
Low Degree Test with Polynomially Small Error

Dana Moshkovitz ∗

January 31, 2016

Abstract

A long line of work in Theoretical Computer Science shows that a function is close to a
low degree polynomial iff it is locally close to a low degree polynomial. This is known as low
degree testing, and is the core of the algebraic approach to construction of PCP.

We obtain a low degree test whose error, i.e., the probability it accepts a function that
does not correspond to a low degree polynomial, is polynomially smaller than existing low
degree tests. A key tool in our analysis is an analysis of the sampling properties of the
incidence graph of degree-k curves and k′-tuples of points in a finite space Fm.

We show that the Sliding Scale Conjecture in PCP, namely the conjecture that there are
PCP verifiers whose error is exponentially small in their randomness, would follow from a
derandomization of our low degree test.

∗dmoshkov@csail.mit.edu. Department of Electrical Engineering and Computer Science, MIT. This material
is based upon work supported by the National Science Foundation under grants number 1218547 and 1452302.
The paper originally appeared as “An Approach to the Sliding Scale Conjecture Via Parallel Repetition For Low
Degree Testing” [24].

1

1 Introduction

1.1 Low Degree Test with Polynomially Small Error

A long line of work in Theoretical Computer Science shows that a function is close to a low degree
polynomial iff it is locally close to a low degree polynomial (see, e.g., [19, 31, 4, 29, 20, 9, 27]).
This is known as low degree testing, and is the core of the algebraic approach to construction of
PCP, as well as of algebraic constructions of locally testable codes.

In this paper we consider the following formulation of low degree testing, which is conducive
to the applications to PCP and codes. The parameters are a finite field F, and natural numbers
m and d. A verifier queries a constant number of non-interacting provers regarding a function
f : Fm → F that is supposedly an m-variate polynomial of degree at most d. For instance, the
verifier may ask the provers for the restriction of f to lines, planes, curves, etc. If f is indeed
a polynomial of degree at most d, and the provers respond truthfully, then the verifier always
accepts. In contrast, there exists ε0 > 0, such that any prover strategy that the verifier accepts
with non-negligible probability ε ≥ ε0 must correspond to a short list of polynomials of degree
roughly d.

The most important parameter of a low degree test is its “error” ε0. This parameter dominates
the error probability of the PCP or the locally testable code. Additional parameters that are of
interest are the randomness complexity of the verifier (i.e., the number of random bits that the
verifier uses to generate the queries to the provers) and the answer size of the provers (i.e., the
number of bits that comprise the answers of the provers). Previous work [4, 29, 27] showed that
the error can be as low as ε0 = poly(m) · (d/ |F|)Ω(1) with O(m log |F|) randomness complexity
and poly(d,m, log |F|) answer size. For a sufficiently large field F (with respect to d and m), the

error is |F|−Ω(1).
All low degree tests considered before inherently have error that is larger than |F|−1. A

natural question is whether one can devise a test with lower error, e.g., |F|−k for a parameter
k > 1. This is the question that the current paper answers in the affirmative. We prove:

Theorem 1.1 (Low error low degree test; see Lemma 11.2). Assume that F is sufficiently large
with respect to d, m and k (i.e., |F| = poly(m, d, k)). Then, there is a low degree test whose

error probability is |F|−Ω(k). The provers’ answer size is poly(d, k, log |F|), and the randomness
of the verifier is O(km log |F|).

Moreover, since the tester of Theorem 1.1 queries the supposed restriction of the function on
constant-dimensional surfaces, we get the following unusually strong property testing theorem,
showing that one can probabilistically, to a very large degree of certainty, decide whether a
function corresponds to a low degree polynomial, even in a very weak sense, by making a small
number of queries to the function:

Theorem 1.2 (Property tester). Assume that F is sufficiently large with respect to d, m and
k. Then, there is a randomized algorithm that, given f : Fm → F, queries the evaluations of f
on poly(|F|) points, and satisfies the following:

• If f is a polynomial of degree at most d, then the algorithm always accepts.

• There are δ = |F|−Θ(k), ε = |F|−Θ(1), such that if f is ε-far from low degree (i.e., there is
no polynomial of degree at most dk that agrees with f on at least ε fraction of the points
x ∈ Fm), then the probability that the algorithm rejects is at least 1− δ.

2

Note that the parameters ε and δ are extremely strong, since every function is 1/ |F|-close to

a constant function, and since δ is significantly lower than the probability 1/ |F|Ω(1) that was
known before.

We prove Theorem 1.1 by developing a “direct product of low degree tests” to amplify the
error of existing low degree tests (more on this in Section 1.2). Our analysis builds on a
previous work by Imagliazzo, Kabanets and Wigderson [21]. We simplify and strengthen the
IKW analysis and significantly improve the parameters it yields in our case. We stress that

a direct application of IKW would have given a 2−Ω(
√
k) error rather than |F|−Ω(k) error. At

the original time of the paper’s writing, it was not known how to improve IKW’s work to error
2−Ω(k). A related theorem with error 2−Ω(k) was obtained by Dinur and Steurer [17] concurrently

with our work. Moreover, it was not known how to have the base of the exponent as |F|−Ω(1)

instead of 2−Ω(1). In the closely related setup of parallel repetition this was eventually obtained
by several works [16, 25, 10]; the earliest of which was concurrent with our work. Our work
combines the advantages of both lines of study.

As we explain in the sequel, our “direct product” is somewhat different than standard direct
product. However, like the original direct product, the randomness complexity of our verifier
is O(k) times the randomness complexity of the original verifier. We show that if there were a
way to implement our tester in a randomness-efficient way, so that the randomness complexity
were O(k log |F|) plus the randomness complexity of the original verifier (note that the error is
exponentially small in O(k log |F|)), then one could have resolved the oldest open problem in
PCP, known as “The Sliding Scale Conjecture” of Bellare, Goldwasser, Lund and Russell [7].
The conjecture is that in PCP with constant number of queries the error can be exponentially
small in the randomness of the verifier.

Theorem 1.3 (From low degree test to Sliding Scale Conjecture). If there is a low degree test

with randomness complexity O(m log |F|), answer size poly(d,m, log |F|), and error |F|−Ω(m) (see
Conjecture 3.1), then the Sliding Scale Conjecture follows, i.e., there exists c > 0 such that

NP ⊆ PCP1,1/n[O(log n), O(1)][poly(n)],

where PCPc,s[r, q]Σ denotes the class of problems that have a PCP verifier with completeness c,
soundness s, randomness r, number of queries q and where the proof is over an alphabet Σ.

For more details about the Sliding Scale Conjecture and its implications, see the previous
version of this paper [24].

We note that a randomness-efficient low degree test obtained by amplifying a low degree test
with higher error as in the current work must avoid known limitations on derandomized parallel
repetition [18, 26]. We believe that this might be possible thanks to the algebraic structure of
the low degree testing problem.

1.2 Direct Product of Low Degree Tests

In direct product testing a randomized verifier queries a constant number of provers regarding
a function s : [n] → Σ they were supposed to agree on. The verifier’s questions are about the
restriction of s to different sets A ⊂ [n] (i.e., (s(i) : i ∈ A)). The verifier tests probabilistically
whether the provers are consistent by comparing the answers of the provers on intersecting sets.
If the provers’ responses are consistent with some function s : [n] → Σ, the verifier always
accepts. Moreover, the probability that the verifier accepts when the provers’ responses do not

3

match one of a few functions s1, . . . , sl : [n] → Σ, is small. Direct product testing was introduced
by Goldreich and Safra [20] and studied in many works since [15, 13, 21, 17].

In this work, we define an algebraic analogue of direct product testing for low degree testing.
Instead of a function s : [n] → Σ, we have a polynomial p of degree at most d over F that the
provers are supposed to agree on. The verifier queries the provers about the supposed restriction
of p to algebraic surfaces of degree k rather than to general sets. The algebraic structure allows
the verifier to test for low degree. The actual test is a variation of the IKW test. The verifier
picks three curves, where each curve intersects the previous curve in k′ < k/2, k′ = Θ(k)
points. The verifier sends different curves and k′-tuples of points to different provers, who are
supposed to respond with the restriction of the polynomial to their sets. The verifier checks
consistency on the intersections. The large intersections enable the error to be exponentially
small in k′. Crucially, the third curve is independent of the first curve, which forces the provers
to be consistent with a global polynomial over Fm.

Curves Test

1. Pick uniformly and independently at random:

• a degree-k curve c1;

• two k′-tuples of points S0, S1 on c1 such that S0 ∩ S1 = ϕ;

• a degree-k curve c2 that passes through S1;

• a k′-tuple of points S2 contained in c2 such that S1 ∩ S2 = ϕ;

• a degree-k curve c3 that passes through S2;

• a k′-tuple of point S3 contained in c3 such that S2 ∩ S3 = ϕ.

2. Send each of S0, S1, S2, S3, c1, c2, c3 to a different prover.

• For each curve ci the prover sends a univariate polynomial pi of degree at most dk
that is supposed to be the restriction of the polynomial p to ci.

• For each tuple Sj the prover sends assignments aj over F to the points in Sj . The
assignments are supposed to be the evaluations of p on the points.

3. Check that pi(x) = aj(x) for every Sj ⊆ ci and x ∈ Sj .

To prove Theorem 1.1 we end up analyzing a similar test that considers constant-dimensional
surfacess that span whole lines instead of curves. This way we can directly use earlier works
that analyze tests based on lines [4].

1.3 The Sampling Properties of Curves and Tuples

A key lemma in the proof of Theorem 1.1, and the main source for the quantitative improvement
over IKW, is an analysis of the sampling properties of the incidence graph of “degree-k curves
vs. k′-tuples” (similarly, “degree-k surfaces vs. k′-tuples”). This graph is the bipartite graph
that has on one side all degree-k curves in a space Fm, and on the other side all k′-tuples of
points in Fm. A curve is connected to a tuple if it contains it. Let S be a subset of µ fraction of
the k′-tuples. We say that a curve ε-samples S if µ ± ε fraction of the tuples on the curve are
in S. We say that the curves vs. tuples graph is a (δ, ε)-sampler if for any subset S as above at
least 1 − δ fraction of the curves ε-sample S. We call δ the sampling error, and we call ε the
deviation error. We show:

4

Lemma 1.1 (See Corollary 4.5). Let 0 < ε < 1. Then, for all k′, the incidence graph “degree-k
curves vs. k′-tuples” is a (2δ(k′)/ε, 2k′ε)-sampler for

δ(k′) =
kk(k + 1)

εk(|F| − k′ + 1)(k−k′+1)/2
.

For sufficiently large field F (polynomial size) with respect to k, and sufficiently large k (linear

size) with respect to k′, one gets deviation error ε = |F|−Ω(1) with sampling error δ = |F|−Ω(k).
For k′ = 1, it is well known that the “degree-k curves vs. points” graph has sampling error

δ = |F|−Ω(k) and deviation error ε = |F|−Ω(1). This follows from the (k + 1)-wise independence
of degree-k curves. Extending this argument to “degree-k curves vs. k′-tuples” for larger k′

results in a large sampling error δ = |F|−Ω(k/k′). Similarly, it is shown in [21] that the graph “k-
tuples vs. k′-tuples” has sampling error δ = exp(−k/k′) with a small constant deviation error
ε. The reason for the error exp(−

√
k) in [21] is taking k′ =

√
k as to balance exp(−k/k′) and

exp(−k′). On the other hand, we show that the “degree-k curves vs. k′-tuples” incidence graph

has sampling error |F|−Ω(k−k′) while maintaining ε = |F|−Ω(1) deviation error (for sufficiently

large field F). This allows us to take k′ = Θ(k), and achieve error |F|−Ω(k) for the repeated test.
Our approach to analyzing the sampling properties of “degree-k curves vs. k′-tuples” is to

view the incidence graph of “degree-k curves vs. k′-tuples” as a k′-fold product of the incidence
graph of “degree-k curves vs. points”. With the appropriate choice of product, the sampling
error of the product graph is k′ times the sampling error of the initial graph. Hence, the sampling
error of “degree-k curves vs. k′-tuples” is similar to that of “degree-k curves vs. points”.

The advantage of this abstract view is that one can use our technique to analyze the sampling
properties of general incidence graphs. Interestingly, this approach does not apply to the “k-
tuples vs. k′-tuples” incidence graph relevant for [21]. The reason is that the deviation error
accumulated in the k′ applications of the product builds up, and – unlike in the curves graph –
the initial deviation error is not sufficiently low to withstand that.

1.4 The Wide Agreement Lemma

Even with the improved sampling parameters, it is not clear that the analysis of IKW can be
lifted to low degree testing in a way that proves Theorem 1.1. Briefly, the reason is that IKW
relies on “majority decoding”, while we have to deal with the “list decoding” regime. One of our
main contributions is replacing the heart of IKW’s analysis – the same part that uses samplers
– with a new, stronger, lemma that we call “The Wide Agreement Lemma”.

If our test passes with significant probability, then curves that intersect on k′-tuples of points
often agree on their intersection. In contrast, to prove Theorem 1.1, we need to show that
curves that intersect on a single point often agree on their intersection. In other words, we
require a much wider agreement – not just between curves that have large intersection, but
even among curves that have a small intersection. A-priori it could be that curves that disagree
on an assignment to a point x typically do not share k′-tuples. However, since the incidence
graph that has on one side curves that contain x and on the other side k′-tuples that contain x
is a good sampler for every x ∈ Fm, this cannot happen. The Wide Agreement Lemma appears
as Lemma 8.1 in the sequel, and led to the later work [25].

1.5 Abstraction of Arora-Safra Composition

As a side-benefit of our proof of Theorem 1.3, we provide an abstract version of the Arora-Safra
composition as described next.

5

Arora and Safra [3] were the first to suggest the technique of composition to decrease the
number of queries (or alphabet) of a PCP verifier, leading to the first PCP with constant number
of queries [2]. Since then, every proposed PCP construction (including the current one) used
composition. Alas, the Arora-Safra composition was tailored to low degree extensions, and led
to somewhat cumbersome and restricted usage.

In recent years there has been an attempt to formulate abstract composition lemmas that are
widely applicable and lead to modular, easier to understand, constructions. One combinatorial
method of composition was formulated by Szegedy [32], Dinur and Reingold [15] and Ben-Sasson
et al [8]. Their works revealed the advantage of a “robust” PCP construction for composition.
Robustness means that in the soundness case, not only that – with significant probability
– the verifier rejects, but, in fact, the verifier’s view is far from one that would have been
accepted. Equivalently, the PCP is a “projection game” (the equivalence between robust PCPs
and projection games is spelled out in [14]). A method of composition that preserves low
soundness error and projection was discovered by Moshkovitz and Raz [28], and abstracted by
Dinur and Harsha [14].

Interestingly, in contrast to all those composition techniques, the Arora-Safra composition
does not require that the PCP being composed is robust. This is actually an advantage, because
robust PCPs (equivalently, projection games) are harder to construct than general PCPs. In
the high error regime there are various techniques for “robustization” (see, e.g., [15]), but in the
low error regime we do not know how to transform a general PCP verifier into a robust PCP
verifier with a comparable soundness error.

The composition we define (see Section 12.5 for the definition of composition and its analysis)
works in the low error regime and does not require that the PCPs being composed are robust
(and, appropriately, does not guarantee that the composed PCP is robust).

1.6 Organization

We start with preliminaries regarding error correcting codes, samplers and extractors, incidence
graphs, curves, surfaces and polynomials over a finite space in Section 2. We formalize low degree
testing in Section 3. We analyze the sampling properties of incidence graphs in Section 4. We
prove a base low degree testing theorem in Section 5. We outline our analysis in Section 6, and
in the next sections we provide the proof. We show how the Sliding Scale Conjecture follows
from a derandomized low degree test in Section 12. We discuss ideas for further research in
Section 13.

2 Preliminaries

In this section we introduce notions and notation that we use throughout this work, including
error correcting codes, samplers and extractors, incidence graphs and curves over a finite space.

Throughout this work, k′-tuple means an ordered set of size k′.

2.1 Error Correcting Codes

An (n, k, d)Σ code C is a set of
∣∣Σk

∣∣ strings in Σn, where every two different strings x, y ∈ C
agree on at most d of their symbols, i.e.,

|{ i ∈ [n] |xi = yi}| ≤ d.

6

We often associate an encoding function C : Σk → Σn with C. Many times it is useful that the
encoding is systematic, i.e., the first k symbols in the encoding C(x) of some x ∈ Σk are the
symbols of x.

The following code construction follows from [1] using standard techniques (concatenation):

Proposition 2.1 (Code construction). For any 0 < δ < 1 and natural number k, there exists
an (n, k, (1− δ)n)Σ code where n = O(k/δ2) and |Σ| = O(1/δ2).

The following bound on the number of codewords that can agree with a word follows from
counting (our Proposition 3.1 uses a similar argument), and is a simplified version of Johnson’s
bound [22]:

Proposition 2.2 (List decoding bound). Let C be an (n, k, d)Σ code. For every w ∈ Σn and
δ ≥ 2

√
1− d/n, there exist at most 2/δ codewords in C that agree on at least δ fraction with w.

2.2 Samplers and Extractors

For a graph G = (V,E) and a vertex v ∈ V , the neighborhood of v in G is NG(v) =
{u ∈ V | (v, u) ∈ E}.

A sampler is a bi-regular bipartite graph with a large part A and a small part B, in which, for
any set B′ ⊆ B, almost every vertex in A has about |B′| / |B| fraction of its neighbors landing
in B′:

Definition 2.1 (Sampling). For 0 < δ, ε < 1, we say that a bi-regular bipartite graph G =
(A,B,E) is a (δ, ε)-sampler if for any set B′ ⊆ B, µ = |B′| / |B|, for a uniformly distributed
a ∈ A, it holds that ∣∣∣∣ |NG(a) ∩B′|

|NG(a)|
− |B′|

|B|

∣∣∣∣ ≤ ε,

with probability at least 1− δ.

We call δ the sampling error and ε the deviation error.
An extractor is a function that maps a distribution X ′ with sufficient “randomness” over

a large space X to a distribution that is approximately uniform over a small space Z. The
mapping is probabilistic, and uses an independent uniform “seed” y ∈ Y . The function maps
x ∈ X and y ∈ Y to z ∈ Z and an additional w ∈ W , so (z, w) uniquely defines (x, y). The
randomness of X ′ is measured using min-entropy, and is H∞(X ′) = log(1/maxx Pr [X

′ = x]).

Definition 2.2 (Extractor). A 1-1 function Ext : X × Y → Z × W is a (δ, ε)-extractor if
for any distribution X ′ over X, H∞(|X ′|) ≥ log(δ |X|), the probability distribution defined1 by
Ext(X ′, Y) on Z, is ε-close to uniform over Z.

X ′ is called the randomness source. The elements in Y are called the seeds of the extractor.
Often extractors are defined without W and without being 1-1, but incorporating W will be
useful for us, and this convention – the “rotation map” of [30] – has been used in the past. We
associate a bipartite graph with Ext: the graph is on vertices X ∪ Z and it has an edge (x, z)
if there are y ∈ Y and w ∈ W such that Ext(x, y) = (z, w). The elements in Y enumerate the
neighbors of a vertex in X, while the elements of W enumerate the neighbors of a vertex in Z.

Zuckerman observed that the notions of sampler and extractor are closely related:

1This distribution is sampled by picking uniformly at random x ∈ X ′ and y ∈ Y , computing Ext(x, y) = (z, w),
and outputting z.

7

Proposition 2.3 ([34]). The following hold:

1. If Ext : X×Y → Z×W is a (δ, ε)-extractor, then the bipartite graph on X ∪Z associated
with it is a (2δ, ε)-sampler.

2. If (X,Z,E) is a (δ, ε)-sampler, then a corresponding function Ext : X × Y → Z ×W is,
for any δ′ ≥ δ, a (δ′, ε+ δ/δ′)-extractor.

2.3 Curves, Surfaces and Polynomials

Let F be a finite field. Let m, k and r be natural numbers. A degree-k curve in Fm is a
function c : F → Fm such that there exist m univariate degree-k polynomials c1, . . . , cm where
c(t) = (c1(t), . . . , cm(t)). We often associate a curve with its image c(F). A line is a degree-1
curve. A dimension-r degree-k surface in Fm is a function s : Fr → Fm such that there exist m r-
variate degree-k polynomials s1, . . . , sm where s(t1, . . . , tr) = (s1(t1, . . . , tr), . . . , sm(t1, . . . , tr)).
We often associate a surface with its image s(Fr). A curve is a dimension-1 surface.

For T = {t1, . . . , tk} ⊆ F and 1 ≤ i ≤ k, we use Lagrange interpolation to define IT,i as the
degree-(k − 1) polynomial that is 1 on ti and 0 on T − {ti}:

IT,i(t)
.
=

∏
j∈T−{ti}(t− tj)∏
j∈T−{ti}(ti − tj)

.

Fixing T = {t1, . . . , tk} ⊆ F, for every k-tuple of points X = {x1, . . . , xk} ⊆ Fm we can
interpolate the degree-(k− 1) curve cX that passes through x1, . . . , xk in positions t1, . . . , tk as:

cX(t) =

k∑
i=1

xi · IT,i(t).

2.4 Incidence Graphs

In this work we are interested in bipartite graphs that correspond to set inclusion:

Definition 2.3 (Incidence graph). Let U be a set. Let A and B be families of subsets of U . The
incidence graph G(A,B) is the bipartite graph on A and B in which a vertex a ∈ A is connected
to a vertex b ∈ B if b ⊆ a.

A few examples of incidence graphs are:

1. ”k-tuples vs. k′-tuples”: U is a finite set. A is the family of all k-tuples of points in U ,
and B is the family of all k′-tuples of points in U .

2. “degree-k curves vs. k′-tuples”: U = Fm for a finite field F and a natural number m. A is
the set of all degree-k curves in Fm; B consists of all k′-tuples of points in Fm.

3. “degree-k curves vs. points”: A special case of “degree-k curves vs. k′-tuples” in which
k′ = 1, so B corresponds to the family of points2 in Fm.

2We will often use the shorthand B = Fm in this case, even though Definition 2.3 talked about B that consists
of subsets.

8

3 Low Degree Testing

Let F be a finite field and let m, v, d and k be natural numbers. In this section we define low
degree testing for m-variate polynomials of degree at most d over F by querying v-dimensional
surfaces of degree at most k in Fm, as well as querying k′-tuples of points in Fm. We generalize
to surfaces as opposed to just curves in order to capture existing tests on planes and low-
dimensional subspaces. In particular, our surfaces will be spanned by lines and curves, so we
can apply existing analyses of lines tests.

One is advised to think of the parameters as follows:

• |F| is large with respect to d and m. Typically, |F| = poly(d,m).

• We typically take v to be a small constant, possibly 1.

• We typically take k ≤ d.

• We take k′ to be smaller than k, but often of the same order of magnitude as k.

The set of all surfaces that may be queried is denoted C, and the set of k′-tuples that may be
queried is denoted I. In this work I will always be the set of all k′-tuples of points in Fm. For
a set S ⊆ Fm, we denote the set of all surfaces in a family C′ ⊆ C that pass through S by C′

S .
Assignments3 to v-dimensional surfaces of degree at most k in Fm are supposedly the restric-

tions of a single m-variate degree-d polynomial to the surface – in which case we say that they
agree with the polynomial – and in any case are v-variate polynomials of degree at most dk
over F. Assignments to k′-tuples of points in Fm are supposedly the restrictions of the same
m-variate degree-d polynomial to the points – in which case we say that they agree with the
polynomial – and in any case are k′-tuples of values in F.

A low degree test is specified by a verifier that makes a constant number of queries to surfaces
and tuples, receives the assignments to the surfaces and tuples, and either accepts or rejects.
The randomness of the low degree test is the number of random bits used by the verifier. We
say that the low degree test has perfect completeness if the verifier always accepts if whenever
it queries a surface or a tuple it gets the restriction of a single m-variate degree-d polynomial
over F. All the tests that we consider in this work have perfect completeness. We say that the
tester is uniform, if the distribution of each of its queries is uniform over all surfaces in C or
tuples in I. All the tests that we consider in this work are uniform.

3.1 Initial Points

Let q < v + k be a natural number. For the application to PCP we allow the embedding of
q-tuples of points in Fm in the surfaces we consider. Initial conditions are given as a collection
of q-tuples of points {(xi,1, . . . , xi,q)}Mi=1 where xi,1, . . . , xi,q ∈ Fm. Typically, M ≤ |Fm|. We
fix T ⊆ Fv, |T | = q. We say that a family C of surfaces satisfies the conditions at T if each
surface c ∈ C passes through xi,1, . . . , xi,q at positions T for some 1 ≤ i ≤ M , and each q-tuple
is contained this way in the same number of surfaces in C. In PCP constructions the initial
conditions are typically concentrated in a small sub-cube in Fm, and the verifier refrains from

3In the context of multi-prover protocols, it is natural to consider several assignments, one for each prover,
while in the context of PCP it is natural to consider a single assignment. However, even in the multi-prover
context one can assume without loss of generality that there is only one assignment, provided that the test
randomly picks which prover to query for each query it makes.

9

comparing the surfaces on them. Hence, we adapt our low degree tests as to allow “forbidden
points” that the verifier does not use for comparisons:

Definition 3.1 (Forbidden points). Forbidden points are defined by a function Q : C → 2F
v
.

For a surface c ∈ C, let c−Q .
= c(Fv−Q(c)). For a family of surfaces C, we will use the notation

C−Q to refer to
{
c−Q

∣∣ c ∈ C
}
.

In this work we consider forbidden points where |Q(c)| is the same for all c ∈ C, and we define
|Q| to be this number.

3.2 A Variety of Low Degree Testers

The low degree testers that we consider in this work are:

1. Surface-vs.-Surface Test: compares two surfaces that intersect in a k′-tuple. This is
a generalization of Curve-vs.-Curve Test.

2. Surface-vs.-Surface-on-Point Test: compares two surfaces that intersect on a k′-
tuple, but only on a random point in the k′-tuple.

3. Surfaces Test: compares three surfaces and four k′-tuples on the three surfaces.

Surface-vs.-Surface Test is parameterized by two families of surfaces, C1 and C2, forbid-
den points Qi : Ci → 2F, and a family I of tuples. In this tester and in similar testers: If C2 and
Q2 are omitted, it should be understood that C2 = C1 and Q2 = Q1.

Surface-vs.-Surface Test(C1, C2, Q1, Q2, I)

1. Pick uniformly c1 ∈ C1; pick S ∈ I uniformly such that S ⊆ c−Q1
1 ; pick c2 ∈ C2 uniformly

such that S ⊆ c−Q2
2 .

2. Check that A(c1)(x) = A(c2)(x) for every x ∈ S.

When the surfaces are one dimensional, we refer to the test as Curve-vs.-Curve Test. When
the curves are lines, we refer to the test as Line-vs.-Line Test. Surface-vs.-Surface-on-
Point Test is similar to Surface-vs.-Surface Test, except that it only compares the two
surfaces on a random point in their intersection. It is mainly useful an auxiliary test for the
analysis:

Surface-vs.-Surface-on-Point Test(C1, C2, Q1, Q2, I)

1. Pick uniformly c1 ∈ C1; pick S ∈ I uniformly such that S ⊆ c−Q1
1 ; pick c2 ∈ C2 uniformly

such that S ⊆ c−Q2
2 .

2. Pick uniformly at random a point x ∈ S.

3. Check that A(c1)(x) = A(c2)(x).

When the intersections between curves are points (i.e., I = Fm, k′ = 1), Surface-vs.-Surface-
on-Point Test and Surface-vs.-Surface Test are equivalent. Surfaces Test queries
three surfaces from a family C with forbidden points Q : C → 2F, and four k′-tuples from a
family I.

10

Surfaces Test(C, Q, I)

1. Pick uniformly and independently at random a surface c1 ∈ C, tuples S0, S1 ∈ I, S0, S1 ⊆
c−Q
1 , S0 ∩ S1 = ϕ, a surface c2 ∈ C, S1 ⊆ c−Q

2 , a tuple S2 ∈ I, S2 ⊆ c−Q
2 , S1 ∩ S2 = ϕ, a

surface c3 ∈ C, S2 ⊆ c−Q
3 , and a tuple S3 ⊆ c−Q

3 , S3 ∈ I, S2 ∩ S3 = ϕ.

2. Check that A(c1) agrees on S0 with A(S0); A(c1) and A(c2) agree on S1 with A(S1);
A(c2) and A(c3) agree on S2 with A(S2); A(c3) agrees on S3 with A(S3).

One could consider a variant of Surfaces Test that queries only curves and not k′-tuples, but
the test we defined is easier to analyze, and hence we prefer it.

3.3 Low Degree Testing Theorems: Proximity and List Decoding

Let ε > 0 be a function of |F|, d and m (typically ε ≈ d/ |F|). Let d′ be a natural number
(typically d′ ≈ d). There are several soundness guarantees we consider for low degree tests:

• Surface (Tuple) Proximity: Let γ′ : [0, 1] → [0, 1] (typically, γ′(γ) = γ − ε). For every
γ ≥ ε, if the verifier accepts with probability γ, then there exists an m-variate polynomial
of degree at most d′ over F that agrees with γ′ = γ′(γ) fraction of the surfaces in C (resp.,
tuples in I). To denote that this statement holds we write AgrErrCγ→γ′,d→d′(Test) ≤ ε

(resp., AgrErrIγ→γ′,d→d′(Test) ≤ ε).

• Surface (Tuple) List decoding: Let l : [0, 1] → N (typically, l(γ) = O(1/γ)). For every
γ ≥ ε, there exist m-variate polynomials p1, . . . , pl, l = l(γ), of degree at most d′ over
F such that the probability that the verifier accepts yet the assignments to the surfaces
(resp., tuples) it picked do not agree with one of p1, . . . , pl, is at most γ. To denote that
this statement holds we write ListErrCl,d′(Test) ≤ ε (resp., ListErrIl,d′(Test) ≤ ε).

It is straightforward to show that a low degree testing theorem in list decoding form implies
a theorem in proximity form, since one of the polynomials in the list has to agree with at least
γ′(γ)

.
= (γ− ε)/l(γ) fraction of the tuples. Next we show that the other direction holds as well,

i.e., from a low degree testing in proximity form, one can deduce the list decoding form. Below
we outline the argument for tuples, since this is what we will use later.

First, we need the following proposition which uses the error correction properties of polyno-
mials, and the sampling properties of the family of all k′-tuples of points in Fm. The Proposition
extends Proposition 2.2.

Proposition 3.1 (Short list decoding). For δ0 = (d′/ |F|)k′ , for every assignment A of elements
in Fk′ to tuples in I, and any δ ≥ 2

√
δ0, there are at most 2/δ m-variate polynomials p1, . . . , pl

of degree at most d′ over F, such that

Pr
S∈I

[
A(S) ≡ p|S

]
> δ.

Proof. Assume on way of contradiction that there are different m-variate polynomials p1, . . . , pl
of degree at most d′ over F with Prc∈C

[
A(c) ≡ p|c

]
> δ for l = 1 + ⌊2/δ⌋.

For 1 ≤ i < j ≤ l, the polynomials pi and pj can agree on at most d′/ |F| fraction of the
points in Fm. For at most δ0 = (d′/ |F|)k′ fraction the tuples, the polynomials pi and pj agree
on the tuple.

11

By inclusion-exclusion, the number of tuples that agree with one of p1, . . . , pl can be lower
bounded by:

lδ |I| −
(
l

2

)
δ0 |I| .

We have lδ > 2 and
(
l
2

)
≤ 1/δ0, which implies that |I| > |I| – contradiction!

Proposition 3.2 (Proximity ⇒ List decoding). Let δ′ = γ′(δ) − |F|−k′ . Assume that δ′ ≥
2(d′/ |F|)k′/2. Then, for any low degree tester Test,

AgrErrIγ→γ′,d→d′(Test) ≤ δ ⇒ ListErrI2/δ′,d′(Test) ≤ δ

Proof. Let δ∗ = γ′(δ). Let δ′ = δ∗ − |F|−k′ , so δ′ ≥ 2(d′/ |F|)k′/2. Let p1, . . . , pl be all the
m-variate polynomials of degree at most d over F that agree with A on at least δ′ fraction of the
tuples S ∈ I. By Proposition 3.1, we have l ≤ 2/δ′. We will upper bound by δ the probability
that the test passes, yet the verifier picks S ∈ I such that A(S) /∈

{
p1|S , . . . , pl|S

}
(this will

imply the lemma). Assume, toward a contradiction, that this is not the case.
For every tuple S ∈ I such that A(S) ∈

{
p1|S , . . . , pl|S

}
, define A∗(S) to be a random

element in Fk′ . By our assumption, the probability that Test passes for A∗ is at least δ. Since
AgrErrIγ→γ′,d→d′(Test) ≤ ε, there is an m-variate polynomial p∗ of degree at most d′ over F
that agrees with A∗ on at least γ′(δ) = δ∗ fraction of the tuples S ∈ I. The probability that

A∗(S) = p∗|S on those tuples S for which A∗(S) was chosen randomly is |F|−k′ , and thus p∗ must

agree with A on at least δ∗−|F|−k′ = δ′ fraction of the tuples. Thus p∗ ≡ pj for some 1 ≤ j ≤ l,
and pj agrees with A∗ with probability at least δ′ over the tuples. This is a contradiction!

3.4 A Theorem And A Conjecture

In this work we give the first low degree test whose soundness error can be made |F|−k for
arbitrarily large k ≥ 1. The low degree testing theorem follows from applying our direct product
theorem (Theorem 6.1) on the low degree testing theorem in Section 5. The family of surfaces
used is specified in Section 5 as well.

Theorem 3.1 (Low error low degree testing theorem). Let F be a finite field that is large enough
(polynomial size) with respect to m, k′, q and d, and fix initial conditions {(xi,1, . . . , xi,q)}Mi=1 ⊆
(Fm)q. Then, there is a family C of surfaces, |C| ≤ M |F|O(mk′), that satisfies the initial condi-
tions with forbidden points Q : C → 2F; in which the surfaces are of degree k = Θ(k′ + q) and
dimension v = O(1); and it holds:

ListErrC
|F|O(k′),dk

(Surfaces Test(C, Q, (Fm)k
′
)) ≤ |F|−Ω(k′) .

We conjecture that there is a low degree test whose soundness error can be made ≈ 1/ |Fm|
when the randomness is only O(m log |F|) (note that the verifier can only access a number
of curves and tuples that is exponential in its randomness). As we show in Section 12, the
conjecture would imply the Sliding Scale Conjecture:

Conjecture 3.1 (Derandomized low degree test conjecture). Let F be a finite field that is large
enough (polynomial size) with respect to m, k′, q and d, and fix initial conditions {(xi,1, . . . , xi,q)}Mi=1 ⊆
(Fm)q. Then, there exist:

12

1. A family C of surfaces that satisfies the initial conditions, and in which the surfaces are
of degree k = poly(k′, q, d) and dimension v = O(1);

2. A family I of k′-tuples of points in Fm;

3. A low degree tester Test that uses O((m+ k′) log |F|+ logM) random bits to make O(1)
queries to C and I, so

ListErrC
|F|O(k′),poly(d,k)

(Test) ≤ |F|−Ω(k′) .

4 Curve-Tuple Sampling

In this section we explore the sampling properties of the “degree-k curves vs. k′-tuples” (k > k′)
incidence graph4. This argument yields low sampling error for k′ = Θ(1). Then, we show that
the “degree-k curves vs. k′-tuples” graph can be viewed as a k′-product of the “degree-k curves
vs. 1-tuples”. We use this connection to argue that the graph for k′-tuples has essentially the
same sampling error as the graph for 1-tuples, albeit with larger deviation.

Interestingly, while the larger deviation is too large for the “k-tuples vs. k′-tuples” graph (the
graph relevant to IKW [21]), it is sufficiently small when k-tuples are replaced with degree-k
curves.

4.1 The k/k′-wise Independence Argument

Let B ⊆ (Fm)k
′
, |B| = µ

∣∣∣(Fm)k
′
∣∣∣. Pick c ∈ C uniformly at random. For a k′ tuple T =

{t1, . . . , tk′} ⊆ F, let XT indicate whether (c(t1), . . . , c(tk′)) ∈ B, and let X̂T = XT − µ.

Since each k′-tuple appears in the same number of curves, we have E
[
X̂T

]
= 0. Define X̂

.
=(|F|

k′

)−1∑
T⊆F X̂T .

Proposition 4.1 (l’th Moment). Let 2 ≤ l ≤ k/k′.

E
[
X̂ l

]
≤ |F|−l/2 klµ(l + 1).

Proof.

E
[
X̂ l

]
=

(
|F|
k′

)−l

·E


∑

T⊆F
X̂T

l


=

(
|F|
k′

)−l

·E

 ∑
T1,...,Tl⊆F

X̂T1 · · · X̂Tl


=

(
|F|
k′

)−l

·
∑

T1,...,Tl⊆F
E
[
X̂T1 · · · X̂Tl

]
(1)

4Our proof readily extends from curves to surfaces.

13

For every l pairwise disjoint T1, . . . , Tl ⊆ F, we have that X̂T1 , . . . , X̂Tl
are independent. Hence,

if among T1, . . . , Tl ⊆ F there is at least one 1 ≤ i ≤ l such that Ti is disjoint from the other Tj

for j ̸= i, we have

E
[
X̂T1 · · · X̂Tl

]
= E

[
X̂Ti

]
·E

[
X̂T1 · · · X̂Ti−1X̂Ti+1 · · · X̂Tl

]
= 0.

Therefore, the only terms that survive in (1) are those where every Ti has non-empty intersection

with
∪

j ̸=i Tj (for this we need l ≥ 2). Their number is bounded by
(|F|
k′

)l
|F|−l/2 kl, since the

Ti’s pick lk′ ≤ k elements from F with multiplicities, and at least l/2 times the element that is
picked is one of at most k elements. Each term can be bounded by:

E
[
X̂T1 · · · X̂Tl

]
≤ Pr

[
∃iX̂Ti = 1− µ

]
· (1− µ) + Pr

[
∀iX̂Ti = −µ

]
(−µ)l

≤ l · µ · 1 + 1 · µ
= µ(l + 1).

The proposition follows.

As a corollary we get a proof of the sampling property of G(C, (Fm)k
′
):

Proposition 4.2. For l ≤ k/k′, the incidence graph G(C, (Fm)k
′
) is µ |F|−l/2 kl(l + 1)ε−l-

sampling.

Proof. By Markov’s inequality,

Pr
[
X̂ ≥ ε

]
≤ Pr

[
X̂ l ≥ εl

]
≤

E
[
X̂ l

]
εl

.

The proposition follows from Proposition 4.1.

In the sequel we will also need an analysis of the sampling properties of G(CS , IS) where CS
is the family of all the degree-k curves through a small set of points S ⊆ Fm, |S| ≪ k′, and
IS is the family of all k′-tuples of points in Fm that contain the points in S. Such an analysis
follows along the same lines as above.

For k′ = 1 we recover the standard upper bound of ≈ |F|−k on the sampling error of “degree-k
curves vs. points”.

Corollary 4.3. For sufficiently large field |F| = Θ(k), the “degree-k curves vs. points” incidence

graph is an (|F|−Θ(k) , |F|−Θ(1))-extractor.

However, for larger k′ we get a much weaker upper bound of ≈ |F|−l.
It is instructive to have an example in mind for when a sampling error of ≈ |F|−l kl occurs:

Example 4.1. Let X ⊆ Fm be a set of points of fraction µ = |X| / |Fm| to be determined
later; let B ⊆ (Fm)k

′
be the family of k′-tuples in which the lexicographically first element lands

in X; let A ⊆ C be the family of degree-k curves in which the first l points according to the
lexicographic order land in X. Then the probability mass of B is µ; the probability mass of A is
µl; given that c ∈ A and S ⊆ c, S ∈ (Fm)k

′
, the probability that S ∈ B is5 ≈ lk′/ |F|. Pick µ so

µ < lk′/ |F| − ε. The sampling error is roughly (k/ |F| − ε)l.

Note that Example 4.1 works only when ε < lk′/ |F|. For larger ε = |F|−Θ(1) we will be able
to get error ≈ |F|−k rather than ≈ |F|−l in Section 4.2.

5In contrast, for “k-tuples vs. k′-tuples” the probability would have been ≈ lk′/k; the difference is crucial for
understanding why our approach in Section 4.2 works for the algebraic case, but not for direct products.

14

4.2 Extractor Product

In this section we define a replacement product operation on extractors, and use it to prove a
much lower sampling error for “degree-k curves vs. k′-tuples” than the one proved in Proposi-
tion 4.2. Replacement product turns out to have been defined before in [11].

Replacement product is a generalization of a widely-used transformation by Wigderson and
Zuckerman [33]. Both transformations take two extractors Ext1 and Ext2 and generate a new
extractor whose output is the multiplication of the output of Ext1 and the output of Ext2.
The new extractor requires independent seeds for Ext1 and Ext2. The difference between our
operation and the Wigderson-Zuckerman one is that WZ require Ext2 to work for the same
domain as Ext1, and handle a lower min-entropy than Ext1. In our operation the domain of
Ext2 is potentially much smaller than the domain of Ext1, and there is no similar demand on
the min-entropy of Ext2. This allows Ext2 to have a smaller seed, and in certain settings may
allow for exhaustive search of a construction of Ext2 with optimal parameters.

Definition 4.1 (Replacement product for extractors). Suppose Ext : X1 × Y1 → Z1 × X2 is
an extractor, and {Extz : X2 × Y2 → Z2 ×W2}z∈Z1

is a family of extractors. Ext ⊗ {Extz} :
X1 × (Y1 × Y2) → (Z1 × Z2) × W2 is defined as follows: assume Ext(x1, y1) = (z1, x2) and
Extz1(x2, y2) = (z2, w2), then (Ext⊗ {Extz})(x1, y1, y2) = (z1, z2), w2.

The bipartite graph associated with the product extractor can be constructed as follows:
Take the bipartite graph associated with Ext1, and replace every vertex z ∈ Z1 with a copy of
the extractor Ext2, by identifying the Ext1 neighbors of z with elements of X2, and connecting
them to elements in {z} × Z2 according to Ext2.

The next lemma states that the product of two extractors is also an extractor

Lemma 4.4 (Replacement product lemma). If Ext : X1 ×Y1 → Z1 ×X2 is a (δ1, ε1)-extractor
and {Extz}z∈Z1

: X2 × Y1 → Z2 ×W2 is a family of (δ2, ε2)-extractors, then Ext⊗ {Extz} is a
(δ, ε)-extractor for δ ≥ max {δ1, δ2} and ε ≥ ε1 + ε2 + δ2/δ.

Proof. Let X be a distribution over X1 with H∞(X) ≥ log(δ |X1|), and let us show that the
distribution defined by (Ext⊗ {Extz})(X,Y1, Y2) over Z1 × Z2 is ε-close to uniform.

Consider z1 ∈ Z1 whose probability according to Ext(X,Y1) is at least (δ2/δ) · (1/ |Z1|). Let
Xz1 be the distribution over X2 that assigns each x ∈ X2 its probability according to X condi-
tioned on z1 being chosen. Since H∞(X) ≥ log(δ |X1|), the probability of any element according
to Xz1 is at most (1/(δ |X1|)) · (1/ |Y1|) · (δ |Z1| /δ2) = |Z1| /(δ2 |X1| |Y1|) = 1/(δ2 |X2|). Hence,
H∞(Xz1) ≥ log(δ2 |X2|). By the property of Extz1 , the distribution defined by Extz1(Xz1 , Y2)
over Z2 is ε2-close to uniform.

The total probability according to Ext(X,Y1) on z1 ∈ Z1 whose probability according to
Ext(X,Y1) is less than (δ2/δ) · (1/ |Z1|) is less than δ2/δ.

By the property of Ext, the distribution defined by Ext(X,Y1) on Z1 is ε1-close to uniform.
Overall, we can upper bound the distance of the distribution defined by (Ext⊗{Extz})(X,Y1, Y2)

over Z1 × Z2 from uniform by ε1 + δ2/δ + ε2.

Corollary 4.5. Let 0 < ε < 1. Set δ(|F| , k, ε) = |F|−k/2 kk(k + 1)ε−k. Then, for all k′, the
incidence graph “degree-k curves vs. k′-tuples” is a (δk′/ε, 2k

′ε)-extractor for

δk′ = (|F| − k′ + 1)−(k−k′+1)/2kk(k + 1)ε−k.

15

Proof. The proof is by induction on k′. For k′ = 1 the claim follows from Proposition 4.2
that analyzes the sampling properties of the incidence graph “degree-k curves vs. points” and
Proposition 2.3 that converts samplers to extractors. Assume that the claim is true for k′ − 1,
and let us prove it for k′.

For every (k′ − 1)-tuple of points S ⊆ Fm, consider the “(degree-k curves through S)
vs. points” incidence graph, where every curve through S is connected to all the points on
it except for those in S. Similarly to Proposition 4.2, this incidence graph is a (δk′ , ε)-extractor.
Moreover, for different S’s we get isomorphic incidence graphs.

We can view the incidence graph “degree-k curves vs. k′-tuples” as the product of the inci-
dence graph “degree-k curves vs. (k′ − 1)-tuples” and the family of incidence graphs “(degree-k
curves through S) vs. points” for different (k′−1)-tuples S ⊆ Fm. By the induction hypothesis,
the first is a (δk′−1/ε, 2(k

′−1)ε)-extractor. Each graph in the second family is a (δk′ , ε)-extractor.
By Lemma 4.4 and since δk′ ≥ δk′−1, the product graph is a (δk′/ε, 2k

′ε)-extractor.

Note that the statement of Corollary 4.5 is meaningful for sufficiently large F with respect to
k′. For such we can take ε = |F|−Θ(1) and have a deviation 2k′ε = |F|−Θ(1).

Corollary 4.6. There exists a ≥ 1, such that for sufficiently large k ≥ a·k′, for sufficiently large
|F| ≥ a ·k, the incidence graph “degree-k curves vs. k′-tuples” is a (|F|−Θ(k) , |F|−Θ(1))-extractor.

Another application of the replacement product that we will need later is to analyzing the
incidence graph of “pairs of degree-k curves vs. pairs of points”. One side of this graph contains
all pairs of degree-k curves in Fm, while the other side contains all the pairs of points in Fm. A
pair of curves is connected to a pair of points if the first curve contains the first point and the
second curve contains the second point.

Corollary 4.7. The incidence graph “pairs of degree-k curves vs. pairs of points” is a (|F|−Θ(k) , |F|−Θ(1))-
extractor.

Proof. This “pairs of degree-k curves vs. pairs of points” graph is the product of the following
incidence graphs:

• “pairs of degree-k curves vs. points”, where a pair of curves is connected to a point on the
first curve.

• The family of graphs “pairs of degree-k curves where the first curve passes through a point
z vs. points” where z ∈ Fm and a pair of curves, where the first curve must pass through
z, is connected to a point on the second curve.

By Corollary 4.3, both graphs are (|F|−Θ(k) , |F|−Θ(1))-extractors (note that the second curve of
the pair in the first graph and the first curve of the pair in the second graph do not damage the
extractor property). By Lemma 4.4, the product is an (|F|−Θ(k) , |F|−Θ(1))-extractor as well.

5 The Base Low Degree Test

In this section we show that a “robust” low degree testing theorem for Surface-vs.-Surface
follows from the low degree testing theorem for Line-vs.-Line Test [4].

Lemma 5.1 (Line vs. Line low degree testing theorem [4]). Assume that F is a large enough

field (polynomial size) with respect to d and m. For some δ = |F|−Ω(1), for any prover strategies

16

A1, A2, there are m-variate polynomials p1, . . . , pl, l ≤ O(1/δ), of degree at most d over F, such
that the probability that the Line-vs.-Line Test passes but A1(ℓ1) is not one of p1|ℓ1 , . . . , pl|ℓ1
(similarly for A2(ℓ2)), is at most δ.

Our “robust” low degree testing theorem holds when restricting to surfaces that pass through
given k′′ points S ⊆ Fm, and even further when restricting to a sub-family of fraction δ =
|F|−Θ(k) of the surfaces that pass through S. We use CS to denote those surfaces in C that pass
through S. The construction relies on the curve-tuple sampling proved in Section 4.

We focus on the following family C of 3-dimensional surfaces in Fm: Fix initial conditions

{(xi,1, . . . , xi,q)}Mi=1 ⊆ (Fm)q.

For every 1 ≤ i ≤ M , add all the 3-dimensional surfaces of the form

s(t1, t2, t3) = c1(t1) + t3c2(t2),

where c1 is a curve of degree at most q+ k and passes through xi,1, . . . , xi,q, and c2 is a curve of
degree at most k. The forbidden points Q : C → 2F rule out the initial points embedded in the
curves. The number of curves is M · |F|O((q+k)m). Each surface is the union of |F|2 lines x+ ty
where x ∈ Fm is on the curve c1, and y ∈ Fm is on the curve c2.

Proposition 5.2 (Base test). Assume that F is a large enough field (polynomial size) with
respect to m, d, k and |Q|. Assume that k is large enough (linear size) in k′′. There are

δ = |F|−Ω(k) and ε = |F|−Ω(1) that satisfy:
For any C′ ⊆ C and S′ ⊆ Fm, |S′| ≤ k′′, such that

∣∣C′
S′

∣∣ ≥ δ |CS′ |,

ListErr
C′
S′

|F|O(1),d(q+k)
(Surface-vs.-Surface Test(C′

S′ , Q,Fm)) ≤ |F|−Ω(1) .

Proof. The proposition is proved by using a successful strategy for Surface-vs.-Surface to
succeed in Line-vs.-Line Test, applying Lemma 5.1 to deduce agreement of the assignments
to lines with a low degree polynomial, and arguing that this agreement extends to surfaces.

Fix C′ and S′ as in the premise. Fix a strategy for Surface-vs.-Surface Test(C′
S′ , Q,Fm).

We use it to devise a strategy for Line-vs.-Line Test as follows. Given a line ℓ = {x+ ty | t ∈ F}
where x is uniformly distributed in Fm and y is uniformly and independently distributed in
Fm − {0}, we consider a uniform surface in C′

S′ of the form s = {c1(t1) + t · c2(t2) | t1, t2, t ∈ F}
such that x ∈ c1(F) and y ∈ c2(F), ℓ ⊆ s−Q. The assignment A(ℓ) is the restriction to ℓ of the
assignment to the surface.

By Corollary 4.7, and using that |F| is sufficiently larger than |Q|, the distribution of the sur-

faces picked by the above process during a run of Line-vs.-Line Test is |F|−Θ(1)-close to the
distribution of surfaces in Surface-vs.-Surface Test(C′

S′ , Q,Fm). Hence, except for proba-

bility |F|−Θ(1), Line-vs.-Line Test succeeds whenever Surface-vs.-Surface Test does.

Applying Lemma 5.1, for δ = |F|−Θ(1) there are m-variate polynomials p1, . . . , pl, l ≤ O(1/δ),
of degree at most d(q + k) over F, such that the probability that Line-vs.-Line Test passes,
yet it picks a line ℓ1 such that A(ℓ1) is not one of p1|ℓ1 , . . . , pl|ℓ1 , is at most δ.

Assume that Surface-vs.-Surface Test passes with probability sufficiently large |F|−Θ(1)

(otherwise we are done). Since |F| is sufficiently large with respect to d, q and k, for a uniform
surface in C′

S′

s = {c1(t1) + t · c2(t2) | t1, t2, t ∈ F} ,

17

except for probability |F|−Θ(1), for more than d(q + k)l/ |F| fraction of the choices of t1, t2 ∈ F,
c2(t2) ̸= 0⃗, on the restriction of s to the line {c1(t1) + t · c2(t2) | t ∈ F} the assignment A(s)
agrees with one of p1|ℓ1 , . . . , pl|ℓ1 . For such s’s it holds that A(s) ∈

{
p1|s, . . . , pl|s

}
. The lemma

follows.

6 Setup For Direct Product Theorem

In this section we formally define our direct product theorem, and outline its analysis.
The theorem assumes that a test that compares two surfaces on a point has error |F|−Ω(1)

even when restricting to a sub-family of surfaces, and shows that a test that compares two
surfaces on k′ points has error |F|−Ω(k′).

Theorem 6.1 (Direct product for low degree testing). Assume that F is large enough (polyno-
mial size) in d′, m, k′, |Q|, and that k is large enough (linear size) in k′. Then, the assumption
about the base test implies the conclusion about the repeated test:

Base Test: Assume that there exists a constant 0 < β′ < 1 such that for every set S′ ⊆ Fm,
|S′| ≤ β′k′, for every C′ ⊆ C, |C′| ≥ |F|−β′k′ |C|, and Q′ : C′ → 2F, |Q′| ≤ |Q|+ β′k′:

ListErr
C′
S′

|F|−Ω(1),d′
(Surface-vs.-Surface Test(C′

S′ , Q′,Fm)) ≤ |F|−Θ(1) .

Product Test: Then, there exists δ = |F|−Ω(k′), such that

ListErrC
|F|O(k′),d′

(Surfaces Test(C, Q, I)) ≤ δ.

For simplicity, we prove Theorem 6.1 for curves rather than surfaces. Our arguments readily
extend to surfaces.

The heart of the proof of Theorem 6.1 is an analysis of the two query Curve-vs.-Curve
Test. This analysis only gives a guarantee about a tiny portion of all curves in C. We then use
the extra queries in Curves Test and the error correction properties of polynomials to give a
guarantee about a sizable portion of C. The analysis consists of the following three parts:

1. Analysis of Curve-vs.-Curve Test (Sections 7, 8 and 9): This is the heart of the

analysis. Use the base test to deduce that success |F|−βk′ in Curve-vs.-Curve Test
gives rise to a set S′ of ≈ βk′ points in Fm and a low degree polynomial that agrees with
≈ |F|−βk′ fraction of the curves in CS′ (recall that CS′ are the curves in C that contain
S′). To reduce to the base test we use the sampling properties of the “degree-k curves
vs. k′-tuples of points” incidence graph (this is the Wide Agreement Lemma, which is in
Section 8).

2. Weak analysis of Curves Test (Section 10): Use the analysis of Curve-vs.-Curve

Test from the previous item to deduce that success |F|−βk′ in Curves Test gives rise to

a low degree polynomial that agrees with ≈ |F|−βk′ fraction of the k′-tuples of points in
Fm. Here we use the extra queries of the verifier in Curves Test to go from a structural
conclusion about the assignment to CS′ , a tiny portion of all C, to a structural conclusion
about the assignment to a sizable portion of all k′-tuples of points in Fm.

3. Strong analysis of Curves Test (Section 11): Use the weak analysis of Curves Test

to deduce that success |F|−βk′ in Curves Test gives rise to a low degree polynomial

that agrees with ≈ |F|−βk′ fraction of the curves in C. Here we rely on the list decoding
argument in Section 3.3.

18

7 Identifying a Successful Sub-Test

In this section we show that success probability γ ≫ |F|−k′ of Curve-vs.-Curve Test implies
a much higher success probability ≫ 1/ |F| of Curve-vs.-Curve-on-Point Test over a small
subset of the curves that have some points in common and agree on them. We will later use this
lemma where the initial family of curves does not necessarily contain all degree-k curves. We
therefore use C∗ to denote the initial set of curves, and C to denote the family of all degree-k
curves in Fm.

Lemma 7.1 (Sub-Test Lemma). Suppose that the probability that Curve-vs.-Curve Test(C∗, Q, I)
passes is at least 4 |F|−βk′. For any k′′ ≥ 1 if 0 < β′ < 1 satisfies β′ > 8βk′/k′′, then there exist

• S′ ⊆ Fm, |S′| = k′′;
∣∣C∗

S′

∣∣ ≥ |F|−βk′ · (|C∗| / |C|) · |CS′ |;

• C′ ⊆ CS′ , |C′| ≥ |F|−βk′ ·
∣∣C∗

S′

∣∣;
• Q′ : C′ → 2F, |Q′| ≤ |Q|+ k′′;

such that Curve-vs.-Curve-on-Point Test(C′, Q′, IS′) accepts with probability at least (1/2) |F|−β′
.

Proof. Pick uniformly c ∈ C∗ and S′ ⊆ c−Q, |S′| = k′′, such that conditioned on Curve-vs.-
Curve Test(C∗, Q, I) picking c and S ⊆ c−Q, S ⊇ S′, the test passes with probability at

least |F|−βk′ . Let a1, . . . , ak′′ ∈ F be the assignments of A(c) to the points in S′. Let C′ ⊆ C∗
S′

contain all those curves c′ ∈ C∗
S′ that assign a1, . . . , ak′′ to the points in S′. We know that

|C′| ≥ |F|−βk′ ·
∣∣C∗

S′

∣∣. The probability that
∣∣C∗

S′

∣∣ < |F|−βk′ · (|C∗| / |C|) · |CS′ | is at most |F|−βk′ .
We’ll show that conditioned on Curve-vs.-Curve Test picking c1, c2 ∈ C′ and S′ ⊆ S ⊆

c−Q
1 , c−Q

2 , it holds that A(c1), A(c2) agree on more than |F|−β′
fraction of the x ∈ S except

with probability at most |F|−β′k′′/2 over the choice of c, S′, as well as over the randomness in
Curve-vs.-Curve Test. Let us call this property “high probability agreement”. If A(c1),

A(c2) agree on at most |F|−β′
fraction of the x ∈ S, then – since S′ is uniform inside S –

the probability that S′ falls inside the agreement points is at most |F|−β′k′′ . By Bayes’ law,

and since the probability of agreement on S′ is at least |F|−βk′ , conditioning on agreement on

S′ the probability that A(c1), A(c2) agree on at most |F|−β′
fraction of the x ∈ S is at most

|F|−(β′k′′−βk′) ≤ |F|−β′k′′/2.

Fix c and S′ such that
∣∣C∗

S′

∣∣ ≥ |F|−βk′ · (|C∗| / |C|) · |CS′ | and high probability agreement holds
where the probability is only taken over the randomness in the test. Let Q′ inherit the forbidden
points of Q in addition to the points of S′.

The distribution D1 of curves and tuples in Curve-vs.-Curve-on-Point Test(C′, Q′, IS′)
is different from their distribution D2 in Curve-vs.-Curve Test(C∗, Q, I) conditioned on the
curves being in C′ and tuples falling to IS′ . In particular, D1 may place much of the probability
on very few tuples that most of their curves fall in C′ (since the probability of a tuple is
proportional to square the fraction of its curves that fall into C′), while in D2, assuming that
C′ is large enough, the distribution of tuples is close to uniform over all tuples in IS′ . However,
for any event E, the probability of E according to D1 is at most |F|βk

′
times its probability

according to D2. In particular, this is true for the event that A(c1), A(c2) agree on more than

|F|−β′
fraction of the x ∈ S. Therefore, the probability that Curve-vs.-Curve-on-Point

Test(C′, Q′, IS′) accepts is at least (1/2) |F|−β′
.

19

8 From Large Intersection To One Point Intersection

In this section we prove the Wide Agreement Lemma discussed in the introduction. We show
that if the Curve-vs.-Curve-on-Point Test passes with good probability when the intersec-
tion between curves contains (k′ − k′′) points, then the Curve-vs.-Curve Test passes with
comparably good probability when the intersection between curves contains just one point. The
proof relies on the sampling property of the “degree-k curves vs. k′-tuples” incidence graph.

Lemma 8.1 (Wide Agreement Lemma). Assume the setup of Lemma 7.1, and in particular that
for S′, C′ and Q′ as there, the probability that Curve-vs.-Curve-on-Point Test(C′, Q′, IS′)

accepts is at least (1/2) |F|−β′
. Further, assume that β and β′ are such that for every (k′′ + 1)-

tuple of points S′′ ⊆ Fm, the incidence graph G(CS′′ , IS′′) is (δ, ε)-sampling for

ε ≤ (1/12) · |F|−β′
.

δ ≤ ζ2 |F|−2βk′ (|C∗| / |C|)ε2,

Then, Curve-vs.-Curve Test(C′, Q′,Fm) passes with probability at least (1/2) |F|−β′
− 3ε.

Proof. For a point x ∈ Fm let CS′∪{x} be the curves c ∈ CS′ such that x ∈ c−Q′
, and let IS′∪{x}

be the tuples in IS′ that pass through x. Since S′ is fixed throughout the proof, we use Cx to
denote CS′∪{x} and we use Ix to denote IS′∪{x}.

Let p(x) be the probability that a uniform c ∈ C′ contains x as x ∈ c−Q′
. For a possible

assignment a ∈ F to x, let Cx,a be the family of curves in Cx with A(c)(x) = a. Per S ∈ IS′ ,
let µx,a(S) be the fraction of curves in Cx,a among the curves in C′ ∩ Cx that contain S. Since
every curve c ∈ C′ ∩ Cx contains the same number of k′-tuples in Ix,

E
S∈Ix

[µx,a(S)] =
|C′ ∩ Cx,a|
|C′ ∩ Cx|

.

The probability that Curve-vs.-Curve Test(C′, Q′,Fm) passes is given by

∑
x∈Fm

p(x) ·
∑
a∈F

(
|C′ ∩ Cx,a|
|C′ ∩ Cx|

)2

. (2)

The probability that Curve-vs.-Curve-on-Point Test(C′, Q′, I) passes is given by∑
x∈Fm

p(x) ·
∑
a∈F

∑
c∈C′∩Cx,a

1

|C′ ∩ Cx|
· E
S∈Ix:S⊆c

[µx,a(S)]. (3)

By the sampling property of “degree-k curves vs. (k′ + 1)-tuples”, all curves c ∈ Cx, except
for at most δ |Cx| curves which we denote Bx, have

E
S∈Ix:S⊆c

[µx,a(S)] =
|C′ ∩ Cx,a|
|C′ ∩ Cx|

± ε.

Let G ⊆ Fm be the points x ∈ Fm for which |C′ ∩ Cx| > (δ/ε) |Cx|. Since |C′| ≥ (δ/ε2) |CS′ |,
for x /∈ G it holds:

p(x) =
|C′ ∩ Cx|

|C′|
≤ δ

ε

|Cx|
|C′|

≤ δ

ε

|Cx|
(δ/ε2) |CS′ |

= ε
|Cx|
|CS′ |

.

20

Hence, the contribution to (3) from points x /∈ G is at most∑
x∈Fm

ε
|Cx|
|CS′ |

≤ ε.

The contribution to (3) from points x ∈ G and curves c ∈ Bx is at most∑
x∈G

p(x) · |C
′ ∩ Cx ∩Bx|
|C′ ∩ Cx|

≤
∑
x∈G

p(x) · δ |Cx|
(δ/ε) |Cx|

≤ ε.

Hence, we can upper bound the probability in (3) by:

(3) ≤ 2ε+
∑
x∈G

p(x) ·
∑
a∈F

∑
c∈C′∩Cx,a−Bx

1

|C′ ∩ Cx|
· E
S∈Ix:S⊆c

[µx,a(S)]

≤ 2ε+
∑
x∈G

p(x) ·
∑
a∈F

∑
c∈C′∩Cx,a

1

|C′ ∩ Cx|
·
(
|C′ ∩ Cx,a|
|C′ ∩ Cx|

+ ε

)

≤ 3ε+
∑
x∈Fm

p(x) ·
∑
a∈F

(
|C′ ∩ Cx,a|
|C′ ∩ Cx|

)2

The lemma follows from (2).

9 Curve vs. Curve Analysis

In this section we apply the machinery we developed to this point, as well as the guarantee
about the base test, to start from a noticeable success probability of Curve-vs.-Curve Test
and get a small set of points and a low degree polynomial that agrees with a noticeable fraction
of the curves through the points.

Lemma 9.1 (Analysis of Curve-vs.-Curve Test). Assume that |F| is a sufficiently large
polynomial of d, m, k. Let 0 < β′ < β < 1.

Base Test: Let C′ ⊆ C be such that for every β′k′-tuple of points S′ ⊆ Fm where
∣∣C′

S′

∣∣ ≥
δ |CS′ |, for every Q′ : C′ → 2F, |Q′| ≤ q:

AgrErrC
′

γ→γ′,d→d′(Curve-vs.-Curve Test(C′, Q′,Fm)) ≤ γ0.

Assumptions:

•
γ0 ≤ (1/4) · |F|−β′

,

• For every S′′ ⊆ Fm, |S′′| ≤ β′k′ +1, the incidence graph G(CS′′ , IS′′) is (δ, ε)-sampling for
δ and ε as in Lemma 8.1.

Repeated Test: If Curve-vs.-Curve Test(C∗, Q, I) passes with probability at least 4 |F|−βk′ ,
then there exists a set S′ ⊆ Fm, |S′| ≤ β′k′ and an m-variate polynomial of degree at most d′

over F that agrees with at least γ′((1/4) · |F|−β′
) · |F|−2βk′ (|C∗| / |C|) |CS′ | fraction of the curves

in C∗
S′.

21

Proof. Assume thatCurve-vs.-Curve Test(C∗, Q, I) passes with probability at least 4 |F|−βk′ .
Let 0 < β′ < β and k′′ < β′k′ be as in Lemma 7.1. By Lemma 7.1, there exist S′ ∈ (Fm)k

′′
;

C′ ⊆ CS′ ; Q′ : C′ → 2F; such that |C′| =
∣∣C′

S′

∣∣ ≥ |F|−2βk′ (|C∗| / |C|) |CS′ |, and the probability that

Curve-vs.-Curve-on-Point Test(C′, Q′, IS′) passes is at least (1/2) |F|−β′
. By Lemma 8.1,

Curve-vs.-Curve Test(C′, Q′,Fm) passes with probability at least (1/4) · |F|−β′
. By our

assumption on the base test, there is an m-variate polynomial p of degree at most d′ over F that
agrees with a set of curves Cp of fraction γ′ = γ′((1/4) · |F|−β′

) in C′. We have

|Cp| ≥ γ′
∣∣C′∣∣ ≥ γ′ |F|−2βk′ (|C∗| / |C|) |CS′ | .

10 Curves Test Analysis

In this section we use the analysis of Curve-vs.-Curve Test in Section 9 to derive an analogous
conclusion for Curves Test. Thanks to the third query in Curves Test, this time we get a
conclusion about the agreement of a low degree polynomial with a large portion of all k′-tuples,
not just those that contain a small set S′ of points. In the next sections we will extend this to
argue about agreement with a large portion of all curves.

Lemma 10.1 (Analysis of Curves Test). Using the notation of Lemma 9.1, and under its
assumptions about the parameters and the base test:

Repeated Test:

AgrErrI
γ→|F|−Ω(k′),d→d′

(Curves Test(C, Q, I)) ≤ 2 |F|−βk′ .

Proof. Assume that Curves Test(C, Q, I) passes with probability at least 2 |F|−βk′ . Let C∗

be the family of curves c ∈ C, such that with probability at least |F|−βk′ over the choice of

S ⊆ c−Q, it holds that A(c) and A(S) agree. We have |C∗| ≥ |F|−βk′ |C|, and Curve-vs.-

Curve Test(C∗, Q, I) passes with probability at least |F|−βk′ .
By Lemma 9.1, there exists an m-variate polynomial p of degree at most d′ over F, such that

with probability at least γ′((1/4)·|F|−β′
)·|F|−3βk′ |CS′ | over c ∈ C∗

S′ , it holds that A(c) ≡ p|c. The
lemma follows since every k′-tuple that does not intersect S′ is contained in the same number
of curves in CS′ , which means that A(c2) agrees with at least |F|−βk′ fraction of the S2’s.

11 Concluding The Analysis

In this section we get a list of polynomials that explains almost all of the success of Curves
Test.

Lemma 11.1 (decoding → list decoding). Under the assumptions of Lemma 10.1, there exists

δ0 = |F|−Ω(k′), such that

ListErrC2/δ0,dk(Curves Test(C, Q, I)) ≤ δ0.

Proof. By Lemma 10.1 and the list decoding transformation of Lemma 3.2.

22

From the list decoding that explains the success of assignments to tuples we can get a list
decoding that explains that success of assignments to curves:

Lemma 11.2. Using the assumptions and notation of Lemma 11.1, and assuming that6 (δ
3/2
0 /2)·(|F|−|Q|

k′

)
>

(
dk
k′

)
,

ListErrC2/δ0,dk(Curves Test(C, Q, I)) ≤ δ0.

Proof. For c1, S1, c2, S2, c3 picked in Curves Test, we set:

• AGR: A(c3)|S2
≡ A(S2);

• TEXPi: A(S2) ≡ pi|S2
;

• TEXP :
∨l

i=1 TEXPi;

• CEXPi: A(c3) ≡ pi|c3 ;

• CEXP :
∨l

i=1CEXPi;

By Lemma 11.1,
Pr [AGR ∧ ¬TEXP] ≤ δ.

Hence,

Pr
c3

[
Pr
S2

[AGR ∧ ¬TEXP] ≥
√
δ

]
≤

√
δ.

Consider a curve c3 such that PrS2 [AGR ∧ TEXP] ≥
√
δ. Then, there exists 1 ≤ i ≤ l, such

that PrS2 [TEXPi] ≥
√
δ/l. Since the premise of the lemma guarantees that

√
δ/l fraction of

the tuples on a curve must span more than dk points, we have CEXPi. Hence,

Pr [AGR ∧ ¬CEXP] ≤ Pr

[
AGR ∧ Pr

S2

[AGR ∧ TEXP] <
√
δ

]
≤ Pr

[
AGR ∧ (Pr

S2

[AGR] < 2
√
δ)

]
+ Pr

[
Pr
S2

[AGR ∧ ¬TEXP] ≥
√
δ

]
≤ 2

√
δ +

√
δ.

Putting together Lemma 11.2, appropriately adjusted to surfaces, and Proposition 5.2 es-
tablishing the base test, Theorems 3.1 and 1.1 follow. The proof of Theorem 1.2, establishing
a property testing algorithm based on Surfaces Test, follows as well. Given a function
f : Fm → F to be tested for low degree, the algorithm invokes Surfaces Test, queries the
evaluations of f on the points contained in surfaces picked by Surfaces Test, and checks
whether they correspond to assignments that would have passed the test. If f is a polynomial
of degree at most d, then the algorithm always accepts. Suppose that the test accepts with
sufficiently large probability |F|−Θ(k). Then, as we saw, the restriction of f to |F|−Θ(k) fraction
of the surfaces is consistent with some low degree polynomial. By Corollary 4.3 adapted to
surfaces (and provided that the fraction |F|−Θ(k) is sufficiently large), f must agree with the

polynomial on 1− |F|−Ω(1) fraction of the points.

6When considering v-dimensional surfaces rather than curves, the condition becomes (δ
3/2
0 /2) ·

(|F|−|Q|
k′

)
>(

dk|F|v−1

k′

)
.

23

12 From Derandomized Low Degree Test to Sliding Scale Con-
jecture

12.1 Preliminaries on Probabilistically Checkable Proofs

A PCP verifier is an NP verifier that has polynomially many tests, each depending on a bounded
number of queries to the proof. A random test (even though it involves only a bounded number
of queries!) predicts correctly the outcome of the verification with good probability.

Definition 12.1 (PCP verifier). For c, s, r, q,Σ that are functions of n, the class PCPc,s[r, q]Σ
contains all languages L that have verifiers that on input x of size n use r random bits to make
q queries to a proof over alphabet Σ, and satisfy:

• Completeness: For every x ∈ L, there exists a proof π such that the verifier accepts with
probability at least c.

• Soundness: For every x /∈ L, for any purported proof π, the verifier accepts with probability
at most s.

Σ is called the alphabet of the proof. It Σ is omitted, the understanding is that Σ = {0, 1}.
Often we only specify the size of Σ, in which case it is understood that Σ = {1, . . . , |Σ|}. The
size of the PCP (equivalently, the proof length) can be bounded by 2rq. If on inputs x of size n
we have 2rq = n1+o(1)poly(1/ε), then we say that the PCP is of almost linear size. If c = 1 we
say that the verifier has perfect completeness. In this work we will only consider verifiers with
perfect completeness. The fraction s is called the soundness error of the verifier, or simply the
error. We have the following lower bounds on the error:

Proposition 12.1. If s < 2−r or s < |Σ|−q, then PCPc,s[r, q]|Σ| ⊆ P .

In other words, for r = O(log n) the error can be at best polynomially small in n, and to
achieve error s with a constant number of queries, one has to take the alphabet to be at least
(1/s)Ω(1).

Given a PCP verifier, one can generate a new PCP verifier with lower error and more queries
by sequentially repeating the test of the original verifier. The new verifier can be implemented
in a randomness-efficient manner, yielding the following:

Proposition 12.2 (Sequential repetition). For every ε = ε(n) > 0, there is k = Θ(log1/s(1/ε)),
such that

PCP1,s[r, q]|Σ| ⊆ PCP1,ε[O(r + k), qk]|Σ|.

We say that a PCP verifier is a projection PCP verifier (or that the PCP is a projection game)
if the verifier makes q = 2 queries, and given the answer to the first query, there is at most one
accepting answer to the second query.

A different perspective on PCP verifiers is given by the notion of multi-prover interactive
proofs or multi-prover games:

Definition 12.2 (MIP). We say that a language L has an MIP protocol with parameters
c, s, r, q,Σ, if there is a protocol in which a verifier interacts with q non-interacting provers,
uses r random bits to decide on queries to the q provers; the provers respond with replies taken
from an alphabet Σ.

24

• Completeness: For every x ∈ L, there exists a strategy to the provers such that the verifier
accepts with probability at least c.

• Soundness: For every x /∈ L, for any strategy to the provers, the verifier accepts with
probability at most s.

One can view any MIP protocol as a PCP verifier, and vice versa. The proof for the PCP
verifier consists of writing down, for each of the MIP’s protocol q provers, its replies on all the
possible questions of the verifier.

The PCP Theorem states that probabilistic checking of proofs can always be done with
constant number of queries:

Theorem 12.1 (PCP Theorem [6, 5, 3, 2]). NP ⊆ PCP1, 1
2
[O(log n), O(1)].

Various works amplify the soundness error of the basic PCP theorem. We will use a PCP
theorem with low error:

Theorem 12.2 (Low error PCP Theorem [29, 4, 12]).

NP ⊆ PCP1,2/|Σ| [O(log n), O(1)]|Σ| ,where log |Σ| =
√
log n log log n.

12.2 From Derandomized Low Degree Test to Sliding Scale Conjecture

In this section we show how a derandomized low degree test as in Conjecture 3.1 implies the
Sliding Scale Conjecture, hence proving Theorem 1.3. The idea of the proof is to use the low
degree test for simulating sequential repetition. This idea has been used in many works before,
however, there are a few differences between the current proof and previous works: (1) We start
with a low error PCP by Dinur et al [12], and our choice of parameters is unusual; (2) We
formulate and use a new abstraction of the composition theorem of Arora-Safra [3].

Our construction is as follow. We start with an instantiation of the low error PCP from
Theorem 12.2:

NP ⊆ PCP1,2/|Σ| [O(log n), O(1)]|Σ| ,where log |Σ| =
√
log n log log n.

By sequential repetition of this PCP O(
√

log n/ log log n) times (see Proposition 12.2) we get:

NP ⊆ PCP1,1/n

[
O(log n), O(

√
log n/ log log n)

]
|Σ|

.

We wish to decrease the number of queries to a constant without hurting the soundness error or
the randomness too much. Recall that to allow that we have to increase the alphabet appropri-
ately (see Proposition 12.1). Ultimately, we want to prove a PCP theorem with polynomially
small error and polynomial alphabet size:

NP ⊆ PCP1,1/nΩ(1) [O(log n), O(1)]nO(1) . (4)

From this, one can get “sliding-scale”, i.e., error ε with alphabet size poly(1/ε) by composition
with a Hadamard/quadratic functions-based construction.

In the next section we describe the algebraic framework for converting a PCP verifier with
many queries to a PCP verifier with a constant number of queries based on the local testing
and decoding properties of low degree polynomials. This framework is invoked twice, with two

25

different settings of parameters. In the first application (see Section 12.3), we get a construction
with sub-exponential alphabet (v is a constant):

NP ⊆ PCP1,1/nΩ(1) [O(log n), O(1)]
22

Θ((logn)1/2v) . (5)

In the second application (see Section 12.4), we get a construction7 with poly-logarithmic ran-
domness, poly-logarithmically small soundness error, and quasi-polynomial alphabet:

NP ⊆ PCP
1,2−Ω(log2v n)

[
O((log n)4v−1), O(1)

]
2Θ(log4v−1 n) . (6)

Our final construction (4) is obtained from composing (5) as an outer construction and (6) as
inner construction. The idea is that construction (6) is invoked on n′ which is about logarithmic

in the alphabet size of (5), i.e., n′ = 2Θ((logn)1/2v), so (log n′)2v = O(log n). The final construction
inherits its soundness error from both the outer and inner constructions, but inherits its alphabet
only from the inner construction.

12.3 Query Reduction Using Polynomials

We assume a PCP verifier V1 that uses r random bits to make q queries to a proof over alphabet
Σ. The verifier has perfect completeness and soundness error ε. We show how to simulate V1

using a new verifier V2 that makes only O(1) queries to a proof over a larger alphabet.
The general idea is this: The proof for V2 contains a (supposed) encoding of V1’s proof as a

low degree polynomial. The encoding is given by the restrictions of the polynomial to curves
and tuples of points. Each curve goes through q points that represent q queries of V1 on some
randomness string. The verifier V2 locally tests the encoding by making only O(1) queries using
the low degree test, and achieves low soundness error. The verifier V2 locally decodes the q
queries required for V1 by making a single query to a curve.

The details are as follows: Let N = 2rq be the maximal length of a proof accessible by a
verifier with 2r possible tests, each accessing q locations in the proof. Let m, h be natural
numbers for which hm = N . Denote d

.
= m(h− 1). Let F be a finite field of characteristic two

and size |F| ≥ poly(d, |Σ|) for a sufficiently large polynomial as in Conjecture 3.1. Let H ⊆ F,
|H| = h, and associate {1, . . . , N} with Hm. Let S ⊆ F, |S| = |Σ|, and associate Σ with S.

For a string π ∈ ΣN , let pπ : Fm → F be the m-variate polynomial of degree at most h− 1 in
each of its variables for which pπ(x) = π(x) for every x ∈ Hm.

For randomness w ∈ {0, 1}r, let (xw,1, . . . , xw,q) ∈ (Hm)q be the q-tuple of points correspond-
ing to the queries of V1 on randomness w. Let C be a family of v-dimensional surfaces that pass
through {(xw,1, . . . , xw,q)}w as discussed in Section 5.

The verifier V2 is as follows:

Verifier V2

Prescribed proof: As specified by the low degree test; supposedly the restrictions of pπ to curves
in C and k′-tuples in I.
Test:

1. Simulate the verifier of the low degree test; let xw,1, . . . , xw,q ∈ Fm be the initial points
picked by the verifier (embedded in a curve). Reject if the low degree testing verifier
rejects.

7In fact, as we explain in Section 12.4, we need a stronger guarantee, namely a “decoding verifier”.

26

2. Let v1, . . . , vq ∈ F be the evaluations received on xw,1, . . . , xw,q (embedded in the assign-
ment for the curve).

3. Reject if it is not the case that v1, . . . , vq ∈ S.

4. Apply V1 on randomness w and answers v1, . . . , vq. Reject if V1 rejects; accept otherwise.

The verifier V2 uses O(log |C|) random bits to make O(1) queries to a proof over alphabet F(
d′+v

v).
It has perfect completeness. It remains to prove soundness.

Lemma 12.3 (PCP Soundness). There are γ, γ′ = |F|−Ω(k′) for which: if there is a proof that
makes V2 accept with probability more than γ′, then there is a proof that makes V1 accept with
probability more than γ.

Proof. Assume on way of contradiction that there is no proof that makes V1 accept with proba-
bility more than γ (to be fixed later). Apply the soundness of the low degree test for an appro-

priate parameter ε = |F|−Ω(k′), and let p1, . . . , pl be the polynomials list decoding, l = |F|O(k′).
Let π1, . . . , πl be the proofs that correspond to p1, . . . , pl: For every i ∈ {1, . . . , N}, the i’th
position of πj is pj(i) if pj(i) ∈ S, and an arbitrary symbol otherwise (Recall that we associate
{1, . . . , N} with Hm).

There are two cases in which V2 accepts:

1. The low degree test passes although it is not the case that v1 = pi(xw,1), . . . , vq = pi(xw,q)
for some 1 ≤ i ≤ l. By the low degree test soundness guarantee, this happens with
probability at most ε.

2. v1 = pi(xw,1), . . . , vq = pi(xw,q) for some 1 ≤ i ≤ l, and v1, . . . , vq ∈ S, and V1 accepts
πi on randomness w. By the soundness of V1, for every 1 ≤ i ≤ l, this happens with
probability at most γ. Thus, the probability it happens for some 1 ≤ i ≤ l is at most lγ.

This means that V2 accepts with probability at most ε+ lγ. Pick γ = |F|−Ω(k′) so γ′
.
= ε+ lγ =

|F|−Ω(k′).

Settings of Parameters (toward (5)):

• m, k′, q, k = Θ((log n)1−1/2v).

• h, |F| = 2Θ((logn)1/2v).

• |Fm| = nΘ(1).

• |F|−Ω(k′) = 1/nΩ(1).

• |Σ| = 22
Θ((logn)1/2v)

.

• |C| ≤ nO(1).

27

12.4 Decoding verifier

We can adapt the algebraic construction from the previous section into a “decoding” verifier,
i.e., a verifier that, if it does not reject, outputs symbols from a list decoding of proofs. This
variant is required for the composition scheme:

Definition 12.3 (Decoding verifier). We say that a verifier V is a decoding verifier with error
probability ε and list size l for SatN , if the following holds: On input a formula φ on N variables,
and a collection of u-tuples of variables,

• Completeness: For every assignment π that satisfies φ, there is a proof that V never
rejects. Moreover, given access to this proof, V outputs (xi1 , v1), . . . , (xiu , vu), where
(xi1 , . . . , xiu) is uniformly distributed u-tuple from the given collection, and v1 = π(xi1), . . . , vu =
π(xiu).

• Soundness: For every proof for V , there are assignments π1, . . . , πl that satisfy φ, such
that the probability that V does not reject and outputs (xi1 , v1), . . . , (xiu , vu), so none of
π1, . . . , πl satisfies v1 = π(xi1), . . . , vu = π(xiu), is at most ε.

For a large enough (polynomial size) field F with respect to q, one can obtain a decoding

verifier with error |F|−Ω(1) and list size |F|O(1) from the standard Sum-Check construction and
the Line-vs.-Line Test [23]. Applying our query reduction technique on this decoding verifier,

one obtains a decoding verifier with error probability |F|−Ω(k′) and list size |F|O(k′).

Setting of parameters (toward (6)):

• m =
√
log n.

• h, |F| = 2Θ(
√
logn).

• u = Θ(1).

• k′, k, q = Θ((log n)2v−1/2).

• |Fm| = poly(n).

• |F|Θ(k′) = 2Θ((logn)2v).

• |Σ| ≤ 2O(
√
logn).

• |C| ≤ 2O((logn)2v)poly(M).

12.5 Composition

Using a PCP verifier with low error ε but large alphabet Σ, and a decoding verifier for input size
n′ ≈ log |Σ| with low error ε and small alphabet Σ′, one can obtain a PCP verifier with error
O(ε) and alphabet Σ′. The technique, called composition, was first introduced by Arora and
Safra in their breakthrough PCP paper [3]. The next lemma describes an abstract interpretation
of the Arora-Safra composition.

Interestingly, while this composition lemma is in the same spirit as the combinatorial compo-
sition lemmas of Szegedy [32], Dinur-Reingold [15], Ben-Sasson et al [8] and Dinur-Harsha [14]
(which is an abstraction of the composition of the author and Raz [28]), it differs from them

28

in its parameters and in its requirements from the initial verifiers. It preserves low error like
the composition lemma of [14], but it does not require the initial verifiers to be robust. Its
disadvantage is that the number of queries increases and (naturally) the output verifier is not
robust.

We compose a verifier and a decoding verifier as follows. Let Vout be a PCP verifier for Satn

that uses r1 random bits to make q1 queries to a proof over alphabet Σ1 and achieves perfect
completeness and soundness error ε1. Let C be an error correcting code for encoding symbols
from Σ1, whose parameters are (n′, log |Σ1| , (1− ε2/4)n′)S as in Proposition 2.1. For every ran-
domness w ∈ {0, 1}r1 , consider the formula φw over variables x1,1, . . . , x1,n′ , · · · , xq1,1, . . . , xq1,n′ ,
each ranging over S, such that φw is satisfied iff the variables correspond to C(v1), . . . , C(vq1)
where v1, . . . , vq1 ∈ S are values that would make Vout accept on randomness w. Consider the

collection of q1-tuples {(x1,i, . . . , xq1,i)}
n′

i=1. Suppose that for all w ∈ {0, 1}r1 , on input φw and
the collection we defined, a decoding verifier Vin uses r2 random bits to make q2 queries to a
proof over alphabet Σ2 and achieves error probability ε2 with list size l2. Note that with the
specified initial points, the verifier Vin decodes a uniformly random symbol i ∈ [n′] from each
of the q1 encodings of the queries of Vout on randomness w.

The composed verifier is as follows:

Verifier V

Prescribed proof:

• A proof π1 for Vout written over the alphabet S, where each symbol in Σ1 is encoded using
C. We denote the length of π1 by N1.

• Per random string w ∈ {0, 1}r1 , the prescribed proof πw of Vin for the formula φw, the
collection of q1-tuples we defined above, and the satisfying assignment corresponding to
π1.

1. Pick uniformly at random w1 ∈ {0, 1}r1 .

2. Simulate Vin on πw1 . If Vin rejects, reject. Otherwise, Vin decodes q1 symbols v1, . . . , vq1 ∈
S that are supposed to equal certain symbols in π1. If they are not equal, reject.

3. If none of the tests above rejects, accept.

In the lemma below we analyze the composed verifier. Note that we think of q1, q2 that are
constants.

Lemma 12.4 (Composition). Suppose that ε
1/q1
2 (1− ε2)/l2 ≥ 2ε

1/q1
1 and that ε ≤ 2(ε1/ε2)

1/q1.
The composed verifier uses r1 + r2 random bits to make q1 + q2 queries to a proof over alphabet
Σ2 and achieves perfect completeness and soundness error O(ε2).

Proof. Without loss of generality, we assume that every symbol of π1 is accessed by Vout with
the same probability.

The randomness, number of queries, alphabet and perfect completeness of V are evident. Let
us argue soundness. Assume that V accepts with probability at least 2ε2. We will argue that
there exists a proof for Vout that makes it accept with probability at least ε1.

For every i ∈ [N1], pick uniformly at random a symbol σ ∈ Σ1 among the ones whose encoding
agrees with π1(i) on at least ε fraction. By Johnson’s bound (see Proposition 2.2), there are

29

at most 2/ε such symbols. We will argue that the expected probability that Vout accepts is at
least ε1. It will follow that there exists a proof with success probability at least ε1.

For at least ε2 fraction of the choices of w1, with probability at least ε2, the verifier Vin

accepts the proof πw1 and decodes q1 symbols from π1, one per query of Vout on randomness w1.
By the soundness of Vin, for all those w1’s, there must exist πw1,1, . . . , πw1,l2 ∈ Sn′

that satisfy
φw1 , and, with probability at least 1 − ε2, the proof π1 agrees with one of πw1,1, . . . , πw1,l2 on
the q1 S-symbols Vin decodes. Hence, there must be 1 ≤ p ≤ l2 such that πw1,p agrees with π1
on at least (1 − ε2)/l2 ≥ ε fraction of S-symbols from each one of the q1 symbols Vout queries
on randomness w1. The probability that all q1 symbols in Vout’s probabilistic proof agree with
πw1,p is at least εq1 . Thus, the expected fraction of w1’s for which Vout accepts is at least
ε2 · εq1 ≥ ε1.

By composing the verifier from Section 12.3 and the decoding verifier from Section 12.4, we
get Theorem 1.3.

13 Further Research

We hope that the approach for proving the Sliding Scale Conjecture suggested in this paper
will eventually result in a proof of the conjecture. This would follow from a more randomness-
efficient tester, either for low degree polynomials or for a modified code (e.g., “folded” low degree
extension or some enhanced polynomial encoding such as multiplicity code). Any approach that
works by amplification of error is subject to limitations as in [18, 26].

Acknowledgements

Dana Moshkovitz is thankful to Uri Feige, Ariel Gabizon, Shafi Goldwasser, Praladh Harsha,
Sanjeev Khanna, Madhu Sudan, Ran Raz, Ronen Shaltiel, Chris Umans, Salil Vadhan, Avi
Wigderson and Henry Yuen for extremely helpful discussions at various stages of this work.

References

[1] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptotically good,
low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on
Information Theory, 38:509–516, 1992.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[3] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998.

[4] S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica,
23(3):365–426, 2003.

[5] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polyloga-
rithmic time. In Proc. 23rd ACM Symp. on Theory of Computing, pages 21–32, 1991.

30

[6] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[7] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable
proofs and applications to approximations. In Proc. 25th ACM Symp. on Theory of Com-
puting, pages 294–304, 1993.

[8] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of prox-
imity, shorter PCPs, and applications to coding. SIAM Journal on Computing, 36(4):889–
974, 2006.

[9] E. Ben-Sasson, M. Sudan, S. P. Vadhan, and A. Wigderson. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proc. 34th ACM Symp. on Theory
of Computing, pages 612–621, 2003.

[10] M. Braverman and A. Garg. Small value parallel repetition for general games. In Proc.
48th ACM Symp. on Theory of Computing, pages 335–340, 2015.

[11] M. R. Capalbo, O. Reingold, S. P. Vadhan, and A. Wigderson. Randomness conductors
and constant-degree lossless expanders. In IEEE Conference on Computational Complexity,
page 15, 2002.

[12] I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP:
Toward a polynomially-small error-probability. Computational Complexity, 20(3):413–504,
2011.

[13] I. Dinur and E. Goldenberg. Locally testing direct product in the low error range. In Proc.
49th IEEE Symp. on Foundations of Computer Science, pages 613–622, 2008.

[14] I. Dinur and P. Harsha. Composition of low-error 2-query PCPs using decodable PCPs.
In Proc. 50th IEEE Symp. on Foundations of Computer Science, pages 472–481, 2009.

[15] I. Dinur and O. Reingold. Assignment testers: Towards a combinatorial proof of the PCP
theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

[16] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proc. 47th ACM
Symp. on Theory of Computing, 2014.

[17] I. Dinur and D. Steurer. Direct product testing. In Computational Complexity Conference,
2014.

[18] U. Feige and J. Kilian. Impossibility results for recycling random bits in two-prover proof
systems. In Proc. 27th ACM Symp. on Theory of Computing, pages 457–468, 1995.

[19] P. Gemmell, R. J. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proc. 23rd ACM
Symp. on Theory of Computing, pages 32–42, 1991.

[20] O. Goldreich and S. Safra. A combinatorial consistency lemma with application to proving
the PCP theorem. SIAM J. Comput., 29(4):1132–1154, 2000.

[21] R. Impagliazzo, V. Kabanets, and A. Wigderson. New direct-product testers and 2-query
PCPs. SIAM Journal on Computing, 41(6):1722–1768, 2012.

31

[22] S. M. Johnson. A new upper bound for error-correcting codes. IRE Transactions on
Information Theory, pages 203–207, 1962.

[23] D. Moshkovitz. Lecture notes in probabilistically checkable proofs. Available on the author’s
webpage.

[24] D. Moshkovitz. An approach to the sliding scale conjecture via parallel repetition for low
degree testing. Technical Report 30, ECCC, 2014.

[25] D. Moshkovitz. Parallel repetition from fortification. In Proc. 55th IEEE Symp. on Foun-
dations of Computer Science, 2014.

[26] D. Moshkovitz, G. Ramnarayan, and H. Yuen. A no-go theorem for derandomized parallel
repetition: Beyond feige-kilian, 2015.

[27] D. Moshkovitz and R. Raz. Sub-constant error low degree test of almost-linear size. SIAM
Journal on Computing, 38(1):140–180, 2008.

[28] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. Journal of the ACM,
57(5), 2010.

[29] R. Raz and S. Safra. A sub-constant error-probability low-degree test and a sub-constant
error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of
Computing, pages 475–484, 1997.

[30] O. Reingold, S. P. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. Annals of Mathematics, 155(1):157–
187, 2002.

[31] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[32] M. Szegedy. Many-valued logics and holographic proofs. In J. Weidermann, P. van
Emde Boas, and M. Nielsen, editors, Automata, Languages and Programming, 26th In-
ternational Colloquium, ICALP 2007. Lecture notes in Computer Science, pages 676–686.
Springer-Verlag, 1999.

[33] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: Explicit
construction and applications. Combinatorica, 19:245–251, 1993.

[34] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algo-
rithms, 11(4):345–367, 1997.

32

