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Abstract. In this work we show that the constraint satisfaction prob-
lem (CSP), where constraints depend on k variables each and variables
range over alphabet of size d, can be efficiently approximated to within
Ω(kd/dk) for any k,d. Previous work by Makarychev and Makarychev
obtained an approximation ratio of Ω(kd/dk) only for the case where
the alphabet size d is at most exponentially large in k. In contrast, much
of the research on PCP focuses on the case of constant k and large d.

1 Introduction

Much in the same way that 3Sat is the canonical NP-Complete problem, kCSP
is the canonical NP-hard approximation problem. In kCSPd, one is given as
input a set V of variables ranging over an alphabet of size d, as well as a family
of constraints over the variables, where each constraint acts on k variables. The
goal is to find an assignment to V that satisfies as many constraints as possible.
For example, 3Sat is a special case of kCSPd where k = 3, d = 2, and the
constraints are ORs of three literals each. Analogously to Cook’s Theorem for
3Sat, the PCP Theorem [6, 5, 12, 2, 1] shows that there exists a constant k,
such that for all ε > 0, for sufficiently large d = d(ε), kCSPd is NP-hard to
approximate to within ε. Specifically, it is NP-hard to distinguish the case where
all the constraints can be simultaneously satisfied and the case where only ε
fraction of the constraints can be simultaneously satisfied.

The theory of hardness of approximation builds on the PCP Theorem to
prove, via appropriate reductions, tight hardness of approximation results. One
is typically interested in PCP theorems with small ε, since the inapproximability
factor one obtains building on the PCP theorem has an additive εΩ(1). To allow
for a small ε, one considers a large alphabet size d ≥ (1/ε)Ω(1). To see why this is
necessary, note that a random assignment to the variables satisfies d−k fraction
of the constraints in expectation, and hence one can efficiently find an assignment
that satisfies poly(1/d) fraction of the constraints,assuming k = Θ(1). Indeed, a
large number of works in PCP prove such low error PCP theorems, e.g., [3, 17,
9, 16].

? ggoldsh@mit.edu. Department of Mathematics, MIT.
?? dmoshkov@csail.mit.edu. Department of Electrical Engineering and Computer Sci-

ence, MIT. This material is based upon work supported by the National Science
Foundation under Grant Number 1218547.



2 Gil Goldshlager and Dana Moshkovitz

The approximability of kCSPd was analyzed in numerous works. Often the
first works focused on the Boolean case d = 2, and later works extended the re-
sults to more general d’s. Samorodnitsky and Trevisan [18] showed that kCSP2

is NP-hard to approximate to within O(22
√
k/2k). This was slightly improved

to O(2
√
2k/2k) by Engebretsen and Holmerin [11] and generalized by Engebret-

sen [10] to any constant d ≥ 2, establishing a hardness result of O(dO(
√
k)/dk).

Under the Unique Games Conjecture (UGC), better hardness results were ob-
tained. Samorodnitsky and Trevisan [19] showed that kCSP2 is UGC-hard to
approximate to within O(k/2k). Austrin and Mossel [4] and Guruswami and
Raghavendra [13] proved a UGC-hardness for kCSPd to within O(kd2/dk) for
any constants k, d. Moreover, Austrin and Mossel [4] improved this to O(kd/dk)
for infinitely many k’s. H̊astad [15] proved that this hardness factor holds under
the Unique Games Conjecture for all constants k ≥ d. Chan [7] was able to prove
the same hardness factor without relying on the Unique Games Conjecture. For
the case of super-constant d and sufficiently large constant k, it is only known
that kCSPd is NP-hard to approximate to within O(d−1) [9]. We conjecture that
the NP-hardness result for approximating within a factor of O(kd/dk) should ex-
tend to super-constant d, but current methods fail to prove strong bounds in this
case due to their reliance on the long code.

There is also a long sequence of algorithmic results approximating kCSPd.
Trevisan [20] and Hast [14] studied the Boolean case. Charikar, Makarychev and
Makarychev [8] settled the Boolean case up to constant factors, giving an effi-
cient SDP-based approximation algorithm with approximation factor Ω(k/2k).
For the case of general d, Charikar et al [8] could only achieve a factor of
Ω(k log d/dk). Makarychev and Makarychev [15] improved the approximation
factor to Ω(kd/dk) in the case k ≥ Ω(log d) (i.e., the alphabet is of size at most
exponential in k). In the case that k ≤ O(log d), their algorithm gives an approx-
imation ratio of ek/dk, which is no better than the Ω(d/dk) ratio that can be
obtained by a simple greedy algorithm. To the best of our knowledge, there are
no better approximation algorithms for the case of small k (possibly constant)
and large alphabet, which is the setup that low error PCP Theorems focus on.
The current work remedies this situation by presenting an approximation algo-
rithm for kCSPd that achieves approximation ratio Ω(kd/dk) for all values of k
and d.

Theorem 1. For all k, d, kCSPd can be efficiently approximated to within
Ω(kd/dk).

Similarly to previous works on approximation of kCSPd, we start by reducing
the problem to a constraint satisfaction problem in which each constraint has a
single satisfying assignment. Then we consider a natural semidefinite program
(SDP) for the problem, and design a rounding algorithm that, given a vector
solution, generates a discrete solution whose value is within Ω(kd/dk) of the
optimum. The SDP has a vector for each clause, as well as d vectors for each
variable: one for every possible assignment to the variable.
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The basic idea is to use the Goemans-Williamson rounding technique of pro-
jecting the vectors on a random Gaussian vector. First, we note that a random
assignment yields the desired Ω(kd) gain as long as the clause vector is of magni-
tude (square l2 norm) at most O(1/kd). The Gaussian projection technique then
suffices for clauses vectors of magnitude at least Ω(1/kd) and variable vectors of
magnitude at most O(1/d). Makarychev and Makarychev build on this to design
an algorithm that handles vectors of magnitude possibly Ω(1/d), but only in the
case of small d.

The contribution of the current paper is to handle the case of vectors of
magnitude Ω(1/d) for all d. By the design of the SDP, there cannot be many
vectors of magnitude much larger than 1/d. However, it is the case with many
vectors of magnitude only somewhat larger than 1/d that is the difficult case.
When d is small, this distinction does not influence the approximation factor
much, and this is what Makarychev and Makarychev use. However, when d
is large, the approximation ratio that Makarychev and Makarychev obtain is
significantly lower than it should be. The current paper handles the case of large
d by partitioning the space of possible magnitudes into very carefully chosen
intervals, and focusing on one interval which contains many vectors. The intervals
are picked using a recursive formula which guarantees that one of them must
contain enough vectors to contribute sufficiently many satisfied clauses to the
rounded solution.

An interesting point is how our algorithm functions in the case of small d,
when the solution of Makarychev and Makarychev also suffices. In fact, in this
case, our algorithm almost degenerates into their algorithm. This is because the
number of intervals chosen by our algorithm depends on the parameters k and
d such that, in this small d case, there is only one interval. This point is further
highlighted by Remark 1 of Section 4.

1.1 Organization

In Section 2, we define some useful notation for dealing with the k–CSPd prob-
lem, as well as the semidefinite program (SDP ) that we use. In Section 3, we
present our algorithm for approximating k–CSPd. In Section 4, we restate our
main result, Theorem 1. We then state and prove three auxiliary theorems, and
finally use these theorems to prove Theorem 1. For the sake of brevity, we de-
fer the proofs of several technical lemmas to Section 5. Also, since the last of
the auxiliary theorems is only a restructuring of the work of Makarychev and
Makarychev [15], its proof is postponed to Section 6 along with the description
of the algorithm it applies to. We present in Section 7 the details of a greedy
algorithm that we use for the case of constant k. Finally, in Section 8, we de-
scribe how to reduce any k–CSPd instance to an equivalent instance with only
k-AND clauses.
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2 Preliminaries

2.1 Defining k–CSPd

Definition 1. A k–CSPd instance L consists of the following components:
(1) A set U of variables
(2) The alphabet A = {1, 2, · · · , d} from which the variables take on values
(3) A set C of constraints which operate on k variables each

We denote n = |U|. We define a constraint as follows:

Definition 2. A constraint c ∈ C consists of
(1) An ordered set V (c) of k variables (u1, u2, · · · , uk)
(2) A subset S(c) ⊂ Ak of satisfying assignments

Definition 3. We refer to |S(c)| as ρ(c), or the density of c, and to the elements
of S(c) as s1, s2, · · · , sρ(c).

We define an assignment of the variables as follows:

Definition 4. An assignment of the variables is a mapping x : U → A which
specifies the value assigned to each variable of the k–CSPd.

Finally, we use the following terminology to discuss constraint satisfaction:

Definition 5. Consider any assignment x and any clause c with V (c) = (u1, u2, · · · , uk).
We say that x satisfies c if and only if (x(u1), x(u2), · · · , x(uk)) ∈ S(c).

Definition 6. The value of an assignment x is the number of constraints that
x satisfies. OPT (L) is the maximum value of any assignment of the variables of
L.

2.2 Reduction to the case of k–AND

Before we approximate the k–CSPd problem, we simplify to the case where each
clause is simply a k-AND clause. Since this is not a new idea, but was used
in [15] and many previous works, we defer the exact method to the appendix.
However, from here on, we consider only instances in which every clause is a
k–AND clause.

2.3 The SDP

We approach the problem by using the SDP of Makarychev and Makarychev
[15]. First, we need the following definitions.

Definition 7. For any variable u ∈ U and clause c ∈ C, we say that (u, i) ∈
supp(c) if u ∈ V (c) and i is the assignment to the variable u that satisfies c.

Definition 8. For any vector u, ||u|| refers to the l2 norm of u. Thus, ||u||2
refers to the squared l2 norm of u, which we refer to as the magnitude of u.
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Definition 9. For vectors u and v, 〈u, v〉 refers to the inner product of u and
v.

In the SDP, there is one vector zc for each clause c ∈ C. Also, for each
variable u ∈ U, there are d vectors zu,1, zu,2, · · · , zu,d, each of which represents
one possible assignment of u.

Definition 10. The canonical semidefinite program, usually referred to as sim-
ply the SDP, is given by

Maximize
∑
c∈C
||zc||2 such that

〈zc, zu,i〉 = ||zc||2 for all c ∈ C, (u, i) ∈ supp(c)
〈zc, zu,i〉 = 0 for all c ∈ C, u ∈ V (c), (u, i) /∈ supp(c)
〈zu,i, zu,j〉 = 0 for all u ∈ U, i 6= j

d∑
i=1

||zu,i||2 ≤ 1 for all u ∈ U

Definition 11. We denote by SDP (L) the optimal value of this SDP for the
k–CSPd L.

Note that the constraints give us for any feasible solution that, for all c ∈ C
and (u, i) ∈ supp(c),

〈zc, zu,i〉 = ||zc||2 =⇒ ||zc|| · ||zu,i|| ≥ ||zc||2 =⇒ ||zu,i|| ≥ ||zc||.

Thus, if a clause vector is long, and thus contributes highly to the SDP
value, then it also forces its satisfying assignments to be long. Since ||zu,i||2 ≤ 1
for all u, i, this also implies that for all c ∈ C, ||zc||2 ≤ 1.

For a proof that this SDP is indeed a relaxation of the k–CSPd problem, so
that SDP (L) ≥ OPT (L), see Section 2.1 of [15].

Now, we define several more pieces of useful terminology. First, we classify
each clause c of the k–CSPd in terms of the magnitude ||zc||2 of its clause vector
in the SDP.

Definition 12. Let a clause c be short if ||zc||2 ≤ 64
kd .

Definition 13. Let a clause c be long if ||zc||2 ≥ 2
d .

Definition 14. Let a clause c be medium if it is neither short nor long.

Definition 15. Let a clause c be (α, β)–bounded if α ≤ ||zc||2 ≤ β.

Now, depending on how many clauses of the k–CSPd fall into each of these
categories, we will use different algorithms to achieve strong approximation ratio
results. To discuss this, we define the following terminology.

Suppose that L is a k–CSPd instance and x is a real number with 0 ≤ x ≤ 1.
Also, suppose that T ⊂ C specifies a subset of the clauses of L.
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Definition 16. L is x-dense in clauses of type T if∑
c∈T
||zc||2 ≥ xSDP (L).

Note that L is 1–dense in clauses of type C.

Usually, we do not directly specify the subset T as such. For example, we say
that L is x-dense in clauses which are long if∑

c is long

||zc||2 ≥ xSDP (L).

Finally, before proceeding to present our algorithm, we prove the following
lemma which we use throughout our analysis.

Lemma 1. Suppose that a k–CSPd instance L is r–dense in clauses of type T .
Also, suppose that an algorithm R satisfies every clause c ∈ T with a probability
of at least q||zc||2. Then, R has an expected approximation ratio of at least rq.

Proof. The expected value of the assignment output by R is at least∑
c∈T

Pr(R satisfies c)

By the hypotheses of the theorem, we have∑
c∈T

Pr(R satisfies c) ≥
∑
c∈T

q||zc||2 = q
∑
c∈T
||zc||2 ≥ rqSDP (L).

Thus, R achieve an expected approximation ratio of at least

rqSDP (L)/OPT (L) ≥ rqSDP (L)/SDP (L) = rq.

3 The Algorithm

In this section, we present our k–CSPd algorithm, R. Algorithm R is primarily
a combination of three algorithms, A,B, and C, which each handle special cases
of k–CSPd. Algorithm A handles cases in which many of the clause vectors are
very short; B handles those in which many of the clause vectors are very long;
and C handles those in which many of the clause vectors are medium. In addition
to these three algorithms, R also relies on two other algorithms. For the case
of constant k, we rely on the greedy algorithm, D, described in Section 7. For
the case of constant d, we rely on the algorithm of Charikar, Makarychev, and
Makarychev [8]. Now, we describe the steps of algorithms A, B, and C.
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3.1 Algorithm A:

Algorithm A outputs a random assignment.

1. For every u ∈ U, determine x(u) uniformly at random among {1, 2, · · · , d}.
2. Output the assignment x.

3.2 Algorithm B:

Algorithm B is the main contribution of this paper. Step 1 calculates a value that
is needed in the rest of the algorithm. Step 2 defines the set of ranges [xi, xi−1]
that we use to partition the long clauses. Step 3 finds a range which has enough
clauses in it to give us the approximation ratio we need. Step 4 chooses variable
assignments so as to maximize our chances of satisfying clauses in that range.
Finally, step 5 outputs the result.

1. Calculate the maximum γ such that L is γ–dense in clauses which are long.
2. Let b = 0, xb = 1. Until xb <

2
d :

(a) Increment b by 1.

(b) Calculate the sequence {ri}1≤i≤b defined by ri = kb+1−i

k−1 .
(c) Calculate the decreasing sequence {xi}1≤i≤b recursively so that x0 = 1

and xki = krid
−k+1xi−1 for i > 0.

3. Determine i with 0 < i ≤ b such that L is γ
ri

–dense in clauses which are
(xi, xi−1)–bounded.

4. Create an assignment z. For each variable u:

(a) Eliminate every assignment j such that ||zu,j ||2 < xi.
(b) Choose z(u) uniformly at random from the remaining assignments if

there are any. Otherwise, choose z(u) arbitrarily.

5. Output the resulting assignment z.

3.3 Algorithm C:

See Section 6.

3.4 Algorithm R:

R simply runs the other algorithms and outputs the best result.

1. Run A, B, and C; record the outputted assignments xa, xb, and xc.
2. Run the greedy algorithm D and record the outputted assignment xd.
3. Run the algorithm of Charikar, Makarychev, and Makarychev [8], and record

the outputted assignment xe.
4. Output the assignment with the largest value among xa, xb, xc, xd, and xe.
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4 Proof of Approximation Ratio

Our main result is the following theorem:

Theorem 1. R approximates any k–CSPd instance with an expected approxi-
mation ratio of Ω(kd/dk).

4.1 Auxiliary Theorems

In order to prove this theorem, we prove the following theorems about A, B,
and C. Theorem 2 says that A suffices when L is 1

3–dense in short clauses. This
is because short clauses provide an upper bound on the SDP value which gives
the random assignment strategy just enough of an edge to provide the needed
approximation ratio. Although this theorem is not novel, due to its brevity we
give its full proof in this section.

Theorem 3 says that, if L is 1
3–dense in long clauses, B suffices. Here, when

the clause vectors are long, is the case that Makarychev and Makarychev could
not handle for large d. Their strategy for this case is to simply apply the same
algorithm that works well for certain medium clauses; however, this does not
yield a high enough approximation ratio for long clauses and large d.

To remedy this problem, our algorithm B uses a spectrum of threshold
lengths and finds a pair of adjacent thresholds such that many assignment vector
lengths lie between the two. We then use the lower threshold as a cut-off for vec-
tor selection, and the upper threshold to provide a tighter upper bound on the
SDP value. By carefully tuning the thresholds to be just close enough together to
allow an effective algorithm for vectors between any pair of adjacent thresholds,
but just far enough apart that they still span the entire range of possible lengths,
we produce the first effective algorithm for this case. Since this algorithm is the
primary contribution of this paper, we present the important parts of its proof
in this section and try to provide ample motivation and explanation. However,
for the sake of brevity, we postpone the rather technical proofs of Lemmas 2 and
3 to the appendix.

Finally, Theorem 4 says that, if L is 1
3–dense in medium clauses, C suffices.

Here, the intuition is that, among clauses that lie in this small intermediate
length range, inner products faithfully represent the directions that clause vec-
tors point in, so taking inner products with a random gaussian vector is a viable
strategy.

4.2 Proof of Theorems

Theorem 2. For any k–CSPd instance which is 1
3–dense in clauses which are

short, A yields an expected approximation ratio of Ω(kd/dk).

Proof. Recall that A simply assigns each variable at random. Thus, A satisfies
each clause c with a probability of exactly d−k. For any clause c which is short,
we have ||zc||2 ≤ 64

kd , so that d−k ≥ 1
64kd/d

k||zc||2.
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Thus, by Lemma 1, A has an expected approximation ratio of at least

1

3

1

64
kd/dk =

1

192
kd/dk

This brings us to the main result of this paper; namely, the proof that B
handles instances with many long clause vectors:

Theorem 3. For any k ≥ 18, and any k–CSPd instance which is 1
3–dense in

clauses that are long, B achieves an expected approximation ratio of Ω(kd/dk).

We require the following two lemmas, proved in Section 5.

Lemma 2. For any k ≥ 18, and some value of b polynomial in k and d, the
intervals [xi, xi−1] are all well defined, as x0 > x1 > · · · > xb, and xb <

2
d .

Lemma 3. For any b,
b∑
i=1

1

ri
≤ 1.

Proof of Theorem 3. First, by Lemma 2, we know that, for k ≥ 18, step 2 of B
terminates in polynomial time, since there is a polynomial value of b for which
xb <

2
d . Also, we know that the intervals [xi, xi−1] partition the interval [ 2d , 1],

so that any clause c which is long must, for some i, be (xi, xi−1)–bounded. For
each i, let fi be the maximum density such that L is fi–dense in clauses that
are (xi, xi−1)–bounded.

Since L is γ–dense in clauses that are long, and every such clause is counted
by some fi, we know that ∑

i

fi ≥ γ.

Therefore, by Lemma 3, ∑
i

fi ≥ γ
∑
i

1

ri
=
∑
i

γ

ri
.

Thus, there must be some value of i such that fi ≥ γ
ri

, and L is γ
ri

–dense in
clauses which are (xi, xi−1)–bounded, so step 3 of algorithm B is always possible.

Now, consider any clause c which is (xi, xi−1)–bounded, and some variable
u ∈ V (c). Since ||zc||2 ≥ xi, we know that, for any (u, j) ∈ supp(c), ||zu,j ||2 ≥
||zc||2 ≥ xi, so that j is among the values that B may choose for variable u in
step 4. In addition, since

d∑
k=1

||zu,k||2 = 1,



10 Gil Goldshlager and Dana Moshkovitz

there can be at most 1
xi

values k with ||zu,k||2 ≥ xi, so that B chooses j with

a probability of at least xi. Thus, B satisfies c with a probability of at least xki .
By the definition of xi, and the fact that ||zc||2 ≤ xi−1,

Pr(B satisfies c) ≥ xki = krid
−k+1xi−1 ≥ rikd/dk||zc||2

L is γ
ri

–dense in such clauses, and, since L is 1
3–dense in long clauses, we

know that γ ≥ 1
3 . Lemma 1 then tells us that B has an approximation ratio of

at least

1

3ri
rikd/d

k =
1

3
kd/dk.

This completes the proof of Theorem 3.

Now, we have the following theorem for k–CSPd instances with many medium
length vectors.

Theorem 4. For any k ≥ 44, d ≥ 72, and any k–CSPd which is 1
3–dense

in clauses which are medium, C achieves an expected approximation ratio of
Ω(kd/dk).

Proof. See Section 6.

Given Theorems 2, 3, and 4, it is straightforward to prove our main theorem.
First, recall the statement of the theorem:

Theorem 1. R approximates any k–CSPd instance with an expected approxi-
mation ratio of Ω(kd/dk).

Proof. If k ≤ 44, the greedy assignment xd will have an approximation ratio of
Ω(d/dk) = Ω(kd/dk). If d ≤ 72, the assignment xe will have an approximation
ratio of Ω(k/dk) = Ω(kd/dk).

For k ≥ 44, d ≥ 72, we consider three cases. First, it could be that the k–
CSPd instance L is 1

3–dense in clauses which are short. In this case, Theorem
2 guarantees an approximation ratio of at least Ω(kd/dk). Otherwise, L may
be 1

3–dense in clauses which are long. In this case, Theorem 3 guarantees an
approximation ratio of at least Ω(kd/dk).

Now, suppose that L is neither 1
3–dense in clauses that are short, nor 1

3–
dense in clauses that are long. We know that every clause which is neither short
nor long is medium, and we have 1 − 1

3 −
1
3 = 1

3 . Thus, L must be 1
3–dense in

clauses which are medium. Theorem 4 then guarantees an approximation ratio
of at least Ω(kd/dk), and we are done.
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Appendix

5 Proofs of Lemmas Required by Theorem 3

Lemma 2. For any k ≥ 18 and some value of b polynomial in k and d, the
intervals [xi, xi−1] are all well defined, as x0 > x1 > · · · > xb, and xb <

2
d .

Proof. We first find an explicit formula for xi. To express this somewhat cleanly,
we define the following two series:

gi =

i∑
j=1

k−j

hi =

i∑
j=1

jk−j

For convenience, we set g0 = h0 = 0.

Claim. xi = (k − 1)−gikgi(b−i+1)+hid−1+k
−i

Proof. We proceed by induction. For i = 0, our formula says that

x0 = (k − 1)−gikgi(b−i+1)+hid−1+k
−i

= (k − 1)0k0d0

= 1,

which completes the base case.
Now, we assume that the proposed formula holds for xi, and prove that it

holds for xi+1. Note first the following helpful identities, which hold for all i ≥ 0:

gi+1 =
1 + gi
k

, and hi+1 =
1 + hi + gi

k
.

Then we have

xi+1 = (ri+1kxi)
1
k d−1+

1
k

=

(
kb−i

k − 1
k(k − 1)−gikgi(b−i+1)+hid−1+k

−i

)1/k

d−1+
1
k

=
(

(k − 1)−1−gik(b−i+1)+hi+gi(b−i+1)
)1/k

d−1+k
−(i+1)

= (k − 1)−(1+gi)/kk(1+hi+gi)/k+(b−i)(1+gi)/kd−1+k
−(i+1)

= (k − 1)−gi+1khi+1+(b−(i+1)+1)gi+1d−1+k
−(i+1)

This completes the inductive step.
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We now bound the expression for xb based on bounds on gi and hi. Note
that gi <

1
k−1 for all i, and hi <

k
(k−1)2 for all i. Thus,

xb = d−1+k
−b

(k − 1)−gbkhb+gb

<
1

d

(
dk

−b
)(

k(2k−1)/(k−1)
2
)

As k grows, the third term approaches 1. In particular, for k ≥ 18, it is easy
to check that k(2k−1)/(k−1)

2 ≤
√

2. Also, given fixed values of k and d, we can
find a value of b which is on the order of log log d

log k (importantly, polynomial in

d, k) such that dk
−b

<
√

2. This gives us, for all k ≥ 18, that xb <
2
d , as desired.

The last bit of work is to show that the xi’s monotonically decrease, so that
the intervals we describe make sense. To see this, recall that, by definition,

xi = (
rik

δ
d−k+1xi−1)1/k

Clearly, xi is a monotonically increasing function of xi−1.

Thus, if x1 > x0, then xi > xi−1 for all i, and similarly, if x1 < x0, then xi <
xi−1 for all i. Since we now know that, for the relevant values, xb <

2
d ≤ 1 = x0,

it must be that xi < xi−1 for all i, so we are done.

Remark 1. In the case k = Ω(log d), we get b = 1, and our algorithm degenerates
into one that differs only trivially from that of Makarychev and Makarychev.

To see this, note that, in the proof of Lemma 2, we found the value of b to

be O
(

log log d
log k

)
. Thus, if k = Ω(log d), for an appropriate constant factor, we

have b = 1, in which case our spectrum of possible thresholds degenerates into a
single-threshold approach, which is not substantially different than the approach
of Makarychev and Makarychev.

Lemma 3. For any b,
b∑
i=1

1

ri
≤ 1.

Proof. Simple algebra yields the lemma.

b∑
i=1

1

ri
=

b∑
i=1

k − 1

kb+1−i = (k − 1)

b∑
i=1

k−i ≤ (k − 1)

∞∑
i=1

k−i = 1
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6 Algorithm C and the Proof of Theorem 4

First, we introduce several definitions which will be useful in this section. Many
of these definitions are either taken directly from Makarychev and Makarychev,
or are extensions or generalizations of their definitions.

Definition 17. Let ξ be a Gaussian random variable with mean 0 and standard
deviation 1. Then, Φ(t) = Pr(|ξ| ≤ t), and Φ̄(t) = 1− Φ(t).

We utilize the following inequality, which is proved and similarly used in [15]:

Theorem 5. Φ̄(βt) ≤ Φ̄(t)β
2

for all t ≥ 0, β ∈ (0, 1].

We also utilize a theorem of Šidák, proved in [21] and utilized similarly in
[15]:

Theorem 6. Let ξ1, ξ2, · · · , ξr be Gaussian random variables with mean zero
and arbitrary covariance matrix. Then for any positive t1, t2, · · · , tr,

Pr(|ξ1| ≤ t1, |ξ2| ≤ t2, · · · , |ξr| ≤ tr) ≥
r∏
i=1

Pr(|ξi| ≤ ti)

Now, we define, for each variable u ∈ U, a partition of the alphabet A. S(u)
contains the d

2 shortest-vectored assignments of the variable u, and L(u) con-

tains the d
2 longest-vectored assignments. Note that this is completely different

from our previous hierarchy of short, medium, and long vectors, which applied
uniformly to clause vectors rather than separately to each variable’s set of as-
signment vectors.

Definition 18. For every u ∈ U, define the set of short-vectored assignments
S(u) = {i ∈ A | ||zu,i|| ≥ ||zu,j || for at most d

2 values of j ∈ A}, and define
the set of long-vectored assignments

L(u) = A/S(u)

Note that |S(u)| = bd2c and |L(u)| = dd2e. Also note that, if i ∈ S(u), it must
be that ||zu,i||2 ≤ 2

d , since

1 ≥
∑

j∈L(u)

||zu,j ||2 ≥
∑

j∈L(u)

||zu,i||2 = dd
2
e||zu,i||2 ≥

(
d

2

)
||zu,i||2.

We now return to considering the assignments which satisfy a single clause,
rather than those corresponding to a single variable, and note that there can be
arbitrarily many short or long assignments satisfying that clause. To quantify
this, we define a measure called the lightness of a clause to specify how many of
the vectors zu,i, for (u, i) ∈ supp(c), are short. This notion runs parallel to our
original hierarchy of short, medium, and long clause vectors as an alternative
way of classifying clauses based on the SDP.
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Definition 19. Define the lightness l(c) of a clause c by
l(c) = |{i|(u, i) ∈ supp(c) and i ∈ S(u)}|.

Definition 20. Let a light clause c be one such that l(c) ≥ k
4 .

Let a heavy clause be one which is not light.

Note that the criterion for a clause to be light is, in a sense, weak, since we
would expect on average each clause to have a lightness l(c) ≈ k

2 .
Now, recall the statement of the theorem:

Theorem 4. For any k ≥ 44, d ≥ 72, and any k–CSPd which is 1
3–dense

in clauses which are medium, C achieves an expected approximation ratio of
Ω(kd/dk).

We now present the full details of algorithm C. This algorithm is essentially
taken from the paper of Markarychev and Makarychev [15], but since we require
a restructuring of both the algorithm and the analysis, we reproduce both here.
C and is itself the combination of two algorithms, C1 and C2, which each output
an assignment.

6.1 Algorithm C1:

1. Let y be an assignment such that, for every u ∈ U, y(u) is with probabil-

ity |S(u)|2d chosen at random from S(u), and with the remaining probability
chosen at random from L(u).

6.2 Algorithm C2:

1. Choose a random Gaussian vector g so that every component of g is dis-
tributed as an independent Gaussian variable with mean 0 and variance 1.

2. Let z be a uniformly random assignment of every variable u ∈ U.
3. Let x be an assignment such that, for every u ∈ U,
x(u) = z(u) if z(u) ∈ L(u), and
x(u) = arg maxi∈S(u) |〈zu,i, g〉| otherwise.

6.3 Algorithm C:

1. Run C1 and C2; record the outputted assignments x1 and x2.
2. Output the assignment with the larger value among x1 and x2.

Intuitively, C1 chooses assignments from a simple random distribution where
values in L(u) are chosen more often and values in S(u) are chosen less often than
in the uniform distribution. This means that clauses for which many satisfying
assignments lie in L(u) are satisfied with a high probability by C1.

On the other hand, C2 is tuned to do well on clauses which have many
satisfying assignments among S(u). First, it uses the partial assignment z to
eliminate all of the assignments in L(u) for every variable u. Then, among the
clauses which have not yet been violated, it uses projections onto a random
Gaussian vector to select its assignments, which performs well because none of
the remaining assignment vectors are too long. C then chooses the better of
these two strategies.
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6.4 Proof of Theorem 4

Proof. We divide k–CSPd instances into the following two cases:

Case 1. L is 1
6–dense in clauses which are both medium and heavy.

Case 2. L is 1
6–dense in clauses which are both medium and light.

We show that, in Case 1, C1 achieves the desired approximation ratio, and
in Case 2, C2 achieves the desired approximation ratio.

Lemma 4. For any k–CSPd in Case 1 which satisfies the conditions of Theorem
4, C1 achieves an expected approximation ratio of at least Ω(kd/dk).

Proof. Consider a heavy, medium clause c, and some u ∈ V (c), and suppose that
(u, i) ∈ supp(c). Then, if i ∈ S(u), C1 chooses i with a probability of

|S(u)|
2d

1

|S(u)|
=

1

2d
.

If i ∈ L(u), C1 chooses i with a probability of

2d− |S(u)|
2d

1

|L(u)|
≥ 3|S(u)|

2d|L(u)|
≈ 3

2d

In particular, for d ≥ 72, it is easy to check that this value is at least
√
2
d .

Thus, since there are l(c) assignments (u, i) ∈ supp(c) such that i ∈ S(u), we
have

Pr(c is satisfied) ≥
(

1

2
d−1

)l(c) (√
2d−1

)k−l(c)
= d−k

(
1

2

)l(c) (√
2
)k−l(c)

This is monotonically decreasing in l(c), so we can lower bound it for δ–heavy
clauses c by rounding l(c) up to k

4 to get

Pr(c is satisfied) ≥ d−k
(

1

2

) k
4 (√

2
) 3k

4 ≥ d−k2k/8

It is easy to check that, for k ≥ 44, we have

2k/8 ≥ k.

Thus, for all k ≥ 44,

Pr(c is satisfied) ≥ k/dk.

Since ||zc||2 ≤ 2
d for any medium clause c, we can write this as
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Pr(c is satisfied) ≥ 1

2
kd/dk||zc||2.

Thus, since L is 1
6–dense in clauses which are heavy and medium, Lemma 1

tells us that C1 achieves an expected approximation ratio of at least 1
12kd/d

k.

Lemma 5. For any k–CSPd in Case 2 which satisfies the conditions of Theorem
4, C2 achieves an expected approximation ratio of at least Ω(kd/dk).

Proof. First, recall that the medium clause vectors are those which satisfy

64

kd
< ||zc||2 <

2

d

Also, note that C2 only relies on the relative values of dot products of SDP
vectors with g, so that it is invariant under scaling all of our SDP vectors by any
constant. Thus, we may scale every vector by a factor of kd

64 , so that medium
clauses now satisfy

1 ≤ ||zc||2 ≤
k

32
.

In analyzing C2, we imagine that it is carried out in two steps, so that first,
we use the random assignment z to create a partial assignment of the variables,
and then we use the Gaussian projection to complete the assignment. In the
terminology of Makarychev and Makarychev, the partial assignment z allows us
to transform the general SDP into a uniform SDP in which every variable vector
zu,i is also bounded by ||zu,i||2 ≤ k

32 . Again, using the terminology of Makarychev
and Makarychev, we say that c survives z if every variable u constrained by c
is either constrained by c to be among S(u), and left unassigned by z, or is
constrained by c to be among L(u), and is assigned correctly by z. Thus the
surviving clauses are exactly those which can still be satisfied by the Gaussian
assignment given the choices of the random assignment. For a given clause c,
l(c) then gives us the size of any clause c which survives the partial assignment
z.

Now, consider any light clause c, and let s = l(c) for convenience. Recall
that, since c is light, s ≥ k

4 . For any u ∈ V (c) with (u, i) ∈ supp(c), z has a
probability of at least 1

2 of leaving u unassigned if i ∈ S(u), and a probability of
1
d of assigning it correctly if i ∈ L(u). Thus, c survives with a probability of at
least (

1

d

)k−s(
1

2

)s
.

Now, consider a survived light clause c in the new uniform SDP. Assume
without loss of generality that for every u ∈ V (c), (u, 1) ∈ supp(c). We define
the following vectors and values in order to allow us to analyze the Gaussian
projection strategy.
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First, we define a vector which represents the component of zu,1 which is
perpendicular to zc.

Definition 21. Let z⊥u,1 = zu,1 − zc.

We can derive from the SDP constraints that 〈z⊥u,1, zc〉 = 0, as desired. Now,
we define three values, each given by an inner product, will help us bound the
probability that clause c is satisfied by the strategy that uses projections onto
g.

Definition 22. Let γu,1 = 〈z⊥u,1, g〉, and for i ≥ 2, let γu,i = 〈zu,i, g〉.

Definition 23. Let γc = 〈g, zc〉.

Note that, since zc ⊥ z⊥u,1, and zc ⊥ zu,i for i 6= 1, γc is independent from
every γu,i variable.

Finally, the following definitions define other values we will require in our
next proof.

Definition 24. Let M = Φ̄−1(d−s/2), so that Φ̄ (M) = d−s/2.

Then we have

Pr (x satisfies c) = Pr
(

arg max
i
|〈zu,i, g〉| = 1 ∀ u ∈ V (c)

)
Before we delve into the tedious calculations, the intuition here is that, be-

cause of the constraints on the SDP vectors, vector zu,1 is guaranteed to have
a component in the direction of zc, while for every i 6= 1, zu,i is forbidden from
having any such component. Thus, if g points roughly in the direction of zc, we
will have a good chance of picking zu,1 for every u ∈ V (c), which leads to an
overall chance of satisfying c which is much higher than the d−k chance given
by a random selection.

To show this, we begin by breaking down the maximum into one inequality
for each non-maximal value, and writing it in terms of our defined γ values:

Pr (x satisfies c) = Pr (|〈g, zu,1〉| > |〈g, zu,i〉| ∀ u ∈ V (c), i ≥ 2)

= Pr (|γu,1 + γc| > |γu,i| ∀ u ∈ V (c), i ≥ 2)

Now, this expression is unwieldy because it depends on the magnitude of the
sum of two Gaussian variables. To fix this, we introduce some slack into our
bound by noting that

(|γc| > M) and (|γu,1| < M/2)) and (|γu,i| ≤M/2) =⇒ |γu,1 + γc| > |γu,i|.

Using this, and the fact that γc is independent from every γu,i, we get
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Pr (x satisfies c)

≥ Pr ((|γc| > M) and (|γu,1| ≤M/2)) and (|γu,i| ≤M/2;∀u ∈ V (c), i ≥ 2)

= Pr (|γc| > M)Pr ((|γu,1| ≤M/2)) and (|γu,i| ≤M/2 ∀u ∈ V (c), i ≥ 2) ,

where the last step uses the independence of γc.
Then, by Theorem 6, we can turn this conjunction into a product:

Pr (x satisfies c) ≥ Pr (|γc| > M)
∏

u∈V (c)

Pr (|γu,1| ≤M/2)
∏
i≥2

Pr (|γu,i| ≤M/2)


To bound these terms, we bound the variances of the γ’s. Recall that, for

any i ∈ S(u), we have ||zu,i||2 ≤ 2
d in the original SDP , and thus ||zu,i||2 ≤ k

32
in the scaled SDP . We then have

V ar[γc] = ||zc||2 ≥ 1, and

V ar[γu,i] = ||zu,i||2 ≤
k

32
, for i ≥ 2.

Now, to bound V ar[γu,1], we use the fact that 〈zu,1, zc〉 = ||zc||2 by the
constraints of the SDP. Thus,

V ar[γu,1] = ||z⊥u,1||2 = 〈zu,1−zc, zu,1−zc〉 = ||zu,1||2−2||zc||2+||zc||2 ≤ ||zu,1||2 ≤
k

32

In the following bound, we make use of Theorem 5, which the reader will
recall states that Φ̄(βt) ≤ Φ̄(t)β

2

for all t ≥ 0 and β ∈ (0, 1]. We bound the first
term as follows:

Pr (|γu,1| < M/2) = Φ

(
M/(2

√
V ar[γu,1])

)
≥ Φ

(
M

√
8

k

)

≥ 1− Φ̄(M

√
8

k
)

≥ 1− Φ̄(M)
8
k

= 1− d−4s/k

≥ 1− d−1
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Note that, for k ≥ 8, we have
√

8
k ≤ 1, as required by Theorem 5. For the

second term, we have exactly the same bound, since the threshold and variance
are the same. Thus

Pr (|γu,i| < M/2) ≥ 1− d−1.
Finally, we have

Pr (|γc| > M) = Φ̄(M/
√
V ar[γc]) ≥ Φ̄(M) = d−s/2

Combining these results, we have

Pr (x satisfies c) ≥

 ∏
u∈V (c)

Pr (|γu,1| ≤M/2)
∏
i≥2

Pr (|γu,i| ≤M/2)

Pr (|γc| > M)

= Pr (|γu,1| ≤M/2)
s
Pr (|γu,i| ≤M/2)

s(d−1)
Pr (|γc| > M)

≥
(
1− d−1

)s (
1− d−1

)s(d−1)
d−s/2 ≥

((
1− d−1

)d)s
d−s/2

For d ≥ 72, it is easy to check that
(
1− 1

d

)d ≥ 1
3 , so that

Pr (x satisfies c) ≥ 3−sd−s/2 ≥ (9d)
−s/2

Combining this result for a survived clause c with the probability that a
clause survives, we see that

Pr(c is satisfied ) ≥ (9d)
−s/2

d−(k−s)
(

1

2

)s
≥ d−k

(
d

36

)s/2
≥ d−k

(
d

36

)k/8
For d ≥ 72, we have d

36 ≥ 2, so that

Pr(c is satisfied) ≥ d−k2k/8.

Then, for k ≥ 44, we have 2k/8 ≥ k, so that, finally,

Pr(c is satisfied) ≥ k/dk.
Since every medium clause c has ||zc||2 ≤ 2

d , we satisfy every clause which is
both medium and light with a probability of at least

1

2
kd/dk||zc||2,

and, by Lemma 1, we can achieve an approximation ratio of 1
12kd/d

k.

Given these two lemmas, the proof of the theorem is straightforward. Since
L is 1

3–dense in clauses which are medium, and every clause is either heavy or
light, L must be in either Case 1 or Case 2. In Case 1, Lemma 4 proves the
theorem, and in Case 2, Lemma 5 proves the theorem.
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7 The Greedy Algorithm

For small k, we use a simple algorithm which is a combination of random and
greedy assignments.

7.1 Algorithm D:

1. For every u ∈ U, with probability
(
1− 1

k

)
, assign x(u) at random.

2. Discard every clause which has been violated, and every clause which does
not have exactly one constrained variable unassigned.

3. Solve the remaining trivial k–CSPd instance optimally by assigning each
variable to the value which satisfies the most of the surviving clauses.

Theorem 7. Algorithm D achieves an approximation ratio of Ω(d/dk).

Proof. Consider any k–CSPd instance L with an optimal assignment x∗ of value
OPT . We first show that the value of OPT can drop by at most a O(d/dk)
factor in the initial assignment and discarding steps of the algorithm. To see
this, consider any clause c satisfied by x∗. The probability that c survives the
discarding step of the algorithm is the probability that (k − 1) of its variables
are assigned correctly, and the final one is not assigned. The probability that
exactly (k − 1) of the variables have been assigned is given by

k

(
1

k

)(
1− 1

k

)k−1
= Ω(1).

Furthermore, given that this occurs, the probability that the (k−1) assigned
variables were assigned correctly is d−k+1 = d/dk. Thus, the probability that c
survives is at least Ω(d/dk). Now, if we assign every remaining variable as x∗

would have assigned it, we will obtain an assignment that satisfies every such
surviving clause c, or namely Ω(d/dk · OPT ) clauses in expectation. Thus, the
optimal value of the remaining k–CSPd must be at least this high. Furthermore,
since every clause that remains constrains only one variable, step 3 of D trivially
finds the optimal solution. Therefore, D finds an assignment of value Ω(d/dk ·
OPT ), and obtains an approximation ratio of Ω(d/dk).

8 Reduction to the Case of k–AND

Consider a general k–CSPd instance L and some clause c ∈ C. We define a set
of ρ(c) new clauses N(c) = {c1, c2, · · · , cρ(c)} with V (ci) = V (c) and S(ci) =
{si}. We then construct a new k–CSPd instance L′ with the same variables and
alphabet as L. However, the clauses of L′ are

C =
⋃
c∈C

N(c).
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For any assignment x and clause c in L, x satisfies c iff x satisfies exactly
one clause in N(c), and x does not satisfy c iff x satisfies no clause in N(c).
Thus every assignment has the same value with respect to L′ and L, so the two
problems are equivalent.


