\frac{d}{n}\right| X||Y|| \leq \lambda \sqrt{|X||Y|} \tag{1}
\end{equation*}
$$

Proof: Denoting by x, y the characteristic vectors of X, Y we observe that $E(X, Y)=$ $x^{T} A y$ where A is the adjacency matrix of H. On the other hand, we can write x, y as $x=\sum_{i} \alpha_{i} u_{i}, y=\sum_{i} \beta_{i} u_{i}$ where $\left\{u_{i}\right\}_{i=1}^{n}$ is an orthonormal eigenbasis of A. Let $d=\lambda_{1} \geq$ $\cdots \geq \lambda_{n}$ be the eigenvalues of A, where $\lambda=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$.

We then see

$$
\begin{aligned}
E(X, Y)=x^{T} A y & =\sum_{i, j} \alpha_{i} \beta_{j} \lambda_{i} \lambda_{j}\left\langle u_{i}, u_{j}\right\rangle \\
& =\sum_{i} \alpha_{i} \beta_{i} \lambda_{i} \\
& \leq \alpha_{1} \beta_{1} \lambda_{1}+\lambda \sum_{i} \alpha_{i} \beta_{i} \\
& =\frac{d}{n}|X||Y|+\lambda \sum_{i} \alpha_{i} \beta_{i}
\end{aligned}
$$

where we used that $\lambda_{1}=d$ and $u_{1}=\mathbf{1}$ (the all one's vector). Taking absolute values we get that

$$
\left|E(X, Y)-\frac{d}{n}\right| X||Y|| \leq \lambda \sum_{i}\left|\alpha_{i}\right|\left|\beta_{i}\right|
$$

It only remains to observe that

$$
\sum_{i}\left|\alpha_{i}\right|\left|\beta_{i}\right| \leq \sqrt{\sum_{i} \alpha_{i}^{2}} \sqrt{\sum_{i} \beta_{i}^{2}}=\sqrt{|X||Y|}
$$

via Cauchy-Schwarz inequality.

1.2 Idea of the construction

Picture a single vertex b on the right hand side, let D_{b} denote its degree and $N(b)$ its neighborhood in A. We will make D_{b} copies of b, call those vertices $C(b)$. How do we connect those copies to $N(b)$? Suppose, we pick a random d-regular bipartite graph between $N(b)$ and $C(b)$. Every edge between $a \in N(b)$ and $b^{\prime} \in C(b)$ will simply inherit the constraint $f_{a, b}$.

It is easy to see that this construction will satisfy completeness, since a truthful prover can simply give all vertices in $C(b)$ the same intended label.

To argue soundness, suppose a dishonest prover labeled a large fraction of $C(b)$ using several different labels. We can then extract a good (randomized) labeling to the old vertex
b by picking at random one these labels, denoted σ, with probability proportional to the fraction of vertices in $C(b)$ that have the label σ. Since the graph between $N(b)$ and $C(b)$ is random and regular, this randomized assignment will have the same expected value as in \mathcal{G}.

The actual construction will be deterministic and hence use expander graphs.

1.3 Construction

We will now construct \mathcal{G}^{\prime} : As described earlier, we replace B by $B^{\prime}=\{(b, i): b \in B, i \in$ $\left.\left[D_{b}\right]\right\}$. We denote the copies of b by $C(b)=\left\{(b, i): i \in\left[D_{b}\right]\right\}$. For each $b \in B$, let H_{b} be a bipartite $\left(D_{b}, d, \frac{c_{0}}{\sqrt{d}}\right)$-expander for some constant c_{0}. Connect the two vertex sets $N(b)$ and $C(b)$ by the edges of H_{b}, i.e., if a is the j 'th neighbor of b and (j, i) is an edge of H_{b} then $(a,(b, i))$ is an edge in the new graph. Each edge $(a,(b, i))$ for $i \in\left[D_{b}\right]$, inherits the constraint $f_{(a, b)}$.

It is clear by construction that the right degree of \mathcal{G}^{\prime} is d and the instance size is increased by at most a factor of D. The left degree is multiplied by d. If the graph were left-regular, then it remains left-regular.

Soundness and completeness are proven next.

Proof of Theorem 1

Completeness: Given a labeling $\ell: B \rightarrow \Sigma$ that satisfies all constraints in \mathcal{G}, consider the labeling $\ell^{\prime}(b, i)=\ell(b)$. It will satisfy all constraints in \mathcal{G}^{\prime}.

Soundness: The claim is proven contrapositively. Fix a labeling of A and B^{\prime} that achieves in \mathcal{G}^{\prime} value greater than $\epsilon+\frac{c_{1}}{\sqrt{d}}$ where c_{1} is a sufficiently large constant, say, $c_{1}>c_{0}$. We will then show how to construct a labeling to A and B that achieves in \mathcal{G} value greater than ϵ.

Let $\ell_{B^{\prime}}: B^{\prime} \rightarrow \Sigma$ denote the labeling of B^{\prime}, we define a new labeling $\ell_{B}: B \rightarrow \Sigma$ as follows: The value $\ell_{B}(b)$ is defined by randomly picking $i \in\left[D_{b}\right]$ and choosing label $\ell_{B^{\prime}}(b, i)$.

To analyze the value of the labeling in \mathcal{G}, let us define the following partitions:

- $X_{b, \sigma}$ are those vertices in $N(b)$ which "vote" for σ. Formally,

$$
X_{b, \sigma}=\left\{a \in N(b): f_{a, b}\left(\ell_{A}(a)\right)=\sigma\right\}
$$

where ℓ_{A} is the labeling of the vertices in A.

- $Y_{b, \sigma}$ are those copies of b which are labeled by σ, i.e.,

$$
Y_{b, \sigma}=\left\{i \in\left[D_{b}\right]: \ell_{B^{\prime}}(b, i)=\sigma\right\}
$$

Notice that the expected value of ℓ_{B} is given by:

$$
\frac{1}{|E|} \sum_{b \in B} \sum_{\sigma \in \Sigma}\left|X_{b, \sigma}\right| \cdot \frac{\left|Y_{b, \sigma}\right|}{D_{b}}=\frac{1}{\left|E^{\prime}\right|} \sum_{b \in B} \sum_{\sigma \in \Sigma}\left|X_{b, \sigma}\right|\left|Y_{b, \sigma}\right| \frac{d}{D_{b}}
$$

Hence, we can now lower bound the value of \mathcal{G} using the Expander Mixing Lemma:

$$
\begin{align*}
\operatorname{val}(G) & \geq \frac{1}{\left|E^{\prime}\right|} \sum_{b \in B} \sum_{\sigma \in \Sigma}\left|X_{b, \sigma}\right|\left|Y_{b, \sigma}\right| \frac{d}{D_{b}} \\
& \geq \frac{1}{\left|E^{\prime}\right|} \sum_{b \in B} \sum_{\sigma \in \Sigma}\left(E\left(X_{b, \sigma}, Y_{b, \sigma}\right)-\lambda \sqrt{\left|X_{b, \sigma}\right|} \sqrt{\left|Y_{b, \sigma}\right|}\right) \tag{1}\\
& \geq \epsilon+\frac{c_{1}}{\sqrt{d}}-\frac{\lambda}{\left|E^{\prime}\right|} \sum_{b \in B} \sum_{\sigma \in \Sigma} \sqrt{\left|X_{b, \sigma}\right|\left|Y_{b, \sigma}\right|} \\
& \geq \epsilon+\frac{c_{1}}{\sqrt{d}}-\frac{\lambda}{\left|E^{\prime}\right|} \sum_{b \in B} \sqrt{\sum_{\sigma \in \Sigma}\left|X_{b, \sigma}\right|} \sqrt{\sum_{\sigma \in \Sigma}\left|Y_{b, \sigma}\right|} \\
& \geq \epsilon+\frac{c_{1}}{\sqrt{d}}-\frac{c_{0}}{\sqrt{d}}>\epsilon
\end{align*}
$$

(Cauchy-Schwarz)

