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Abstract

Given (the table of) a function f : Fm → F over a finite field F, a low degree tester
tests its agreement with an m-variate polynomial of total degree at most d over F. The
tester is usually given access to an oracle A providing the supposed restrictions of f to
affine subspaces of constant dimension (e.g., lines, planes, etc.). The tester makes very few
(probabilistic) queries to f and to A (say, one query to f and one query to A), and decides
whether to accept or reject based on the replies.

We wish to minimize two parameters of the tester: its error and its size. The error
bounds the probability that the tester accepts although the function is far from a low degree
polynomial. The size is the number of bits required to write the oracle replies on all possible
tester’s queries.

Low degree testing is a central ingredient in most constructions of probabilistically check-
able proofs (PCP s). The error of the low degree tester is related to the error of the PCP
and its size is related to the size of the PCP .

We design and analyze new low degree testers that have both sub-constant error o(1) and
almost-linear size n1+o(1) (where n = |F|m). Previous constructions of sub-constant error
testers had polynomial size (works by Arora and Sudan [3] and by Raz and Safra [17]). These
testers enabled the construction of PCP s with sub-constant error, but polynomial size (see
the work by Dinur et al [9]). Previous constructions of almost-linear size testers obtained
only constant error (Ben-Sasson, Sudan, Vadhan and Wigderson [7]). These testers were
used to construct almost-linear size PCP s with constant error (see Ben-Sasson et al [5]).
The testers we present in this work enabled the construction of PCP s with both sub-constant
error and almost-linear size (Moshkovitz and Raz [15]).
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1 Introduction

1.1 Low Degree Testing

Let F be a finite field, let m and d be two positive integers. [A particular setting of parameters
to have in mind is the one used in constructions of Probabilistically Checkable Proofs: a large field F, a
smaller m and a fairly large d that satisfy mO(1)d ≤ o(|F|)].

Define P to be the set of all m-variate polynomials of total degree at most d over F. The
agreement of a function f : Fm → F with a low degree polynomial is

agr(f,P)
def
= max

Q∈P

{
Pr

~x∈Fm
[f(~x) = Q(~x)]

}

Note that agr(f,P) is simply 1−∆(f,P), where ∆ denotes the (normalized) Hamming distance
between functions that are given by their tables.

A low degree tester is a probabilistic procedure M that is meant to check the agreement of a
function f with a low degree polynomial by making as few queries to f as possible. If f ∈ P,
M should always accept, while if f is far from P (i.e., agr(f,P) is small) M should reject with
significant probability.

It is easy to see that when having oracle access only to f , any low degree tester must make
more than d queries. To break this degree barrier, the low degree tester is usually given access
to an additional oracle A providing the supposed restrictions of f to affine subspaces of constant
dimension (e.g., lines, planes, etc.). We assume, without loss of generality, that these restrictions
in themselves are polynomials of total degree at most d over the subspaces.

The tester is required to satisfy:

• Completeness: If f ∈ P, then there is an oracle A that makes the tester accept with
probability 1.

• Soundness: If agr(f,P) is small, then for any oracle A, the tester may accept only with a
small probability.

Rubinfeld and Sudan [18] designed the Line vs. Point tester that makes only two probabilistic
queries. This tester picks independently at random a line l in Fm and a point ~x ∈ l, queries
the oracle A for the (supposed) restriction of f to l (which is simply a univariate polynomial of
degree at most d over F), queries f at ~x, and checks whether the two restrictions are consistent
on ~x, i.e., A(l)(~x) = f(~x).

The importance of low degree testers comes from the key role they play in the construction
of Probabilistically Checkable Proofs (PCP s), which are proofs for NP statements that can be
probabilistically verified by making only a constant number of queries to the proof [4, 10, 2, 1].
This motivated further improvements to low degree testing.

Specifically, the following parameters were of interest:

1. Queries: How many queries does the tester make?

2. Error: How sound is the tester?

3. Size: How many bits are needed to write the oracle replies on all possible queries?

Henceforth, the number of queries will always be 2. The two other parameters are discussed
next.
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1.1.1 Error

To prove that a low degree tester is sound, most results address contrapositive arguments of the
following type: assume that the tester accepts with probability γ ≥ γ0 and show the existence
of a low degree polynomial that agrees with f on at least ≈ γ of the points. In this case, we say
that γ0 bounds the error of the tester, since the probability that the tester accepts although
the function is very far from a low degree polynomial is at most γ0.

The first analyses of the Line vs. Point tester [18, 2, 12] only showed that the error of the
tester is bounded away from 1. The error can be amplified to any constant, by a constant
number of repetitions. Nevertheless, to keep the total number of queries constant, one cannot
perform more than a constant number of repetitions.

Only a later, more careful, inspection [3, 17] revealed that there are low degree testers with a
sub-constant error. Specifically, [3, 17] proved claims of the following type for various low degree
testers: there exist (large enough) constants C ≥ 1, a, b ≥ 0, and a (small enough) constant
0 < c ≤ 1, such that the error is at most Cmadb/|F|c. In other words, the error can be made
arbitrarily small by taking m and d to be small enough with respect to |F|. The number of
queries remains 2.

Arora and Sudan [3] proved that the error of the Line vs. Point tester is in fact sub-constant.
Their proof was algebraic in nature. Raz and Safra [17] proved a sub-constant error for a slightly
different tester, considering planes that intersect on a line, or a plane and a point within it.
Their proof was more combinatorial in nature. The two proofs led to the construction of PCP s
with sub-constant error [3, 17, 9].

1.1.2 Size

Let us represent the set of honest oracles by a code. That is, for every polynomial Q : Fm → F
of degree at most d, we have a codeword. The codeword has an entry for every affine subspace
s that the tester may query. This entry contains the oracle’s reply when it is queried regarding
s, i.e., the restriction of Q to s. The size of a tester is the length (in bits) of a codeword.

For instance, the size of Rubinfeld and Sudan’s Line vs. Point tester [18] is roughly |F|2m (d+
1) log |F|: For every line (defined by two points), the oracle should provide a univariate polyno-
mial of degree at most d over F. The size of a tester is measured with respect to n = |Fm|. The
size of the Line vs. Point tester [18] is quadratic n2+o(1).

Alternatively, we refer to the randomness of the tester, which is the amount of random bits
that the tester requires. Note that the size of a tester that uses r random bits to make q queries
to a proof over alphabet Σ is bounded by 2r · q log |Σ|. Thus, when the number of queries q is
constant and the alphabet Σ is relatively small, 2r is a good estimate on the size.

For instance, to pick a random line and a random point within it, we merely have to pick a
random point ~x ∈ Fm and a random direction ~y ∈ Fm. The line is ~x + t · ~y for t ∈ F. Hence, the
randomness of the Line vs. Point tester [18] is 2m log |F| = log(|F|2m).

The size of a tester is related to the size of probabilistically checkable proofs and locally
testable codes constructed using it. Hence, Goldreich and Sudan [13] suggested to improve
the Line vs. Point tester by considering a relatively small subset of lines (instead of all lines).
Goldreich and Sudan achieved non-explicit constant error tester of almost-linear size n1+o(1),
instead of quadratic size n2+o(1).

Shortly afterwards, Ben-Sasson, Sudan, Vadhan and Wigderson [7] gave an explicit construc-
tion of a constant error Line vs. Point tester of almost-linear size. Their idea was to choose a
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line by picking a uniformly distributed point over Fm (as before), and a direction that is uni-
formly distributed over a small ε-biased set S ⊆ Fm. They showed that the error of this tester
is bounded away from 1. Unfortunately, their analysis is inherently only able to show error
larger than 1

2 . It is possible that their tester has smaller error, but proving it would require a
substantially different analysis.

The work of [13, 7] gave rise to explicit constructions of almost-linear size PCP s with constant
error [13, 7, 5]. The recent work of Dinur [8] also constructs almost-linear size PCP s with
constant error, based on the PCP theorem of [2, 1] and the work of Ben-Sasson and Sudan [6].
Both use low degree testers with constant error. Dinur’s work [8] also gives new constructions
of PCP s without low degree testers. However, at this point, these constructions achieve neither
sub-constant error nor almost-linear size.

1.2 Our Contribution: Randomness-Efficient Sub-Constant Error Testers

We design and analyze two low degree testers that have both sub-constant error and almost-
linear size. Subsequent to this work and using it, we showed a construction of a PCP with
both sub-constant error and almost-linear size [15].

Before we present our testers, let us revisit the construction of Ben-Sasson, Sudan, Vadhan
and Wigderson [7] for constant error, and point out the most severe difficulty one encounters
when trying to argue it has error smaller than 1

2 . The reader who is not familiar with the work
of Ben-Sasson et al may skip this, and move directly to the text after Remark 1.1.

Assume a Line vs. Point tester that only inspects lines whose directions are taken from a
small random set S ⊆ Fm. Recall that Ben-Sasson et al used a small ε-biased set because of its
pseudo-random properties [7].

Consider two linearly independent directions ~y1, ~y2 ∈ S. With high probability, the set S
does not contain any additional vector from the linear span of ~y1 and ~y2 (since the fractional
size of the linear span is merely |F|2 / |F|m). Thus, the only lines inside this two-dimensional
linear subspace that get inspected by the tester are those that are parallel to either ~y1 or ~y2.
It is known by a lemma of Polishchuk and Spielman [16] that if the acceptance probability of
the Line vs. Point test in this setting approaches 1, then there exists a low degree polynomial
for the entire subspace that agrees with almost all lines. However, it may be the case that
the acceptance probability is as large as 1

2 , although the agreement of those lines with any low
degree polynomial is very small.

Let us demonstrate this.

Figure 1: Acceptance probability 1
2 inside a plane does not necessarily imply agreement with a

low degree polynomial.

Note that each of the |F|2 points on the plane spanned by ~y1 and ~y2 can be uniquely repre-
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sented as α1~y1 + α2~y2, where ~α = (α1, α2) ∈ F2.
Let d ¿ d′ ¿ |F|

4 . Define polynomials C, R ∈ F[α1, α2] (for columns and rows respectively) as
follows. The degree of C in α1 is d and the degree in α2 is d′. The degree of R in α1 is d′ and
the degree in α2 is d. Let the |F| columns, i.e., lines parallel to ~y1, agree with C. Let the |F|
rows, i.e., lines parallel to ~y2, agree with R. Note that all lines, columns and rows, are assigned
(univariate) polynomials of degree at most d.

Let points in the dark region agree with columns and points in the bright region agree with
rows. Both R and C are polynomials of degree at least d′ À d for the plane that agree with at
least 1

2 of the points. However, no polynomial of degree at most d for the plane agrees with a
fraction of more than 4d′

|F| = o(1) of the points. On the other hand, the acceptance probability
of the Line vs. Point tester on this plane (where all lines are assigned polynomials of degree at
most d) is at least 1

2 .

Remark 1.1. One may consider other low degree testers, like the Line vs. Line tester, in order
to solve the problem we described. However, it is not known whether or not the Line vs. Line
tester (on the plane) with lines parallel to the axes, gives a probability of error lower than 1

2 .

We manage to overcome this difficulty by considering sets that are not pseudo-random. Our
key idea is to consider a subfield H ⊆ F, and generate subspaces by picking directions uniformly
over Hm, instead of over Fm. Note that this eliminates the problem we described: for every two
~y1, ~y2 ∈ Hm, for every two scalars α1, α2 ∈ H, we have α1~y1 + α2~y2 ∈ Hm.

Moreover, the field structure of H allows us to use the combinatorial approach of Raz and
Safra [17], and, more importantly, it allows us to use induction: the structure of the problem
when restricted to affine subspaces of dimension k ≤ m is the same as its structure in Fm.

As in the analysis of Raz and Safra [17], we abandon the Line vs. Point test, and address
subspaces of dimension larger than 1, rather than lines. Specifically, given access to f and to an
oracle A, our Randomness-Efficient Plane vs. Point tester chooses a plane and a point within
it and checks that they are consistent:

1. Pick uniformly and independently at random ~z ∈ Fm, ~y1, ~y2 ∈ Hm.

2. Accept if either ~y1, ~y2 are linearly dependent, or if the plane p through ~z in directions
~y1, ~y2 satisfies A(p)(~z) = f(~z).

Figure 2: Randomness-Efficient Plane vs. Point Tester

Note that the same plane p goes through many points ~z ∈ Fm and in many directions ~y1, ~y2 ∈
Hm. However, the oracle’s reply A(p) depends on the plane p, and not on its representation
given by ~z and ~y1, ~y2.

For H = F, the Randomness-Efficient Plane vs. Point Tester is exactly the Plane vs. Point
tester of Raz and Safra [17]. However, in our work the more interesting case is |H| ≤ |F|o(1). In
this case, the tester requires only m log |F|+2m log |H| = m log |F| (1+o(1)) bits of randomness.
This corresponds to an almost linear size n1+o(1) (recall that n = |Fm|). The tester is randomness
efficient in comparison to all known testers with sub-constant error, such as the tester of Arora
and Sudan [3] that requires 2m log |F| bits of randomness and the tester of Raz and Safra [17] that
requires 3m log |F| bits of randomness. As to testers with constant error : that of Ben-Sasson,
Sudan, Vadhan and Wigderson [7] requires m log |F|+O(log log |Fm|) bits of randomness, which
is (usually) less than the randomness of our tester, but the difference is only in the dependence
of the low order term in m.
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The tester is clearly complete, namely, if there exists a polynomial Q : Fm → F of degree at
most d, such that for every ~x ∈ Fm, f(~x) = Q(~x), and for every affine subspace s, the oracle A
replies A(s) = Q|s, then the tester accepts with probability 1. We show that the tester is also
sound : if the tester accepts with probability γ then f agrees with a polynomial of total degree at
most md on a fraction of at least γ−ε of the points in Fm, where ε ≤ const ·m

(
8

√
1
|H| + 4

√
md
|F|

)
.

Note that the analysis works for any acceptance probability γ. In particular, this means that
when γ is significantly larger than ε, say γ ≥ 100ε, f agrees with a polynomial of total degree
at most md on at least ≈ γ of the points. [Even if H = F, the constants 4 and 8 in the error
expression appear to improve on the results of [3, 17], where unspecified constants were given].

The downside of the Randomness-Efficient Plane vs. Point tester is that it only allows us
to argue something about the agreement of the oracle with a polynomial of degree md, rather
than d. Hence, we design another tester that has essentially the same parameters, but ensures
agreement with a polynomial of degree at most d.

The additional consideration that comes into play when designing the new tester is degree
preservation. We want the total degree of a polynomial not to decrease when restricted to most
of the subspaces queried by the tester. We achieve this by picking one of the directions for
the subspace (rather than the base-point) uniformly from Fm. In order to keep the size almost
linear, this tester considers linear subspaces (i.e., affine subspaces through the origin), rather
than general affine subspaces. A related technique was previously used by [7].

Specifically, given access to f and to an oracle A, the Randomness-Efficient Subspace vs.
Point tester chooses a three dimensional subspace and a point within it and checks that they
are consistent:

1. Pick uniformly and independently at random ~z ∈ Fm, ~y1, ~y2 ∈ Hm.

2. Accept if either ~z, ~y1, ~y2 are linearly dependent, or if the linear subspace s spanned by
~z, ~y1, ~y2 satisfies A(s)(~z) = f(~z).

Figure 3: Randomness-Efficient Subspace vs. Point Tester

This tester uses the same number of random bits as the Randomness-Efficient Plane vs.
Point tester m log |F| + 2m log |H|, and its size is only slightly larger (as the answer size is
larger: the oracle should provide polynomials over three-dimensional subspaces rather than
two-dimensional subspaces). For this small price, we manage to prove a stronger soundness
claim: if the Randomness-Efficient Subspace vs. Point tester accepts with probability γ, then
f agrees with a polynomial of total degree at most d (rather than md) on a fraction of at least
γ − ε of the points in Fm, where ε ≤ const ·m

(
8

√
1
|H| + 4

√
md
|F|

)
. This follows rather easily from

the soundness of the Randomness-Efficient Plane vs. Point tester together with an argument
showing that the degree of the recovered polynomials must in fact be at most d.

There is a tradeoff between the size of the testers and their error. To make the size as small
as possible, one wishes to minimize |H|. In particular, to get an almost-linear size, one needs
to take |H| ≤ |F|o(1). On the other hand, to make the error as small as possible, one wishes to
maximize |H|. In particular, to get a sub-constant error, one needs to take |H| ≥ ω(m8).

All finite fields are isomorphic to GF (pk) for a prime p and a natural number k. All subfields
of GF (pk) are isomorphic to GF (pr) for r|k. For a wide family of finite fields GF (pk) there
are subfields of suitable sizes (see [14, 11] for analysis of the distribution of k’s with suitable
divisors). Though, indeed, not every finite field is such. We wish to emphasize that in the
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settings that interest us (e.g., construction of PCP s), we get to choose the field. For instance,
we can take F = GF (2r1·r2) for appropriate r1, r2.

1.3 Sampling

A basic step in our proof is the analysis of the sampling properties of affine subspaces with
directions over a subfield. This analysis may be of independent interest.

By sampling we refer to assertions of the following nature: if one colors a large enough fraction
of the points in Fm green then a subspace (e.g., a line) picked at random is likely to hit the
green points in almost their true fraction.

First, let us consider the non-randomness-efficient setting. For instance, consider choosing
a line by picking a point and a direction independently at random from Fm. The indicator
variables “is the i’th point on the line green?” for i = 1, . . . , |F| are pairwise independent. Thus,
one can easily bound the variance of the number of green points on a line. This yields a sampling
property by Chebyshev’s inequality (see, e.g., [3]).

In the randomness-efficient setting, more subtle arguments are needed. For instance, consider
the work of Ben-Sasson, Sudan, Vadhan and Wigderson [7]. They use an ε-biased set S ⊆ Fm,
and choose a line by independently picking a uniformly distributed base-point in Fm and a
uniformly distributed direction in S. They show that almost pairwise independence still holds,
and this allows them to bound the variance, by bounding the covariances.

Our set of directions is Hm, which does not have a small bias (when H  F). Nevertheless,
we are still able to prove a sampling property. We observe that we can directly bound the
variance of the number of green points on a line by analyzing the convolution of two relatively
simple functions. We do this by means of Fourier analysis. The difference between the previous
approaches and our approach is that instead of giving one bound for the probability that two
points i 6= j on a line are green for every i 6= j, we directly bound the average probability over
all pairs i 6= j.

The extension to higher dimensional subspaces is a relatively simple consequence of the
analysis for lines.

1.4 More Randomness-Efficient Line Samplers

Ariel Gabizon has noted that our analysis implies numerous randomness-efficient line samplers.
Recall that the set Hm for a subfield H ⊆ F – in addition to implying a sampling property

– also has an algebraic structure that is essential for our analysis. However, if one is only
interested in the sampling property, more randomness-efficient constructions may be obtained.

Jointly with Ariel we arrived at the following corollaries to our analysis.

Direct product construction. Our sampling lemma holds for any field F = GF (pk) and a
subset of it H ⊆ F (not necessarily a subfield). Formally:

Corollary 1.2. For any subset A ⊆ Fm of density µ = |A| / |Fm|, for any ε > 0,

Pr
~x∈Fm,~y∈Hm

[∣∣∣∣∣

∣∣l~x,~y ∩A
∣∣

∣∣l~x,~y

∣∣ − µ

∣∣∣∣∣ ≥ ε

]
≤ 1
|H| ·

µ

ε2

where l~x,~y
def
= {~x + t · ~y | t ∈ F}.
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Linear code construction. Assume a linear code of length k, dimension m and relative
distance 1− δ over alphabet F = GF (p), given by its generating matrix




− ~y1 −

...

− ~yk −




Let S = {~y1, . . . , ~yk} ⊆ Fm be the set of rows of the generating matrix. Then, our analysis
actually implies the following:

Corollary 1.3. For any subset A ⊆ Fm of density µ = |A| / |Fm|, for any ε > 0,

Pr
~x∈Fm,~y∈S

[∣∣∣∣∣

∣∣l~x,~y ∩A
∣∣

∣∣l~x,~y

∣∣ − µ

∣∣∣∣∣ ≥ ε

]
≤ δ · µ

ε2

where l~x,~y
def
= {~x + t · ~y | t ∈ F}.

Note that every S ⊆ Fm that is ε-biased forms a generating matrix of a linear code with
distance 1− ( 1

|F| + ε · |F|−1
|F| ). Yet, the converse does not necessarily hold, and the corollary is a

strengthening of the sampling lemma of [7] for the case F = GF (p).
A randomness-efficient line sampler can be constructed by using an efficient linear code. For

instance, we can use the Reed-Solomon code that corresponds to S =
{
(1, t, t2, . . . , tm−1) | t ∈ F}

.
This code has relative distance 1− δ for δ = m−1

|F| . It gives a line sampler that has randomness
complexity (m + 1) log |F| and query complexity |F|.

1.5 Proof Outline

We first prove the soundness of the Randomness-Efficient Plane vs. Point tester, and then
deduce the soundness of the Randomness-Efficient Subspace vs. Point tester from it. For the
purpose of this outline we only consider the first. Assume that the Randomness-Efficient Plane
vs. Point tester, given access to an input function f : Fm → F and oracle A, accepts with
probability γ. Let us prove the existence of a polynomial over Fm of degree at most md that
agrees with f on at least γ − ε fraction of the points, for ε ≤ const ·m

(
8

√
1
|H| + 4

√
md
|F|

)
.

1.5.1 Reformulating our goal

First, let us reformulate the problem in a more convenient manner. For dimensions k, m, where
k ≤ m, let Sm

k be the family of all affine subspaces of dimension k in Fm that are of the type
we are interested in. Namely, a k-dimensional affine subspace s ⊆ Fm is in Sm

k if it can be

written as s =
{
~z +

∑k
i=1 αi~yi

∣∣ (α1, . . . , αk) ∈ Fk
}

for some point ~z ∈ Fm and some linearly
independent directions ~y1, . . . , ~yk ∈ Hm (where the linear independence is over F).

We can express (up to very small additive errors) the acceptance probability of the tester
given access to f : Fm → F and A as follows:

Pr [tester accepts] ≈ Pr
s∈Sm

2 ,~x∈s
[A(s)(~x) = f(~x)]

= E
s∈Sm

2

[
Pr
~x∈s

[A(s)(~x) = f(~x)]
]
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For an affine subspace s and a degree d, let Qs,d be the set of polynomials of degree at most
d over s. It is evident from the last expression that an oracle A that optimizes the acceptance
probability of the tester on input f assigns each subspace s ∈ Sm

2 a polynomial Q ∈ Qs,d that
maximizes the agreement Q(~x) = f(~x) on points ~x ∈ s. Hence, for every dimension m, function
f : Fm → F, dimension k and degree d, consider the average agreement of f with polynomial of
degree at most d over subspaces s ∈ Sm

k ,

agrk,m
d (f)

def
= E

s∈Sm
k

[
max

Q∈Qs,d

{
Pr
~x∈s

[Q(~x) = f(~x)]
}]

Then,
γ = Pr [tester accepts] . agr2,m

d (f)

For every m, the space Fm is the only affine subspace of dimension m in Fm, and Hm contains
a basis for Fm, so Sm

m = {Fm}. Thus, for every dimension m, function f : Fm → F, degree d
and fraction γ, agrm,m

d (f) ≥ γ means that there exists Q : Fm → F of degree at most d, such
that Pr~x∈Fm [Q(~x) = f(~x)] ≥ γ.

We conclude that our goal can be reformulated as showing that large average agreement over
planes implies large average agreement over Fm. More accurately, for every function f : Fm → F
and fraction 0 ≤ γ ≤ 1,

agr2,m
d (f) ≥ γ ⇒ agrm,m

md (f) ≥ γ − ε

1.5.2 Main idea

We fix a dimension m, and our proof is by induction on the dimension k of the affine subspaces
within Fm. We assume that agr2,m

d (f) ≥ γ, and show that for every dimension 2 ≤ k ≤ m,

agrk,m
kd (f) ≥ γ − k

m
· ε

Fix a dimension k such that agrk−1,m
(k−1)d(f) ≥ γ − k−1

m · ε, and let us outline how the induction
step is done.

Consider any affine subspace s ∈ Sm
k . Assume s contains the point ~z ∈ Fm and is in

directions ~y1, . . . , ~yk ∈ Hm, where ~y1, . . . , ~yk are linearly independent over F. The directions
within s, {~x1 − ~x2 | ~x1, ~x2 ∈ s}, are precisely

∑k
i=1 αi~yi for ~α = (α1, . . . , αk) ∈ Fk. Moreover,

since H is a subfield of F,

~α ∈ Hk ⇔
k∑

i=1

αi~yi ∈ Hm

Therefore (unlike the construction of [7] via ε-biased sets), the families of affine subspaces we
consider preserve the following two properties enabling induction:

1. Self-similarity: Every affine subspace s ∈ Sm
k is mapped onto Fk (via the natural bijec-

tion ~z +
∑k

i=1 αi~yi ∈ s ↔ ~α ∈ Fk), such that the directions the tester considers (namely,
the vectors in Hm) that are also in s are mapped onto Hk.

2. Uniformity: For every dimension k′ ≤ k, each subspace s ∈ Sm
k contains exactly the

same number of subspaces s′ ∈ Sm
k′ , and each subspace s′ ∈ Sm

k′ is contained in exactly the
same number of subspaces s ∈ Sm

k .
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Let f|s : Fk → F denote the restriction of f to s; namely, for every (α1, . . . , αk) ∈ Fk, let
f|s(α1, . . . , αk) = f(~z +

∑k
i=1 αi~yi).

Consider some degree d′ and dimension k′ ≤ k. By self-similarity and uniformity,

agrk
′,m

d′ (f) = E
s∈Sm

k

[
agrk

′,k
d′ (f|s)

]
(1)

Thus, it is sufficient (as we see shortly) to show that for every function f : Fk → F and every
fraction 0 ≤ γ ≤ 1,

agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,k

kd (f) ≥ γ − ε

m
(2)

The inductive step is then completed applying the induction hypothesis as well as 1 and 2 above:

agrk,m
kd (f) = E

s∈Sm
k

[
agrk,k

kd (f|s)
]

≥ E
s∈Sm

k

[
agrk−1,k

(k−1)d(f|s)−
ε

m

]

= agrk−1,m
(k−1)d(f)− ε

m

≥ γ − k

m
· ε

1.5.3 Proving (2)

By an adaptation of an idea by Raz and Safra [17], we can prove that there exists a small error
δ ¿ ε/m, such that for every function f : Fk → F and every fraction 0 ≤ γ ≤ 1,

agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,k

2(k−1)d(f) ≥ γ2 − δ

The idea of Raz and Safra [17] centers around a construction of a consistency graph. The vertices
of the graph are the affine subspaces of dimension (k−1) within Fk (namely, hyperplanes). The
edges of the graph indicate whether there is an agreement between assignments of degree (k−1)d
polynomials to the hyperplanes. Due to its algebraic structure, the graph has a combinatorial
property called almost-transitivity. It allows us to use a graph-theoretic lemma originally proven
in [17], and go up from dimension (k − 1) to dimension k.

The reduction to the graph-theoretic setting introduces a certain deterioration of the degree
and agreement parameters. The degree doubles (from (k− 1)d to 2(k− 1)d, rather than to kd)
and the agreement is raised to the power of two (from γ to γ2 − δ, rather than to γ − ε/m).
We cannot tolerate either deterioration, since they ultimately cause an exponential decay in k.
Hence, we apply steps of what we call consolidation to retain the desired parameters. Similar
techniques were already used in previous works, and they rely on the sampling properties we
discussed above.

1.6 Organization

We state the main theorems regarding the soundness of our testers in section 2. The rest of
the paper is devoted to proving these theorems. We start with some preliminary definitions
and propositions in section 3. We discuss basic properties of affine subspaces with directions
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over a subfield in section 4. We prove sampling properties in section 5. This allows us to prove
consolidation claims in section 6. We present and analyze the consistency graph in section 7
and use it for going up one dimension in section 8. The soundness of the Randomness-Efficient
Plane vs. Point tester is proven via induction in section 9. We show that the soundness of the
Randomness-Efficient Subspace vs. Point tester follows in section 10. We give the proof of the
combinatorial lemma of [17] in the appendix.

2 Our Results

2.1 Notation

In all that follows, we consider a finite field F, a subfield H ⊆ F, a dimension m, and a degree d.
Given vectors ~y1, . . . , ~yk ∈ Fm, we define the linear subspace they span by span{~y1, . . . , ~yk} def

=
{a1~y1 + . . . + ak~yk | a1, . . . , ak ∈ F}. We say that ~y1, . . . , ~yk are linearly independent, and denote
ind(~y1, . . . , ~yk), if for every a1, . . . , ak ∈ F, if

∑k
i=1 ai~yi = 0 then a1 = · · · = ak = 0. Throughout

the paper we will refer to span over F (and not over a subfield, even if the vectors are over
a subfield). Note that vectors ~y1, . . . , ~yk ∈ Hm are linearly independent over H if and only if
~y1, . . . , ~yk ∈ Hm are linearly independent over F.

Given two sets A,B ⊆ Fm, we define A+B
def
= {~x + ~y | ~x ∈ A, ~y ∈ B }. Given a point ~x ∈ Fm

and a set A ⊆ Fm, define ~x+A
def
= {~x}+A. A k-dimensional affine subspace in the vector space

Fm is defined by a base-point ~x ∈ Fm and k linearly independent directions, ~y1, . . . , ~yk ∈ Fm, as

affine(~x; ~y1, . . . , ~yk)
def
= ~x + span{~y1, . . . , ~yk}

Points are 0-dimensional affine subspaces. Lines are 1-dimensional affine subspaces. Planes are
2-dimensional affine subspaces. Every affine subspace can be equivalently represented by many
choices of vectors ~x; ~y1, . . . , ~yk, but, clearly, there is an affine transformation between every two
representations of the same affine subspace.

An m-variate polynomial over a field F is a function Q : Fm → F of the form

Q(x1, . . . , xm) =
∑

i1,...,im

ai1,...,imxi1
1 · · ·xim

m

where all the coefficients ai1,...,im are in F. The degree of Q is deg Q
def
= max

{∑m
j=1 ij | ai1,...,im 6= 0

}
,

where the degree of the identically zero polynomial is defined to be 0.
The restriction of a polynomial Q : Fm → F to an affine subspace s represented as s =

affine(~x; ~y1, . . . , ~yk) is a polynomial in k variables, Q|s(α1, . . . , αk)
def
= Q(~x + α1~y1 + . . . + αk~yk).

We will sometimes wish to refer to a polynomial Q defined over an affine subspace s without
specifying the subspace’s representation, in which case we will use the notation Q(~x) for a point
~x ∈ s. Note that the degree of the polynomial does not depend on the representation of s.

2.2 Oracles

We assume an oracle A that given any affine subspace s in Fm, provides a polynomial A(s) of
degree at most d defined over s. For the sake of simplicity, we do not refer to both an oracle
A and a function f : Fm → F as in the introduction. Instead, we assume that f ’s values on
points ~x are given by A(~x). Our testers query A only on affine subspaces of constant dimension.
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However, for the analysis, it will be convenient to consider oracles queried regarding higher
dimensional affine subspaces as well. Hence, an oracle A is defined to provide a value for any
affine subspace.

For a polynomial Q : Fm → F, we will use the notation (Q ≡ A)(s) to indicate that Q and A
agree on a subspace s, i.e., for every ~x ∈ s, Q(~x) = A(s)(~x).

2.3 Low Degree Testers

Define two predicates for our two testers: for ~z ∈ Fm and ~y1, ~y2 ∈ Hm, let

1. PlanePointA(~z, ~y1, ~y2): ~y1, ~y2 are linearly dependent or A(affine(~z; ~y1, ~y2))(~z) = A(~z)

2. SpacePointA(~z, ~y1, ~y2): ~z, ~y1, ~y2 are linearly dependent or A(affine(~0;~z, ~y1, ~y2))(~z) = A(~z)

2.4 Soundness

To prove that a tester is sound we assume that it accepts with probability γ when given access
to an oracle A and show the agreement of A with a low degree polynomial. Specifically, for a
sub-constant ε, we prove two claims, which we argue to be essentially equivalent:

1. (decoding) There exists a low degree polynomial that is consistent with the oracle A on
at least γ − ε fraction of the points.

2. (list decoding) For every 0 < δ < 1, there exists a short list of t = t(δ) low degree
polynomials that explains all the tester’s acceptance, but δ + ε fraction of the probability
(explanation follows).

When saying that a list of polynomials explains almost all the success, we mean that with high
probability over the random bits of the tester (i.e., over the choice of a subspace and a point
within it), either the tester rejects or one of the polynomials agrees with the oracle on the
subspace and on the point. There is a tradeoff between the amount of success explained and
the length of the list: the more one wishes to explain – the longer the list is.

We wish ε to be as small as possible. The parameter ε we achieve depends on md
|F| . This

comes from the use of the Schwartz-Zippel Lemma. It also depends on 1
|H| which is the price we

pay for considering the subfield H instead of the entire field F.
The statement for the Randomness-Efficient Plane vs. Point tester is as follows. Note that

we make no effort to optimize the constants.

Theorem 1 (Plane vs. Point Soundness). Fix a dimension m ≥ 2, a field F, a subfield

H ⊆ F and a degree d. Denote ε
def
= 27m

(
8

√
1
|H| + 4

√
md
|F|

)
. For every oracle A,

1. (Decoding) There exists a polynomial Q : Fm → F with deg Q ≤ md, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ Pr
~z∈Fm,~y1,~y2∈Hm

[
PlanePointA(~z, ~y1, ~y2)

]− ε

2. (List decoding) For every δ > 2ε, there exist t ≤ 2/δ polynomials Q1, . . . , Qt : Fm → F
with deg Qi ≤ md, such that

Pr
~z∈Fm,~y1,~y2∈Hm

[¬PlanePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~z; ~y1, ~y2))
] ≥ 1− δ − 2ε
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We prove a similar theorem for the Randomness-Efficient Subspace vs. Point tester. Note
that for this tester we manage to show agreement with polynomials of degree at most d, rather
than md.

Theorem 2 (Subspace vs. Point Soundness). Fix a dimension m ≥ 3, a field F, a subfield

H ⊆ F and a degree d. Denote ε
def
= 27m

(
8

√
1
|H| + 4

√
md
|F|

)
. For every oracle A,

1. (Decoding) There exists a polynomial Q : Fm → F with deg Q ≤ d, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ Pr
~z∈Fm,~y1,~y2∈Hm

[
SpacePointA(~z, ~y1, ~y2)

]− 3ε

2. (List decoding) For every δ > 3ε, there exist t ≤ 2/δ polynomials Q1, . . . , Qt : Fm → F
with deg Qi ≤ d, such that

Pr
~z∈Fm,~y1,~y2∈Hm

[
¬SpacePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~0;~z, ~y1, ~y2))

]
≥ 1− δ − 3ε

It is interesting to note that our sampling arguments also imply a converse to the above
theorems: for any polynomial Q : Fm → F with deg Q ≤ d, there exists an oracle A′ agreeing
with A on the points and assigning affine subspaces polynomials of degree at most d, such that
both our testers accept with probability at least Pr~x∈Fm [Q(~x) = A(~x)]− ε when given access to
A′.

3 Preliminaries

3.1 Orthogonality and Vector Spaces

Given a vector ~y ∈ Fm, we write ~y = (y1, . . . , ym). For a sequence of vectors ~y1, . . . , ~yk, we write
for every 1 ≤ i ≤ k, ~yi = (yi,1, . . . , yi,m).

We define an inner-product between two vectors ~x, ~y ∈ Fm as (~x, ~y)
def
=

∑m
i=1 xi · yi. We say

that ~x, ~y are orthogonal if (~x, ~y) = 0.

Proposition 3.1. For every ~y 6= ~0 ∈ Fm, for every c ∈ F,

Pr
~z∈Hm

[(~z, ~y) = c] ≤ 1
|H|

Proof. As ~y 6= ~0 ∈ Fm, there exists 1 ≤ i ≤ m such that yi 6= 0. For every fixing of all ~z’s
coordinates but the i’th, the condition (~z, ~y) = c uniquely determines zi to some scalar in F.
This scalar may or may not be in the subfield H, but, in any case, there exists at most one
possibility for zi ∈ H.

Proposition 3.2. For every ~y 6= ~0 ∈ Fm, for every k < m,

Pr
~y1,...,~yk∈Hm

[~y ∈ span{~y1, . . . , ~yk} | ind(~y1, . . . , ~yk)] ≤ 1
|H|

Proof. Consider uniformly distributed linearly independent ~y1, . . . , ~yk ∈ Hm. Pick uniformly
and independently at random a vector ~z 6= ~0 ∈ Hm that is orthogonal to ~y1, . . . , ~yk (there exist
such vectors since k < m). Note that for every ~y ∈ span{~y1, . . . , ~yk} it holds that (~z, ~y) = 0. By
Proposition 3.1, since ~z is uniformly distributed over Hm \ {~0}, this happens with probability
at most 1

|H| .

13



Proposition 3.3. For every subset A ⊆ Fm with |A| > |F|m−1, there exist linearly independent
~y1, . . . , ~ym ∈ Fm, such that for every 1 ≤ i ≤ m, ~yi ∈ A.

Proof. We have
|span(A)| ≥ |A| > |F|m−1

Since span(A) is a linear subspace in Fm, we must have |span(A)| = |F|m. Thus, span(A) = Fm,
and so A contains a basis for Fm.

3.2 Polynomials

The Schwartz-Zippel Lemma shows that different low degree polynomials differ on most points,

Proposition 3.4 (Schwartz-Zippel). For two different polynomials Q,P : Fm → F with
deg Q,deg P ≤ d,

Pr
~x∈Fm

[Q(~x) = P (~x)] ≤ d

|F|
The Schwartz-Zippel Lemma can be viewed as showing the unique-decoding property of the

Reed-Muller code. This immediately implies a list decoding property, namely, that only few
polynomials can agree with a function on many of the points.

We include a simple proof of this property.

Proposition 3.5 (list decoding). Fix a finite field F and a dimension m. Let f : Fm → F
be some function and consider some degree d ≤ |F|. Then, for any δ ≥ 2

√
d
|F| , if Q1, . . . , Ql :

Fm → F are different polynomials of degree at most d, and for every 1 ≤ i ≤ l, the polynomial
Qi agrees with f on at least δ fraction of the points, i.e., Pr~x∈Fm [Qi(~x) = f(~x)] ≥ δ, then l ≤ 2

δ .

Proof. Let δ ≥ 2
√

d
|F| , and assume by way of contradiction that there exist l = b2

δ c+1 different
polynomials Q1, . . . , Ql : Fm → F as stated.

For every 1 ≤ i ≤ l, let Ai
def
= {~x ∈ Fm | Qi(~x) = f(~x)}. By inclusion-exclusion,

|Fm| ≥
∣∣∣∣∣

l⋃

i=1

Ai

∣∣∣∣∣ ≥
l∑

i=1

|Ai| −
∑

i6=j

|Ai ∩Aj |

By Schwartz-Zippel, for every 1 ≤ i 6= j ≤ l, |Ai ∩Aj | ≤ d
|F| · |Fm|. Therefore, by the premise,

|Fm| ≥ lδ |Fm| −
(

l

2

)
d

|F| |F
m|

On one hand, since l > 2
δ , we get lδ > 2. On the other hand, since 2

δ ≤
√

|F|
d and d ≤ |F|, we

get
(

l
2

) ≤ |F|
d . This results in a contradiction.

4 Affine Subspaces With Directions Over a Subfield

In this section we prove basic facts regarding affine subspaces in Fm that are spanned by di-
rections over a subfield H ⊆ F. All the properties we prove for such subspaces are well known
when H = F.

14



For 0 ≤ k ≤ m, consider the set of representations of affine subspaces with directions over a
subfield,

Rm
k

def
= {(~z; ~y1, . . . , ~yk) | ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, ind(~y1, . . . , ~yk)}

The corresponding set of affine subspaces is

Sm
k

def
= {affine(r) | r ∈ Rm

k }

First we would like to assert that every subspace in Sm
k is associated with the same number

of tuples in Rm
k , and that every subspace in Sm

k contains the same number of subspaces in Sm
k′

for k′ ≤ k,

Proposition 4.1 (uniformity). For every dimension k, there is a number T = T (k), such
that for every s ∈ Sm

k , |{r ∈ Rm
k | s = affine(r)}| = T .

Proposition 4.2 (uniformity downwards). For every dimensions k′ ≤ k, there is a number
T = T (k, k′), such that for every s ∈ Sm

k ,
∣∣{s′ ∈ Sm

k′ | s′ ⊆ s
}∣∣ = T .

To prove both assertions we introduce an additional notation allowing us to refer to affine
subspaces in Sm

k as isomorphic copies of Fk. Fix an affine subspace together with a representation
for it, s = affine(~z; ~y1, . . . , ~yk). For a representation r = (~α0; ~α1, . . . , ~αk′) of a k′-dimensional
affine subspace within Fk, we define the representation r relative to (the representation of) the
space s by

rs
def
=

(
~z +

k∑

i=1

~α0,i~yi ;
k∑

i=1

~α1,i~yi, . . . ,
k∑

i=1

~αk′,i~yi

)

Note that since ~y1, . . . , ~yk are linearly independent, if two representations r, r′ are the same
relative to a subspace s, rs = r′s, then they are the same representation r = r′.

Denote the corresponding relative affine subspace:

affines(r)
def
= affine(rs)

Note that for every r, affines(r) ⊆ s. Moreover, if affine(r) = affine(r′) then affines(r) =
affines(r′). Now, the above two propositions follow from the following proposition:

Proposition 4.3. For every subspace s ∈ Sm
k , for every dimension k′ ≤ k,

S1
def
= |{r ∈ Rm

k′ | affine(r) ⊆ s}| =
∣∣∣Rk

k′

∣∣∣ def
= S2

Proof. Fix a subspace s ∈ Sm
k and fix a tuple (~z; ~y1, . . . , ~yk) ∈ Rm

k with s = affine(~z; ~y1, . . . , ~yk).

1. S1 ≥ S2: for every tuple r = (~α0; ~α1, . . . , ~αk′) ∈ Rk
k′ , the tuple rs satisfies rs ∈ Rm

k′ and
affine(rs) ⊆ s.

2. S1 ≤ S2: for every tuple r ∈ Rm
k′ satisfying affine(r) ⊆ s, there exists exactly one α =

(~α0; ~α1, . . . , ~αk′), ~α0, ~α1, . . . , ~αk′ ∈ Fk, ind(~α1, . . . , ~αk′), such that r = αs. Since r ∈ Rm
k′

and ~y1, . . . , ~yk ∈ Hm, also ~α1, . . . , ~αk′ ∈ Hk.

Every subspace in Sm
k is contained in the same number of subspaces in Sm

k′ for k′ ≥ k,
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Proposition 4.4 (uniformity upwards). For every dimensions k ≤ k′ ≤ m, there is a
number T = T (m, k, k′), such that for every subspace s ∈ Sm

k ,∣∣{s′ ∈ Sm
k′

∣∣ s′ ⊇ s
}∣∣ = T

Proof. Let us introduce an additional piece of notation: Lm
k′ is the set of all linear subspaces of

dimension k′ in Fm spanned by vectors from Hm.
Fix s = affine(~z; ~y1, . . . , ~yk) ∈ Sm

k . Since ~y1, . . . , ~yk ∈ Hm are linearly independent, the
proposition will clearly follow if we prove the following:

S1
def
=

∣∣{s′ ∈ Sm
k′

∣∣ s′ ⊇ s
}∣∣ =

∣∣{Y ′ ∈ Lm
k′

∣∣ Y ′ ⊇ {~y1, . . . , ~yk}
}∣∣ def

= S2

1. S1 ≤ S2: Let s′ = affine(~z′; ~y′1, . . . , ~y
′
k′) ∈ Sm

k′ , (~z′; ~y′1, . . . , ~y
′
k′) ∈ Rm

k′ , s′ ⊇ s. Let Y ′ =
span

{
~y′1, . . . , ~y

′
k′

}
. Clearly, Y ′ is in Lm

k′ and Y ′ is uniquely defined by s′, s′ = ~z′ + Y ′. It
holds that ~z ∈ s ⊆ s′ = ~z′ + Y ′, thus ~z′ ∈ ~z + Y ′, and, hence, s′ = ~z + Y ′. Let 1 ≤ i ≤ k.
It holds that ~z + ~yi ∈ s ⊆ s′. This implies that ~z + ~yi ∈ ~z +Y ′. Hence, ~yi ∈ Y ′. Therefore,
{~y1, . . . , ~yk} ⊆ Y ′.

2. S1 ≥ S2: Let Y ′ ∈ Lm
k′ , Y ′ ⊇ {~y1, . . . , ~yk}. Clearly, ~z + Y ′ ∈ Sm

k′ and s ⊆ ~z + Y ′.

Uniformity is so important because it allows us to count in several ways. A simple argument
of this nature is that the fraction of affine subspaces s ∈ Sm

k satisfying some condition is exactly
the same as the fraction of r ∈ Rm

k such that affine(r) satisfies the condition. Let us demonstrate
a more sophisticated argument of this nature. Fix k′ ≤ k. Suppose that we have a predicate R
indicating whether an affine subspace s ∈ Sm

k and an affine subspace s′ ∈ Sm
k′ contained in it,

s′ ⊆ s, satisfy some relation. Then,

E
s

[
Pr

s′⊆s

[
R(s, s′)

]]
= E

s′

[
Pr

s⊇s′

[
R(s, s′)

]]

The intersection between two subspaces s1 ∈ Sm
k(1) and s2 ∈ Sm

k(2) is again (provided it is not
empty) a subspace in Sm

k(3) for some k(3).

Proposition 4.5 (closure under intersection). If s1 ∈ Sm
k(1) and s2 ∈ Sm

k(2) where s1∩s2 6= φ,
then there exists k(3) such that s1 ∩ s2 ∈ Sm

k(3).

Proof. Write s1 = ~z1 + V1 and s2 = ~z2 + V2 where ~z1, ~z2 ∈ Fm and V1, V2 ⊆ Fm are linear
subspaces spanned by vectors in Hm. Assume ~x ∈ s1 ∩ s2. Then, we can alternatively write
s1 = ~x + V1 and s2 = ~x + V2. Thus, s1 ∩ s2 = ~x + (V1 ∩ V2). The proposition follows noticing
that V1 ∩ V2 can be spanned by vectors in Hm.

A useful representation of affine subspaces is given in the following proposition,

Proposition 4.6 (affine subspaces as solutions of linear equations). Let s = affine(~z; ~y1, . . . , ~yk) ∈
Sm

k , let ~α1, . . . , ~αm−k ∈ Hm be (m− k) linearly independent vectors orthogonal to ~y1, . . . , ~yk ∈
Hm. Then,

s = {~x ∈ Fm | ∀1 ≤ j ≤ m− k, (~x, ~αj) = (~z, ~αj)}
Proof. Fix ~x ∈ s. Hence, there exists ~c ∈ Fk such that ~x = ~z +

∑k
i=1 ci~yi. For every 1 ≤ j ≤

m− k,

(~x, ~αj) =

(
~z +

k∑

i=1

ci~yi, ~αj

)
= (~z, ~αj) +

k∑

i=1

ci · (~yi, ~αj) = (~z, ~αj)

Thus, s ⊆ {~x ∈ Fm | ∀1 ≤ j ≤ m− k, (~x, ~αj) = (~z, ~αj)}. The proposition follows noticing that,
in addition, the two sets are of size

∣∣Fk
∣∣.
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5 Affine Subspaces With Directions Over A Subfield Sample
Well

We say that an affine subspace s in Fm samples a set A ⊆ Fm well if the fraction of points
from A contained in it, i.e., |s∩A|

|s| , is approximately |A|
|Fm| . We say that a distribution D on affine

subspaces in Fm samples well, if no matter how one fixes a large enough subset A ⊆ Fm, a
random subspace s ∼ D samples A well with high probability. In this section we use Fourier
analysis to show that the distributions induced by our testers sample well.

5.1 Fourier Transform

Let (G, +) be a finite Abelian group. Consider functions from the group to the complex numbers
f : G → C. One example for such a function is the indicator function of a multi-set A ⊆ G, i.e.,
the function IA that assigns every ~x ∈ G its multiplicity in A.

We define an inner-product between functions f, g : G → C as

〈f, g〉 def
=

1
|G|

∑

x∈G

f(x)g(x)

A character of G is a homomorphism χ : G → C∗, where C∗ is the multiplicative group of the
complex numbers. Namely, for every x, y ∈ G,

χ(x + y) = χ(x) · χ(y)

Every group G trivially has the identically 1 function as a character.
It can be shown that the set of all characters of G forms an orthonormal basis for the space

of all functions f : G → C under the inner-product defined above. Hence, every function
f : G → C can be equivalently represented as f(x) =

∑
χ f̂(χ) · χ(x), where f̂(χ)

def
= 〈f, χ〉 is

called the Fourier coefficient of f corresponding to the character χ. The linear transformation
from f to f̂ is called the Fourier transform of f .

We will need two basic facts regarding the Fourier transform:

Proposition 5.1 (Parseval’s identity). For two functions f, g : G → C, 〈f, g〉 = |G| ·〈f̂ , ĝ〉 =∑
χ f̂(χ)ĝ(χ).

Define the convolution of two functions, f, g : G → C, denoted (f ∗g) : G → C, as (f ∗g)(x)
def
=

1
|G|

∑
y∈G f(y)g(x− y).

Proposition 5.2 (convolution formula). Fix two functions, f, g : G → C. For every char-
acter χ of G, (̂f ∗ g)(χ) = f̂(χ) · ĝ(χ).

We focus on the additive group G = Fm for some finite field F = GF (pk). The field F is also
viewed as a vector space of dimension k over the field GF (p).

Denote ωp = e2πi/p the p’th primitive root of unity in C. For every α ∈ Fm, there is a
character χα : Fm → C,

χα(x)
def
= ω

Pm
i=1(αi,xi)

p

Note that we view αi, xi as vectors in GF (p)k. Their inner product is in GF (p) and so is the
sum in the above expression.

For a function f : Fm → C, we denote its Fourier coefficient corresponding to the character
χα by f̂(α).
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5.2 Sampling Lemma

In this subsection we prove our basic lemma via Fourier analysis. Given z, y ∈ Fm and a subset
A ⊆ Fm, define Xz,y to be the number of c ∈ F satisfying z + c · y ∈ A. Clearly, the expectation
of Xz,y when picking independently at random z ∈ Fm and y ∈ Hm is |F| · |A|

|Fm| . We bound the
variance of Xz,y, implying that it is concentrated around its expectation.

Lemma 5.3. For any subset A ⊆ Fm of density µ = |A|/|Fm|,

Var
z∈Fm,y∈Hm

[Xz,y] ≤ |F|2 µ

|H|
Proof. If we denote the indicator function of A by IA, and the indicator function of the multi-set
{c · y | c ∈ F} by IFy, we can express:

Xz,y =
∑

x∈Fm

IA(x)IFy(z − x) = |Fm| · (IA ∗ IFy)(z)

Hence, by Parseval’s identity and the convolution formula,

E
z∈Fm,y∈Hm

[
X2

z,y

]
=

1
|Fm| |Hm| ·

∑

y∈Hm

∑

z∈Fm

(|Fm| (IA ∗ IFy)(z))2

=
|Fm|2
|Hm| ·

∑

y∈Hm

∑

α∈Fm

∣∣∣ ̂(IA ∗ IFy)(α)
∣∣∣
2

=
|Fm|2
|Hm| ·

∑

y∈Hm

∑

α∈Fm

∣∣∣ÎA(α)
∣∣∣
2
·
∣∣∣ÎFy(α)

∣∣∣
2

By definition, for any multi-set S ⊆ Fm, ÎS(~0) = |S|
|Fm| (where |S| = ∑

~x∈Fm IS(~x)), hence,

E
z∈Fm,y∈Hm

[
X2

z,y

]
=

|Fm|2
|Hm| ·

∑

y∈Hm




∣∣∣ÎA(~0)
∣∣∣
2
·
∣∣∣ÎFy(~0)

∣∣∣
2
+

∑

α 6=~0∈Fm

∣∣∣ÎA(α)
∣∣∣
2
·
∣∣∣ÎFy(α)

∣∣∣
2




=
( |F| |A|
|Fm|

)2

+
∑

α 6=~0∈Fm




∣∣∣ÎA(α)
∣∣∣
2
· |F

m|2
|Hm|

∑

y∈Hm

∣∣∣ÎFy(α)
∣∣∣
2




We will show that |Fm|2
|Hm| ·

∑
y∈Hm

∣∣∣ÎFy(α)
∣∣∣
2
≤ |F|2

|H| . Let us see how the lemma follows. Using this
bound and applying Parseval’s identity again we get,

E
z∈Fm,y∈Hm

[
X2

z,y

] ≤
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

∑

α 6=~0∈Fm

∣∣∣ÎA(α)
∣∣∣
2

≤
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

1
|Fm| ·

∑

z∈Fm

|IA(z)|2

=
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

|A|
|Fm|
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By linearity of expectations,

E
z∈Fm,y∈Hm

[Xz,y] =
|F| |A|
|Fm|

Therefore,

Var
z∈Fm,y∈Hm

[Xz,y] = E
z,y

[
X2

z,y

]− E
z,y

[Xz,y]
2

≤
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

|A|
|Fm| −

( |F| |A|
|Fm|

)2

= |F|2 µ

|H|
We conclude that proving the lemma boils down to proving the following:

Claim 5.3.1. For every α 6= ~0 ∈ Fm,

1
|Hm| ·

∑

y∈Hm

∣∣∣ÎFy(α)
∣∣∣
2
≤ |F|2

|Fm|2 ·
1
|H|

Proof. Assume F = GF (pk). Fix some α 6= ~0 ∈ Fm.

∣∣∣ÎFy(α)
∣∣∣ = |〈IFy, χα〉| =

∣∣∣∣∣
1
|Fm| ·

∑

z∈Fm

IFy(z)ω−
Pm

i=1(αi,zi)
p

∣∣∣∣∣ =

∣∣∣∣∣
1
|Fm| ·

∑

c∈F
ω
−Pm

i=1(αi,c·yi)
p

∣∣∣∣∣

Multiplication by a field element a ∈ F in the field F = GF (pk) corresponds to a linear trans-
formation in the vector space GF (p)k. That is, for every a ∈ F, there exists a k× k matrix Ma

over GF (p), such that for every b ∈ F = GF (p)k, a · b = Mab. Hence,

m∑

i=1

(αi, c · yi) =
m∑

i=1

(αi,Myic)

=
m∑

i=1

(MT
yi

αi, c)

= (
m∑

i=1

MT
yi

αi, c)

Thus, for every y ∈ Hm,

∣∣∣ÎFy(α)
∣∣∣ =





0
∑m

i=1 MT
yi

αi 6= ~0

|F|
|Fm| otherwise

Assume 1 ≤ i ≤ m is such that αi 6= ~0 ∈ GF (p)k. Note that for every a1 6= a2 ∈ F, we know
that MT

a1
αi 6= MT

a2
αi (For every b 6= 0 ∈ F, a1 · b 6= a2 · b. Thus, for every b 6= ~0 ∈ GF (p)k,

(Ma1 −Ma2)b 6= ~0 and for every b 6= ~0 ∈ GF (p)k, MT
a1

b−MT
a2

b = (Ma1 −Ma2)
T b 6= ~0). Hence,

for every v ∈ GF (p)k, there exists at most one a ∈ H for which MT
a αi = v. In particular,

Pr
~y∈Hm


MT

yi
αi = −

∑

j 6=i

MT
yj

αj


 ≤ 1

|H|
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The claim follows. (of claim 5.3.1)

Remark 5.4. To get the corollaries stated in the introduction, note the following.

1. Only claim 5.3.1 uses the nature/structure of Hm.

2. Claim 5.3.1 does not require H to be a subfield of F. Its proof holds for any subset H ⊆ F.
3. If F = GF (p), then for any subset S ⊆ Fm, for any ~α 6= ~0 ∈ Fm,

Pr
~y∈S

[
m∑

i=1

MT
yi

αi 6= ~0

]
= Pr

~y∈S

[
m∑

i=1

yi · αi 6= 0

]
= Pr

~y∈S
[(~y, ~α) 6= 0]

We have that min~α6=~0∈Fm Pr~y∈S [(~y, ~α) 6= 0] is the relative distance of the linear code ob-
tained when using the vectors of S as the rows of a generating matrix.

5.3 Affine Subspaces Sample Well

Using the sampling lemma (Lemma 5.3), we can prove that the uniform distribution over lines
in Sm

1 samples well. Note that the sampling lemma does not show exactly this, as it considers
y uniformly distributed over Hm, instead of over Hm \ {~0}.
Lemma 5.5. For any A ⊆ Fm of density µ = |A|/|Fm|,

Var
l∈Sm

1

[ |l ∩A|
|l|

]
≤ µ

|H|
Proof. Note that the probability that a random point in Fm is in A is the same as the expected
fraction of points in A on a random line in Sm

1 ,

E
p∈Sm

0

[ |p ∩A|
|p|

]
= E

l∈Sm
1

[ |l ∩A|
|l|

]
= µ

but the variance may only decrease when considering lines rather than points,

Var
p∈Sm

0

[ |p ∩A|
|p|

]
≥ Var

l∈Sm
1

[ |l ∩A|
|l|

]

Hence, since Var [X] = E
[
(X −E [X])2

]
and expectations satisfy that for every random vari-

able Y and set A, E [Y ] = Pr [Y ∈ A] ·E [Y |Y ∈ A] + Pr [Y /∈ A] ·E [Y |Y /∈ A],

Var
z∈Fm,y∈Hm

[
1
|F| ·Xz,y

]
=

1
|H|m · Var

p∈Sm
0

[ |p ∩A|
|p|

]
+

(
1− 1

|H|m
)
· Var

l∈Sm
1

[ |l ∩A|
|l|

]

≥ 1
|H|m · Var

l∈Sm
1

[ |l ∩A|
|l|

]
+

(
1− 1

|H|m
)
· Var

l∈Sm
1

[ |l ∩A|
|l|

]

= Var
l∈Sm

1

[ |l ∩A|
|l|

]

The lemma follows from Lemma 5.3.
Using the analysis for dimension 1, we can bound the variance of the hitting rate for any

larger dimension,
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Lemma 5.6. Fix dimensions k and m, 1 ≤ k ≤ m. For any A ⊆ Fm of density µ = |A|/|Fm|,

Var
s∈Sm

k

[ |s ∩A|
|s|

]
≤ µ

|H|

Proof. Pick s ∈ Sm
k and additional r ∈ Rk

1 independently at random. Denote by l = affines(r)
the line within s corresponding to r (the notation affines was introduced in section 4). By
uniformity, l is uniformly distributed in Sm

1 . Hence, by Lemma 5.5 and uniformity,

Var
s

[ |s ∩A|
|s|

]
= Var

s

[
E
r

[ |l ∩A|
|l|

]]

≤ Var
s,r

[ |l ∩A|
|l|

]

≤ µ

|H|

We can now bound the deviation of the hitting rate from its expected value,

Corollary 5.7 (sampling). Fix dimensions k and m, 1 ≤ k ≤ m. Fix A ⊆ Fm of density
µ = |A| / |Fm|. Then, for any ε > 0,

Pr
s∈Sm

k

[∣∣∣∣
|s ∩A|
|s| − µ

∣∣∣∣ ≥ ε

]
≤ µ

ε2 |H|

Proof. Apply Lemma 5.6 and then Chebyshev’s inequality.

5.4 Linear Subspaces Sample Well

We can similarly prove that linear subspaces with one direction chosen from Fm and all other
directions chosen from Hm sample well. We will need this lemma to analyze the Randomness-
Efficient Subspace vs. Point tester.

Lemma 5.8. Fix dimensions k and m, 1 ≤ k < m. Fix a set A ⊆ Fm of density µ = |A|/|Fm|.
Pick uniformly ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, such that ~z, ~y1, . . . , ~yk are linearly independent. Denote
s = affine(~0;~z, ~y1, . . . , ~yk). Then,

E
s

[( |s ∩A|
|s| − µ

)2
]
≤ µ

|H| +
1
|F|

Proof. Pick an additional scalar α ∈ F independently at random. Let sα = affine(α~z; ~y1, . . . , ~yk).
Note that sα is distributed in Sm

k as follows: with probability 1
|F| , sα is uniformly distributed

in the set of affine subspaces in Sm
k through the origin; with probability 1− 1

|F| , sα is uniformly
distributed in the set of affine subspaces in Sm

k that do not contain the origin. Therefore,

E
s,α

[( |sα ∩A|
|sα| − µ

)2
]

≤ 1 · E
s′∈Sm

k

[( |s′ ∩A|
|s′| − µ

)2
]

+
1
|F| · 1

= Var
s′∈Sm

k

[ |s′ ∩A|
|s′|

]
+

1
|F|
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By Lemma 5.6,

E
s,α

[( |sα ∩A|
|sα| − µ

)2
]

≤ µ

|H| +
1
|F|

By Jensen inequality,

E
s

[( |s ∩A|
|s| − µ

)2
]

≤ E
s,α

[( |sα ∩A|
|sα| − µ

)2
]

The lemma follows.
We can now bound the deviation of the hitting rate from its expected value,

Corollary 5.9 (sampling). Fix dimensions k and m, 1 ≤ k < m. Fix a set A ⊆ Fm of density
µ = |A|/|Fm|. Pick uniformly ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, such that ~z, ~y1, . . . , ~yk are linearly
independent. Denote s = affine(~0;~z, ~y1, . . . , ~yk). Then, for any ε > 0,

Pr
s

[∣∣∣∣
|s ∩A|
|s| − µ

∣∣∣∣ ≥ ε

]
≤ 1

ε2
·
(

µ

|H| +
1
|F|

)

Proof. Apply Markov inequality on Lemma 5.8.

6 Consolidation

In this section we show that weak low degree testing claims imply strong low degree testing
claims. Specifically, we are interested in the following (for exact definitions, see the next sub-
sections):

1. decoding/list decoding : by decoding we refer to finding a single polynomial Q : Fm → F
agreeing with the oracle on many of the points. By list-decoding we refer to finding a short
list of polynomials Q1, . . . , Qt : Fm → F explaining almost all the acceptance probability
of a tester.

2. consistency consolidation: we are able to construct polynomials Q : Fm → F agreeing
with the oracle on some fraction of the points, and wish to find polynomials agreeing with
the oracle on a larger fraction of the points.

3. degree consolidation: we are able to construct polynomials Q : Fm → F of degree at most
d′ ≥ d, and wish to find polynomials of degree at most d.

We call such arguments consolidating arguments. They are standard in the low degree testing
literature (see, e.g., [3, 17, 9]), however, they require some adaptation to our new setting. In
the following subsections we provide the statements and the proofs of the exact claims we need.

6.1 From Decoding to List-Decoding

If we have a way to decode, then we can list-decode by repeatedly applying decoding. In our
setting, it is easy to force the decoding process to output a polynomial that differs from existing
polynomials, by modifying the oracle.
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Lemma 6.1 (from decoding to list-decoding). Assume |F| ≥ 4. Fix a distribution D over
affine subspaces of dimension k > 0 in Fm. Fix a function f : R→ R, and a degree d′ such that
d ≤ d′ ≤ |F| − 3. If
(decoding:)
for every success probability 0 < γ ≤ 1 and oracle A,

(much consistency)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

implies

(a relatively-low degree polynomial that slightly agrees with the oracle)
There exists a polynomial Q : Fm → F, with deg Q ≤ d′, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ f(γ)

Then
(list-decoding:)
for every oracle A,

(almost all consistency is explained by a relatively short list),

Fix ε0
def
=

√
d′
|F| . For every ε0 < δ < 1, such that δ′ def

= f (δ − ε0)− ε0 ≥ 2ε0, there exists a

list of t ≤ 2/δ′ polynomials Q1, . . . , Qt : Fm → F with deg Qi ≤ d′, such that

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ

Proof. Assume by way of contradiction that decoding holds and there exists an oracle A for
which there exists ε0 < δ < 1 satisfying f (δ − ε0)− ε0 ≥ 2ε0, such that there is no list-decoding
for δ.

Let Q1, . . . , Qt : Fm → F be all polynomials of degree at most d′ for which

Pr
~x∈Fm

[Qi(~x) = A(~x)] ≥ δ′

By proposition 3.5, t ≤ 2/δ′. By our assumption, Q1, . . . , Qt is not a list-decoding for δ. Note
that t ≤ 1/ε0.

When picking a subspace s ∼ D and a point ~x uniformly distributed in s, define the following
events:

1. C : A(s)(~x) = A(~x) (consistent).

2. P : ∃i ∈ [t], A(~x) = Qi(~x) (point explained).

3. S : ∃i ∈ [t], (Qi ≡ A)(s) (subspace explained).

Using this notation, the contradicting assumption implies that there is much consistency within
unexplained subspaces,

Pr
s,~x

[C ∧ ¬S] = 1− Pr
s,~x

[¬C ∨ S] = 1−E
s

[
Pr
~x

[¬C ∨ S]
]

> δ
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When C and P both happen, the polynomial A(s) agrees with a polynomial Qi for some i ∈ [t]
on the point ~x. Hence, by a union bound over the i ∈ [t] and by the Schwartz-Zippel Lemma,
an unexplained subspace is rarely consistent with explained points,

Pr
s,~x

[C ∧ P |¬S] ≤ td′

|F| ≤
1
ε0
· ε20 = ε0

Thus, there is much consistency on unexplained points,

Pr
s,~x

[C ∧ ¬P ] ≥ Pr
s,~x

[C ∧ ¬P ∧ ¬S]

= Pr
s,~x

[C ∧ ¬S]− Pr
s,~x

[C ∧ P ∧ ¬S]

≥ Pr
s,~x

[C ∧ ¬S]− Pr
s,~x

[C ∧ P |¬S]

> δ − ε0

Pick an arbitrary polynomial Q′ : Fm → F with deg Q′ = d′ + 1. Define a new oracle A′
as follows: A′ assigns Q′(~x) to all explained points ~x, and agrees with A on all other affine
subspaces (recall that points are affine subspaces of dimension 0). Hence,

E
s∼D

[
Pr
~x∈s

[A′(s)(~x) = A′(~x)
]] ≥ Pr

s∼D,~x∈s

[A(s)(~x) = A(~x) ∧ A(~x) = A′(~x)
]

≥ Pr
s,~x

[C ∧ ¬P ]

> δ − ε0

Thus, by decoding, there exists a polynomial Q, deg Q ≤ d′, agreeing with A′ on many of the
points

Pr
~x∈Fm

[A′(~x) = Q(~x)
] ≥ f (δ − ε0)

The polynomials Q and Q′ are necessarily distinct (they do not have the same degree). Thus,
by the Schwartz-Zippel Lemma,

Pr
~x∈Fm

[A′(~x) = Q(~x) ∧ A′(~x) 6= A(~x)
] ≤ Pr

~x∈Fm

[
Q′(~x) = Q(~x)

] ≤ d′ + 1
|F| ≤ ε0

Hence,

Pr
~x∈Fm

[A(~x) = Q(~x) = A′(~x)
]

= Pr
~x∈Fm

[A′(~x) = Q(~x)
]− Pr

~x∈Fm

[A′(~x) = Q(~x) ∧ A′(~x) 6= A(~x)
]

≥ f(δ − ε0)− ε0

= δ′

Therefore,

Pr
~x∈Fm

[A(~x) = Q(~x)] ≥ Pr
~x∈Fm

[A(~x) = Q(~x) = A′(~x)
] ≥ δ′

Hence, there exists i ∈ [t] such that Q = Qi. However, if this is the case, by definition of A′,
δ′ ≤ Pr

~x∈Fm

[A(~x) = Qi(~x) = A′(~x)
] ≤ Pr

~x∈Fm

[
Q′(~x) = Q(~x)

] ≤ ε0

Contradiction.
We can additionally demand that each member of the list decoding agrees with the oracle on

many of the subspaces, i.e., there are no non-useful members in the list,
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Lemma 6.2 (pruning the list). Fix a distribution D over affine subspaces in Fm. For every
0 < ε < 1 and oracle A, if Q1, . . . , Qt : Fm → F are t > 0 polynomials satisfying

(almost all consistency is explained by the list)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ

then there exists a sublist T ⊆ [t], such that

1. (each polynomial agrees with the oracle on many of the subspaces)
for every i ∈ T ,

Pr
s∼D

[(Qi ≡ A)(s)] >
ε

t

2. (still almost all consistency is explained by the list)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i ∈ T (Qi ≡ A)(s)]
]
≥ 1− δ − ε

Proof. We prun the given list Q1, . . . , Qt by throwing away any polynomial Qi, for which the
first item does not hold. In other words,

T
def
=

{
i ∈ [t]

∣∣∣∣ Pr
s∼D

[(Qi ≡ A)(s)] >
ε

t

}

By the union bound, Prs∼D [∃i ∈ [t] \ T, (Qi ≡ A)(s)] ≤ t · ε
t = ε. For a subspace s ∼ D and a

point ~x uniformly distributed in s, define the following events:

1. C : A(s)(~x) = A(~x) (consistent).

2. B : ∃i ∈ [t], (Qi ≡ A)(s) (explained before).

3. N : ∃i ∈ T, (Qi ≡ A)(s) (explained now).

Using this notation, we have (e.g., by observing the appropriate Venn diagram),

E
s

[
Pr
~x

[¬C ∨N ]
]

= Pr
s,~x

[¬C ∨N ]

≥ Pr
s,~x

[¬C ∨B]− Pr
s,~x

[B ∧ ¬N ]

≥ 1− δ − ε

6.2 Consistency Consolidation

In this subsection, we prove a lemma allowing us to deduce that a significant consistency γ
together with a list-decoding for it imply that at least one of the polynomials in the list agrees
with the oracle on almost γ fraction of the points. The lemma requires that the distribution
over affine subspaces samples well (see section 5). Together with Lemma 6.1 that transforms
decoding into list decoding, this lemma allows us to improve the consistency we manage to
recover.
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We phrase a rather general lemma addressing distributional oracles, instead of oracles. We
say that Ã is a distributional oracle, if it assigns each affine subspace s a distribution over
functions s → F (not necessarily a single polynomial of degree at most d over s). Our semantic
even permits the distribution to produce a null function ⊥ with some probability. The null
function satisfies that for every subspace s, point ~x ∈ s and scalar a ∈ F, the probability (over
Ã, namely, over the randomness in choosing Ã(s)) that Ã(s)(~x) = a, when Ã(s) evaluates to
⊥, is 0.

Lemma 6.3 (from list-decoding to decoding). Fix a distribution D over affine subspaces
that samples well, i.e., there exists ∆ : [0, 1] → [0, 1], such that for every set A ⊆ Fm, for every
0 < ε < 1,

Pr
s∼D

[∣∣∣∣
|s ∩A|
|s| − |A|

|Fm|

∣∣∣∣ ≥ ε

]
≤ ∆(ε)

Let A denote an oracle, and let Ã denote a distributional oracle. Assume

1. (the oracles are γ-consistent)

EeA
[

E
s∼D

[
Pr
~x∈s

[
Ã(s)(~x) = A(~x)

]]]
≥ γ

2. (most consistency is explained by a relatively short list)
There exist t functions f1, . . . , ft : Fm → F, such that,

EeA
[

E
s∼D

[
Pr
~x∈s

[
Ã(s)(~x) 6= A(~x) ∨ ∃i (fi ≡ Ã)(s)

]]]
≥ 1− δ

Then, for any 0 < ε < 1 such that ε ≥ t ·∆(ε), there exists 1 ≤ i ≤ t, such that

Pr
~x∈Fm

[fi(~x) = A(~x)] ≥ γ − δ − 2ε

Proof. Assume, by way of contradiction, that for every 1 ≤ i ≤ t, Pr~x∈Fm [fi(~x) = A(~x)] <
γ − δ − 2ε. Let us bound the consistency towards a contradiction to the first item of the
premise. For every 1 ≤ i ≤ t, define the set of points explained by fi,

Ai
def
= {~x ∈ Fm | fi(~x) = A(~x)}

For every 1 ≤ i ≤ t, note that µi
def
= |Ai|

|Fm| < γ − δ − 2ε.
As D samples well, for every 1 ≤ i ≤ t, a random subspace s ∼ D is not likely to hit Ai much

more than it is expected,

Pr
s∼D

[ |s ∩Ai|
|s| ≥ µi + ε

]
≤ ∆(ε) ≤ ε

t

By the union bound,

Pr
s∼D

[
∃i ∈ [t],

|s ∩Ai|
|s| ≥ γ − δ − ε

]
≤ ε

For a random oracle assignment Ã, a subspace s ∼ D and a uniformly distributed point ~x ∈ s
chosen independently at random, define the following events:
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1. B : ∃i ∈ [t], |s ∩Ai| ≥ (γ − δ − ε) · |s| (bad subspace).

2. C : Ã(s)(~x) = A(~x) (consistent).

3. E : ∃i ∈ [t], (fi ≡ Ã)(s) (explained).

Using this notation, we have established that

PreA,s,~x
[C ∧ E] = PreA,s,~x

[C ∧ E ∧ ¬B] + PreA,s,~x
[C ∧ E ∧B]

≤ PreA,s,~x
[C|E ∧ ¬B] + Pr

s
[B]

< (γ − δ − ε) + ε

= γ − δ

The second item of the premise implies

PreA,s,~x
[C] = PreA,s,~x

[C ∧ ¬E] + PreA,s,~x
[C ∧ E]

< δ + (γ − δ)
= γ

This contradicts the first item of the premise.

6.3 Degree Consolidation

Degree consolidation shows that if one reconstructs a polynomial of not too large degree that
agrees with the oracle on many of our subspaces then the polynomial’s true degree is, in fact,
low. The reason is that the polynomial’s degree does not decrease much when restricted to
almost all our subspaces.

First we prove a lemma allowing us to deduce degree d if one of the directions of our subspaces
is distributed over Fm (rather than Hm). This is used only in the analysis of the Randomness-
Efficient Subspace vs. Point tester.

Lemma 6.4 (degree d consolidation). Fix dimensions k and m, 0 ≤ k < m. Fix an oracle
A assigning polynomials of degree at most d to all affine subspaces. Suppose that a polynomial
Q : Fm → F satisfies the following for some 0 ≤ δ ≤ 1:

1. deg Q ≤ δ |F|.
2. Q and A agree on a linear subspace chosen at random,

Pr
~z∈Fm,~y1,...,~yk∈Hm

[
(Q ≡ A)(affine(~0;~z, ~y1, . . . , ~yk)) |ind(~z, ~y1, . . . , ~yk)

]
> δ +

1
|F|

Then, deg Q ≤ d.

Proof. Assume by way of contradiction that deg Q > d. Consider linearly independent ~z ∈ Fm

and ~y1, . . . , ~yk ∈ Hm. Denote s = affine(~0;~z, ~y1, . . . , ~yk), and observe the polynomial

Q|s(α0, α1, . . . , αk) = Q(α0~z + α1~y1 + . . . + αk~yk)
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Note that each of the coefficients of this polynomial can be viewed as a polynomial in z1, . . . , zm

and y1,1, . . . , y1,m, · · · , yk,1, . . . , yk,m of total degree at most deg Q. In particular, consider the
coefficient of the degree deg Q monomial αdeg Q

0 in Q|s. Note that it depends solely on z1, . . . , zm

(and not on y1,1, . . . , y1,m, · · · , yk,1, . . . , yk,m). Hence, let us denote it by P (z1, . . . , zm).
To analyze P we will need more notation. Denote Q(x1, . . . , xm) =

∑
i1···im ai1···imxi1

1 · · ·xim
m .

Define I
def
=

{
(i1, . . . , im)

∣∣∣ ∑
j ij = deg Q

}
. Now, P (z1, . . . , zm) =

∑
(i1...im)∈I ai1···imzi1

1 · · · zim
m .

Thus, by definition, deg P = deg Q and P is not identically zero.
Clearly,

Pr
~z∈Fm,~y1,...,~yk∈Hm

[
deg Q|affine(~0;~z,~y1,...,~yk) > d |ind(~z, ~y1, . . . , ~yk)

]

≥ Pr
~z∈Fm,~y1,...,~yk∈Hm

[P (~z) 6= 0 |ind(~z, ~y1, . . . , ~yk) ]

By the Schwartz-Zippel Lemma, we have

Pr
~z∈Fm,~y1,...,~yk∈Hm

[P (~z) 6= 0] ≥ 1− deg Q

|F| ≥ 1− δ

For any linearly independent ~y1, . . . , ~yk, the probability that a uniformly distributed ~z ∈ Fm

satisfies: ¬ind(~z, ~y1, . . . , ~yk) is at most 1
|F| . Therefore,

Pr
~z∈Fm,~y1,...,~yk∈Hm

[
deg Q|affine(~0;~z,~y1,...,~yk) > d | ind(~z, ~y1, . . . , ~yk)

]
≥ 1− δ − 1

|F|

However, Pr~z∈Fm,~y1,...,~yk∈Hm

[
deg Q|affine(~0;~z,~y1,...,~yk) ≤ d | ind(~z, ~y1, . . . , ~yk)

]
> δ + 1

|F| .
Next we prove a lemma allowing us to deduce degree md (rather than d), even if we only

observe affine subspaces in Sm
k . This lemma will be used in the analysis of the Randomness-

Efficient Plane vs. Point tester.

Lemma 6.5 (degree md consolidation). Fix dimensions k and m, 1 ≤ k ≤ m. Fix an oracle
A assigning polynomials of degree at most d to all affine subspaces. Suppose that a polynomial
Q : Fm → F satisfies the following for some 0 ≤ δ ≤ 1:

1. deg Q ≤ δ |F|.
2. Prs∈Sm

k
[(Q ≡ A)(s)] > δ + 1

|H| .

Then, deg Q ≤ md.

Proof. By the premise and uniformity,

Pr
~y1,...,~yk∈Hm

[
Pr

~z∈Fm
[(Q ≡ A)(affine(~z; ~y1, . . . , ~yk))] > δ | ind(~y1, . . . , ~yk)

]
>

1
|H|

Thus,

Pr
~y 6=~0∈Hm

[
Pr

~z∈Fm

[
deg Q|affine(~z;~y) ≤ d

]
> δ

]
>

1
|H|

By Proposition 3.3, there exist linearly independent ~y1, . . . , ~ym ∈ Hm, such that for every
1 ≤ i ≤ m,

Pr
~z∈Fm

[
deg Q|affine(~z;~yi) ≤ d

]
> δ
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~y1, . . . , ~ym is a basis for Fm. Thus, every point ~x ∈ Fm can be represented as ~x =
∑m

i=1 αi~yi

for some α1, . . . , αm ∈ F. Hence, view Q as a polynomial in variables α1, . . . , αm. Assume by
way of contradiction that deg Q > md. Hence, there exists 1 ≤ i ≤ m such that the degree of
Q in the variable αi, which we will denote by D, is larger than d. The coefficient of αD

i in the
polynomial Q|affine(~z;~yi) is a non-zero polynomial P (z1, . . . , zm) of degree at most deg Q. Hence,
by the Schwartz-Zippel Lemma,

Pr
~z∈Fm

[P (z1, . . . , zm) = 0] ≤ deg Q

|F| ≤ δ

Thus, Pr~z∈Fm

[
deg Q|affine(~z;~yi) ≤ d

] ≤ δ, which is a contradiction.

7 Consistency Graph

Fix a dimension k ≥ 3. In this section we define and analyze a graph that captures the
consistency among hyperplanes in Fk, i.e., affine subspaces of dimension (k − 1). Using the
graph we prove a list decoding lemma (Lemma 7.4). This lemma is used in the analysis of the
Randomness-Efficient Plane vs. Point tester to go up one dimension (see section 8). Lemma 7.4
is also the only lemma in this section that is used outside it.

The idea is a variation of the analysis of Raz and Safra for the non-randomness-efficient
setting [17]. Our crucial observation is that we can essentially still apply their analysis when
considering only directions with coordinates in a subfield H ⊆ F, instead of the entire field F.

7.1 Graph Construction

Given an oracle A assigning affine subspaces polynomials of degree at most d, define a simple
undirected graph GA = (V, EA) that captures the consistency among affine subspaces in Sk

k−1

as follows. Let the vertices be the set of affine subspaces V
def
= Sk

k−1. Let the edges indicate
whether two affine subspaces are assigned polynomials that are consistent on the intersection
of the subspaces,

EA
def
= {(s1, s2) | ∀~x ∈ s1 ∩ s2, A(s1)(~x) = A(s2)(~x)}

Note that every two subspaces in Sk
k−1 are either parallel (i.e., identify or do not intersect) or

intersect by an affine subspace from Sk
k−2 (see closedness under intersection; Proposition 4.5).

7.2 Graph is Almost-Transitive

A graph G = (V,E) is said to be transitive, if for every three vertices u, v, w ∈ V , if (u, v) ∈ E
and (v, w) ∈ E, then (u,w) ∈ E. In other words, a graph is transitive if and only if for every
two vertices u,w ∈ V , u 6= w, the are not neighbors, namely, (u,w) /∈ E, no vertex v ∈ V
neighbors both u and w, i.e., for every v ∈ V , either (u, v) /∈ E or (v, w) /∈ E.

We first wish to establish that the graph is almost-transitive in the sense that every two
vertices that are not neighbors do not have too many common neighbors (whereas, if the graph
had been transitive, they would not have had common neighbors at all):
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Lemma 7.1 (almost transitivity). Fix an oracle A assigning affine subspaces polynomials of
degree at most d. Let GA = (V, EA) be its corresponding consistency graph for affine subspaces
of dimension k ≥ 3. Then, for every two different affine subspaces s1, s2 ∈ V ,

(s1, s2) /∈ EA ⇒ Pr
s3∈V

[(s1, s3) ∈ EA ∧ (s3, s2) ∈ EA] ≤ 1
|H| +

d

|F|
Proof. Assume (s1, s2) /∈ EA. By definition, there exists ~x ∈ s1 ∩ s2, for which A(s1)(~x) 6=
A(s2)(~x). Hence, a

def
= s1 ∩ s2 ∈ Sk

k−2 and A(s1) and A(s2) induce two different polynomials of
degree at most d on a. Let us denote these polynomials by P1 and P2. Fix a representation in
Rk

k−2 for a. We say that a vertex s3 ∈ V spots inconsistency, if there exists ~x ∈ s3∩a, such that
P1(~x) 6= P2(~x). We wish to argue that a random vertex s3 ∈ V is likely to spot inconsistency.

Pick uniformly r = (~z; ~y1, . . . , ~yk−1) ∈ Rk
k−1. Let us say that s3 = affine(r) is bad, if s3 either

contains a or does not intersect it. Since (k − 2) + (k − 1) ≥ k, for s3 to be bad, a’s directions
must be linearly dependent on ~y1, . . . , ~yk−1. Hence, by uniformity and by Proposition 3.2,

Pr
s3∈V

[s3 is bad] ≤ 1
|H| (3)

By the Schwartz-Zippel Lemma, Pr~x∈a [P1(~x) 6= P2(~x)] ≥ 1 − d
|F| . For all the hyperplanes s

that do not contain a but do intersect it, the dimension of their intersection with a is (k −
1) + (k − 2) − k = k − 3. Let I

def
= {s ∩ a | s ∈ V ; a * s ∧ s ∩ a 6= φ}. By closedness under

intersection and uniformity, Ea′∈I [Pr~x∈a′ [P1(~x) 6= P2(~x)]] = Pr~x∈a [P1(~x) 6= P2(~x)] ≥ 1 − d
|F| .

By uniformity,

Pr
s3∈V

[s3 spots inconsistency |s3 is not bad] ≥ 1− d

|F| (4)

Combining inequalities 3 and 4, we get

Pr
s3

[s3 spots inconsistency] ≥ 1− 1
|H| −

d

|F|
If s3 spots inconsistency then either (s1, s3) /∈ EA or (s3, s2) /∈ EA. Thus, (s1, s3) ∈ EA and
(s3, s2) ∈ EA with probability at most 1

|H| +
d
|F| .

7.3 Graph-Based List Decoding

The almost-transitivity of the graph GA can be used to prove that, other than relatively few
edges, the graph is truly transitive, i.e., composed of disjoint cliques. Moreover, these cliques
are relatively large. This was shown by Raz and Safra [17],

Lemma 7.2 (graph partition). Fix ε = 1
|H| +

d
|F| . Fix an oracle A assigning affine subspaces

polynomials of degree at most d. Let GA = (V,EA) be its corresponding consistency graph for
affine subspaces of dimension k ≥ 3. Then, there exists a partition of the vertices of GA into
cliques, V =

⊎t
i=1 Vi, such that

1. (all non-trivial cliques are large) For every 1 ≤ i ≤ t, either |Vi| = 1, or |Vi| > 2
√

ε |V |.
2. (almost all edges are within cliques)

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i s1, s2 ∈ Vi] ≥ 1− 5
√

ε
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Proof. By Lemma 7.1 and the combinatorial lemma of Raz and Safra [17] (for completeness we
include a proof for this lemma; see Lemma A.1 in the appendix).

A large clique in GA corresponds to a single relatively-low degree polynomial agreeing with
the oracle A on all affine subspaces associated with the vertices in the clique,

Lemma 7.3 (from large clique to polynomial). Fix an oracle A assigning affine subspaces
polynomials of degree at most d. Let GA = (V,EA) be its corresponding consistency graph for
affine subspaces of dimension k ≥ 3. Then, for every large clique U ⊆ V , |U | >

(
2d
|F| +

1
|H|

)
· |V |,

there exists a polynomial Q : Fk → F with deg Q ≤ 2d, such that for every s ∈ U , (Q ≡ A)(s).

Proof. For linearly independent ~y1, . . . , ~yk−1 ∈ Fk, there are exactly |F| different hyperplanes of
the form ~z + span{~y1, . . . , ~yk−1} for some ~z ∈ Fk. Let us denote their set by H[~y1, . . . , ~yk−1].

Pick uniformly at random linearly independent ~y1, . . . , ~yk−1 ∈ Hk and consider the random
variable X denoting the fraction of hyperplanes in H[~y1, . . . , ~yk−1] that land in U .

By linearity of expectations,

E
~y1,...,~yk−1∈Hk : ind(~y1,...,~yk−1)

[X] =
|U |
|V | >

2d

|F| +
1
|H|

Hence, since 0 ≤ X ≤ 1,

Pr
~y1,...,~yk−1∈Hk

[
X >

2d

|F|

∣∣∣∣ ind(~y1, . . . , ~yk−1)
]

>
1
|H|

Let us say that linearly independent directions ~y1, . . . , ~yk−1 ∈ Hk are good, if the number of
hyperplanes in H[~y1, . . . , ~yk−1] that land in U is more than 2d.

It follows from our calculations that there are good linearly independent directions ~y1
1, . . . , ~y

1
k−1 ∈

Hk. Fix any ~y1
k ∈ Hk that is not spanned by ~y1

1, . . . , ~y
1
k−1 (such necessarily exists since k−1 < k).

Then, there exist at least (2d + 1) scalars c0, . . . , c2d ∈ F such that for every 0 ≤ i ≤ 2d, we
have affine(ci~y

1
k; ~y

1
1, . . . , ~y

1
k−1) ∈ U .

But recall that we in fact established that for uniformly distributed linearly independent
~y1, . . . , ~yk−1 ∈ Hk, the probability that ~y1, . . . , ~yk−1 are good is larger than 1

|H| . Thus (using
Proposition 3.2), for uniformly distributed linearly independent ~y2

1, . . . , ~y
2
k−1 ∈ Hk, the proba-

bility that ~y2
1, . . . , ~y

2
k−1 are good and ~y1

1 /∈ span
{
~y2
1, . . . , ~y

2
k−1

}
, is also positive.

Therefore, there necessarily exists a basis ~y1, . . . , ~yk ∈ Hk for Fk as well as 2 · (2d + 1) scalars
c0, . . . , c2d, c

′
0, . . . , c

′
2d ∈ F such that

s0 = affine(c0~yk; ~y1, . . . , ~yk−1) ∈ U

...
s2d = affine(c2d~yk; ~y1, . . . , ~yk−1) ∈ U

s′0 = affine(c′0~y1; ~y2, . . . , ~yk) ∈ U

...
s′2d = affine(c′2d~y1; ~y2, . . . , ~yk) ∈ U

Let us define a polynomial Q : Fk → F such that for every 0 ≤ i ≤ d, (Q ≡ A)(si). This is done
using Lagrange’s interpolation formula:

Q

(
k∑

i=1

αi~yi

)
=

d∑

i=0

∏
j∈{0,...,d}−{i}(αk − cj)∏
j∈{0,...,d}−{i}(ci − cj)

· A(si)


ci~yk +

k−1∑

j=1

αj~yj



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The degree of Q in αk is at most d and its total degree is deg Q ≤ 2d.
We would like to argue that for every s ∈ U , (Q ≡ A)(s). Let 0 ≤ j ≤ 2d. For every line of

the form l = affine
(∑k−1

i=1 ai~yi; ~yk

)
contained in s′j , the polynomial Q|l has degree at most d.

Moreover, for every 0 ≤ i ≤ d, Q|l and A(s′j) identify on l∩ si. By the Schwartz-Zippel Lemma,
Q|l and A(s′j) identify on the entire line l. Thus, for every 0 ≤ j ≤ 2d, Q and A identify on s′j .
Hence, by the Schwartz-Zippel Lemma, for every 0 ≤ j ≤ 2d (and not only for every 0 ≤ j ≤ d),
the polynomial Q (of degree at most 2d) and A identify on sj .

Let s ∈ U . Necessarily, s intersects the sj ’s or the s′j ’s (or both). Hence, Q|s and A(s) identify
on more than 2d

|F| of the points on s. Q|s is of degree at most 2d. Thus, by the Schwartz-Zippel
Lemma, Q and A identify on s.

The partition of GA into cliques yields list decoding,

Lemma 7.4 (hyperplane vs. hyperplane). Fix an oracle A assigning affine subspaces
polynomials of degree at most d. Let GA = (V,EA) be its corresponding consistency graph
for affine subspaces of dimension k ≥ 3. Then, for any δ ≥ 8

√
d
|F| +

1
|H| there exists a list of

polynomials Q1, . . . , Qt : Fk → F, t ≤ 4
δ , with deg Qi ≤ 2d, such that

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2)] > 1− δ

Proof. Consider the partition of Lemma 7.2. Let S1, . . . , Sl denote the small cliques in this
partition, i.e., cliques whose size is |Si| < δ

4 |V |. Clearly,

l∑

i=1

|Si|2 <
δ

4
|V | ·

l∑

i=1

|Si| ≤ δ

4
|V |2

Hence, Prs1,s2∈V [∃i, s1, s2 ∈ Si] < δ
4 . Let L1, . . . , Lt be the set of all large cliques |Li| ≥ δ

4 |V |.
We have t ≤ 4

δ . Moreover,

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, s1, s2 ∈ Li] > 1− 5
8
δ − 1

4
δ > 1− δ

For every 1 ≤ i ≤ t, let Qi : Fk → F be the polynomial associated with Li according to
Lemma 7.3. We have deg Qi ≤ 2d and

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2)] > 1− δ

Note that the lemma is meaningful only when the density of the graph, |EA|/|V |2, is large
enough with respect to δ, otherwise, the list might be empty. This corresponds to the fact that
the oracle must assign the affine subspaces somewhat consistent polynomials if we wish to (list)
decode.

8 Going Up One Dimension

Let A be an oracle assigning polynomials of degree at most d to affine subspaces in Fm. Let us
say that A is γ-consistent over subspaces of dimension k (we usually omit the dimensions when
they are clear from the context), if

E
s∈Sm

k

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ
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Fix a dimension k ≥ 3. Let A be an oracle assigning polynomials of degree at most d to
affine subspaces in Fk. In this section we prove that if A is γ-consistent over affine subspaces of
dimension (k − 1) in Fk, then there exists a polynomial Q : Fk → F of degree at most 2d that
agrees with the oracle on almost γ of the points. This is done in three steps:

1. We use an argument of counting in several ways to transform our setting to one that
resembles that of the consistency graph of section 7.

2. We use the analysis of the consistency graph to prove the claim we want, while losing in
the consistency parameter.

3. We fix the consistency parameter via the consistency consolidation of section 6.

The final result of this section is given in Lemma 8.3. This is also the only lemma in this section
that is used outside it. Note that the degree parameter grows from d to 2d, and we need to take
care of that when we use this lemma.

8.1 From Hyperplane vs. Point to Hyperplane vs. Hyperplane

We start by showing that γ-consistency over hyperplanes implies that for an average pair (s1, s2)
of intersecting hyperplanes, A(s1) and A(s2) agree (with each other and with A) on at least
γ2-fraction of the points in the intersection of s1 and s2.

The proof uses repeatedly the trick of counting in several ways, which is made possible due
to uniformity considerations (see section 4).

For an affine subspace a ∈ Sk
k−2, denote the set of hyperplane pairs that intersect in a by

Sa
def
=

{
(s1, s2)

∣∣ s1, s2 ∈ Sk
k−1, s1 ∩ s2 = a

}
.

Lemma 8.1 (counting in several ways). If for an oracle A,

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Then,

E
a∈Sk

k−2

[
E

(s1,s2)∈Sa

[
Pr
~x∈a

[A(s1)(~x) = A(~x) = A(s2)(~x)]
]]
≥ γ2 − 1

|H|

Proof. For an affine subspace s ∈ Sk
k−1, an affine sub-space of it a ⊂ s, a ∈ Sk

k−2, and a point
~x ∈ a, let Is,a,~x be the indicator variable of the event A(s)(~x) = A(~x).
By the premise and uniformity,

E
s

[
E

a⊂s

[
E

~x∈a

[
Is,a,~x

]]]
≥ γ

By uniformity, we can also count in a different way and obtain:

E
a

[
E

~x∈a

[
E

s⊃a

[
Is,a,~x

]]]
≥ γ

By convexity considerations,

E
a

[
E

~x∈a

[(
E

s⊃a

[
Is,a,~x

])2
]]

≥ γ2
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Or, in other words,

E
a

[
E

~x∈a

[
E

s1,s2⊃a

[
Is1,a,~xIs2,a,~x

]]]
≥ γ2

We can change the order of summation once again, and get:

E
a

[
E

s1,s2⊃a

[
E

~x∈a

[
Is1,a,~xIs2,a,~x

]]]
≥ γ2

The lemma follows using uniformity and noticing that the probability that s1 = s2 given that
s1, s2 ⊃ a is at most 1

|H| .

8.2 Hyperplane vs. Point Lemma

Next, we show that considerable consistency between (k − 1)-dimensional affine subspaces and
points implies a significant correspondence of the values assigned to points with a relatively
low degree polynomial over Fk. The heart of the proof is the analysis of the consistency graph
(Lemma 7.4).

Lemma 8.2 (hyperplane vs. point). Assume A assigns polynomials of degree at most d to

affine subspaces. Fix δ
def
= 16 max

{√
d
|F| , 4

√
1
|H|

}
. Assume that

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Then there exists a polynomial Q : Fk → F, with deg Q ≤ 2d, such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ2 − 3δ

Proof. Lemma 8.1 allows us to translate the consistency given in this lemma to consistency
between pairs of hyperplanes on points,

E
a∈Sk

k−2

[
E

(s1,s2)∈Sa

[
Pr
~x∈a

[A(s1)(~x) = A(~x) = A(s2)(~x)]
]]
≥ γ2 − 1

|H|

Lemma 7.4 gives list decoding Q1, . . . , Qt : Fk → F, deg Qi ≤ 2d, t ≤ 4
δ , for consistency

among pairs of hyperplanes. We wish to argue that at least one of these polynomials also agrees
with the oracle on many of the points.

Let us define an appropriate notation. Choose independently and uniformly at random a
subspace a ∈ Sk

k−2, hyperplanes that intersect on a, (s1, s2) ∈ Sa, and a point ~x ∈ a. Define the
following events:

1. X : A(s1)(~x) = A(~x) = A(s2)(~x) (hyperplanes are consistent on (and with) a point).

2. C : (s1, s2) ∈ EA (hyperplanes are consistent).

3. E : ∃i (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2) (hyperplanes are explained).
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Using this notation we have Pra,s1,s2,~x [X] ≥ γ2 − 1
|H| . By uniformity, s1, s2 are uniformly

distributed over the set of all pairs with s1 ∩ s2 ∈ Sk
k−2. Since for a uniformly distributed pair

s1, s2 ∈ V , the probability that s1 ∩ s2 /∈ Sk
k−2 is bounded by 1

|H| (see Proposition 3.2), the list
decoding translates into

Pr
s1,s2

[¬C ∨ E] ≥ 1− δ − 1
|H|

~x is uniformly distributed within s1∩s2. Hence, by the Schwartz-Zippel Lemma, Pra,s1,s2,~x [X|¬C] ≤
d
|F| . Therefore, the probability that s1, s2 are consistent on ~x but not explained is small,

Pr
a,s1,s2,~x

[X ∧ ¬E] = Pr
a,s1,s2,~x

[C ∧X ∧ ¬E] + Pr
a,s1,s2,~x

[¬C ∧X ∧ ¬E]

≤ Pr
s1,s2

[C ∧ ¬E] + Pr
a,s1,s2,~x

[¬C ∧X]

≤ 1− Pr
s1,s2

[¬C ∨ E] + Pr
a,s1,s2,~x

[X|¬C]

≤ δ +
1
|H| +

d

|F|

Thus, the probability that s1, s2 are consistent on ~x and are explained is large

Pr
a,s1,s2,~x

[X ∧ E] ≥ Pr
a,s1,s2,~x

[X]− Pr
a,s1,s2,~x

[X ∧ ¬E]

≥ γ2 − 1
|H| − δ − 1

|H| −
d

|F|
≥ γ2 − 2δ (5)

Let us define a distributional oracle Ã, assigning each affine subspace a ∈ Sk
k−2, a distribution

over polynomials of degree at most d over a (for clarification of our notion of distributional
oracles, see the discussion before Lemma 6.3). To define the distribution Ã(a), we indicate how
to sample a polynomial accordingly:

• Pick uniformly at random hyperplanes that intersect on a, (s1, s2) ∈ Sa.

• If there is i such that (Qi ≡ A)(s1) and (Qi ≡ A)(s2), output the restriction of Qi to a
(note that if there are two (or more) such polynomials, they must identify on a).

• Otherwise, output a null polynomial.

If Ã(a) is not null, then there exists i such that (Qi ≡ Ã)(a), while if Ã(a) is null, Ã(a)(~x) 6=
A(~x) for every ~x ∈ a. Thus,

EeA
[

E
a∈Sk

k−2

[
Pr
~x∈a

[
Ã(a)(~x) 6= A(~x) ∨ ∃i (Qi ≡ Ã)(a)

]]]
= 1

By the construction of Ã and inequality 5, Ã is (γ2 − 2δ)-consistent with A,

EeA
[

E
a∈Sk

k−2

[
Pr
~x∈a

[
Ã(a)(~x) = A(~x)

]]]
≥ γ2 − 2δ
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By Corollary 5.7, the uniform distribution on Sk
k−2 samples well: for every set A ⊆ Fk, for every

0 < ε < 1,

Pr
a∈Sk

k−2

[∣∣∣∣
|a ∩A|
|a| − |A|

|Fk|

∣∣∣∣ ≥ ε

]
≤ 1

ε2 |H|

Thus, by Lemma 6.3, since δ
2 ≥ t · 4

δ2|H| , there exists 1 ≤ i ≤ t such that

Pr
~x∈Fk

[Qi(~x) = A(~x)] ≥ γ2 − 3δ

8.3 Consolidating

We can apply consistency consolidation to improve the result of the last subsection. The fol-
lowing summarizes what we establish in this section:

Lemma 8.3 (consistency consolidated). Denote θ0
def
= 24 ·

(
8

√
1
|H| + 4

√
d
|F|

)
. Fix k ≥ 3. Fix

an oracle A assigning polynomials of degree at most d to all affine subspaces. Assume that

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Then there exists a polynomial Q : Fk → F, with deg Q ≤ 2d, such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − 2θ0

Proof. Assume θ0 ≤ 1 (otherwise, the claim trivially holds). Denote ε0 =
√

2d
|F| and δ0 =

16max
{√

d
|F| , 4

√
1
|H|

}
. Define f(γ)

def
= γ2 − 3δ0. It holds that

f(θ0 − ε0)− ε0 = (θ0 − ε0)2 − 3δ0 − ε0 ≥ θ2
0/2

where θ2
0/2 ≥ 2ε0. Apply Lemma 6.1 on Lemma 8.2 to deduce the existence of t ≤ 4/θ2

0

polynomials Q1, . . . , Qt : Fk → F, with deg Qi ≤ 2d, such that

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i(Qi ≡ A)(s)]
]
≥ 1− θ0

For ε = θ0
2 , we have ε ≥ t

ε2|H| . Thus, by Lemma 6.3 (using sampling Corollary 5.7), there
exists 1 ≤ i ≤ t, such that

Pr
~x∈Fk

[Qi(~x) = A(~x)] ≥ γ − 2θ0
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9 The Randomness-Efficient Plane vs. Point Tester is Sound

We wish to show that if the average consistency between planes and points is large then the
oracle assigns points values that are close to a low degree polynomial. Theorem 1 will follow.

Lemma 9.1 (from dimension 2 to dimension k). Denote θk
def
= 24

(
4

√
kd
|F| + 8

√
1
|H|

)
. For

every dimension k ≥ 2, for every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fk → F with deg Q ≤ kd such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − (8k − 10)θk

Proof. We prove the lemma by induction on k. Let us formulate two inductive claims. The
second argues what we wish to show. The first argues slightly better consistency, but worse
degree:

Claim1[k]: For every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fk → F with deg Q ≤ 2(k − 1)d such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − (8k − 16)θk

Claim2[k]: For every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fk → F with deg Q ≤ kd such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − (8k − 10)θk

Claim1[2] holds by taking Q to be A(s) for the only plane s. Hence, the lemma will follow if
we prove that for every k ≥ 2,

Claim1[k] ⇒ Claim2[k] ⇒ Claim1[k + 1]

Claim 9.1.1. Claim1[k] ⇒ Claim2[k]

Proof. Fix 0 < γ ≤ 1 and oracle A such that

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ
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Assume that (8k − 10)θk ≤ 1 (otherwise, we are done). Denote ε0 =
√

2(k − 1)d/|F|. Define

f(γ)
def
= γ − (8k − 16)θk. Let δ = (8k − 14)θk. It holds that

f(δ − ε0)− ε0 = (8k − 14)θk − ε0 − (8k − 16)θk − ε0 ≥ θk

where θk ≥ 2ε0. By lemmata 6.1 and 6.2 applied on Claim1[k], there exist t ≤ 2/θk polynomials
Q1, . . . , Qt : Fk → F, deg Qi ≤ 2(k − 1)d, such that

1. (each agrees with many planes) for every 1 ≤ i ≤ t,

Pr
s∈Sk

2

[(Qi ≡ A)(s)] ≥ θk

t
>

2(k − 1)d
|F| +

1
|H|

2. (all explain almost all the consistency)

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ − θk

By Lemma 6.5, for every 1 ≤ i ≤ t, deg Qi ≤ kd. By Lemma 6.3 (using sampling Corollary 5.7),
there exists 1 ≤ i ≤ t such that

Pr
~x∈Fk

[Qi(~x) = A(~x)] ≥ γ − (8k − 10)θk

(of claim 9.1.1)

Claim 9.1.2. Claim2[k] ⇒ Claim1[k + 1]

Proof. Fix 0 < γ ≤ 1 and oracle A such that

E
s∈Sk+1

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Let s ∈ Sk+1
k . Define an oracle relative to s, As, as follows: for every affine subspace s′ =

affine(r) in Fk (this includes the points in Fk), let As(s′)
def
= A(affines(r)) (the notation affines

was introduced in section 4). Let the consistency within s be

γs
def
= E

s′∈Sk
2

[
Pr

~x∈s′

[As(s′)(~x) = As(~x)
]]

By uniformity, the average consistency within s ∈ Sk+1
k is large,

E
s∈Sk+1

k

[γs] = E
s′∈Sk+1

2

[
Pr

~x∈s′

[A(s′)(~x) = A(~x)
]] ≥ γ

Claim2[k] implies the existence of a new oracle A′ that assigns each hyperplane s ∈ Sk+1
k a

polynomial of degree at most kd that agrees with A on at least γs − (8k − 10)θk of its points.
It holds that

E
s∈Sk+1

k

[
Pr
~x∈s

[A′(s)(~x) = A(~x)
]] ≥ E

s∈Sk+1
k

[γs − (8k − 10)θk] ≥ γ − (8k − 10)θk
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By Lemma 8.3, there exists a polynomial Q : Fk+1 → F with deg Q ≤ 2kd such that

Pr
~x∈Fk+1

[Q(~x) = A(~x)] ≥ γ − (8(k + 1)− 16)θk+1

(of claim 9.1.2)
Lemma 9.1 follows by induction.
The soundness of the Randomness-Efficient Plane vs. Point tester easily follows:

Proof. (of Theorem 1) Assume that

Pr
~z∈Fm,~y1,~y2∈Hm

[
PlanePointA(~z, ~y1, ~y2)

]
= γ

The probability that ~y1, ~y2 are linearly dependent is at most 1
|H|m + 1

|H|m−1 ≤ 2
|H| . Thus,

E
s∈Sm

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ − 2

|H|
By Lemma 9.1, we have decoding: there exists a polynomial Q : Fm → F with deg Q ≤ md,
such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε

By Lemma 6.1, we have list-decoding: for every δ, δ > 2ε, there exist t ≤ 2/δ polynomials
Q1, . . . , Qt : Fm → F with deg Qi ≤ md, such that

E
s∈Sm

2

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ − 2ε +

2
|H|

Therefore,

Pr
~z∈Fm,~y1,~y2∈Hm

[¬PlanePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~z; ~y1, ~y2))
] ≥ 1− δ − 2ε

10 The Randomness-Efficient Subspace vs. Point Tester is Sound

In this section we use the result from the previous section, namely, the soundness of the
Randomness-Efficient Plane vs. Point tester, to prove the soundness of the Subspace vs. Point
tester.

Consider the distribution D over three-dimensional affine subspaces induced by the tester:
pick uniformly ~z ∈ Fm, ~y1, ~y2 ∈ Hm, such that ~z, ~y1, ~y2 are linearly independent, and output
affine(~0;~z, ~y1, ~y2).

Lemma 10.1 (from Plane vs. Point to Subspace vs. Point). Fix dimension m ≥ 3. Fix

ε
def
= 27m

(
4

√
md
|F| + 8

√
1
|H|

)
. If an oracle A assigning polynomials of degree at most d to affine

subspaces satisfies

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fm → F with deg Q ≤ md such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε
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Proof. Let us construct a new oracle A′. For every plane p ∈ Sm
2 that does not contain the

origin, let A′(p) be the restriction of A(s) to p, where s is the unique three-dimensional linear
subspace that contains p. Let A′ identify with A on all other affine subspaces.

For a subspace s ∼ D, s = affine(~0;~z, ~y1, ~y2), and a random scalar α ∈ F, let sα =
affine(α~z; ~y1, ~y2). Clearly, the premise implies that

E
s,α

[
Pr

~x∈sα

[A(s)(~x) = A(~x)]
]
≥ γ

The plane sα is distributed as follows: with probability 1
|F| , sα is uniformly distributed within

the planes in Sm
2 that contain the origin; with probability 1 − 1

|F| , sα is uniformly distributed
within the planes in Sm

2 that do not contain the origin.
Hence, noticing that a uniformly distributed plane in Sm

2 contains the origin with probability
|F|2
|F|m ≤ 1

|F| ,

E
p∈Sm

2

[
Pr
~x∈p

[A′(p)(~x) = A(~x)
]] ≥ γ − 1

|F|

By Lemma 9.1, there exists a polynomial Q : Fm → F with deg Q ≤ md such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε

Now we can apply degree consolidation and get

Lemma 10.2 (degree consolidated). Fix dimension m ≥ 3. Fix ε
def
= 27m

(
4

√
md
|F| + 8

√
1
|H|

)
.

If an oracle A assigning polynomials of degree at most d to affine subspaces satisfies

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fm → F with deg Q ≤ d such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − 2ε

Proof. Assume ε ≤ 1
2 (otherwise, we are done). Denote ε0 =

√
md
|F| , δ = 1.5ε− ε0.

Applying Lemma 6.1 and Lemma 6.2 on Lemma 10.1, we know that there exist t ≤ 8/ε
polynomials Q1, . . . , Qt : Fm → F with deg Qi ≤ md, such that

1. (each agrees with many planes) for every 1 ≤ i ≤ t,

Pr
s∼D

[(Qi ≡ A)(s)] >
ε0
t
≥ md

|F| +
1
|F|

2. (all explain almost all the consistency)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i(Qi ≡ A)(s)]
]
≥ 1− δ − ε0
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By Lemma 6.4, for every 1 ≤ i ≤ t, deg Qi ≤ d. By Corollary 5.9, D samples well: for every set
A ⊆ Fm, for every 0 < ε < 1,

Pr
s∼D

[∣∣∣∣
|s ∩A|
|s| − |A|

|Fm|

∣∣∣∣ ≥ ε

]
≤ 1

ε2
·
(

1
|H| +

1
|F|

)

Hence, by Lemma 6.3, there exists 1 ≤ i ≤ t, such that

Pr
~x∈Fm

[Qi(~x) = A(~x)] ≥ γ − 2ε

Our main theorem stating the soundness of the Randomness Efficient Subspace vs. Point
tester follows:

Proof. (of Theorem 2) Assume that

Pr
~z∈Fm,~y1,~y2∈Hm

[
SpacePointA(~z, ~y1, ~y2)

]
= γ

The probability that ~z, ~y1, ~y2 are linearly dependent is very small,

Pr
~z∈Fm,~y1,~y2∈Hm

[¬ind(~z, ~y1, ~y2)] ≤ 1
|H|m +

1
|H|m−1 +

1
|F|m−2 ≤

2
|H| +

1
|F|

Hence,

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ − 2

|H| −
2
|F|

By Lemma 10.2 we have decoding: there exists a polynomial Q : Fm → F with deg Q ≤ d such
that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − 2.5ε

Lemma 6.1 applied on Lemma 10.2 gives list-decoding: there exist t ≤ 2/δ polynomials Q1, . . . , Qt :
Fm → F with deg Qi ≤ d such that

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ − 2.75ε

Therefore,

Pr
~z∈Fm,~y1,~y2∈Hm

[
¬SpacePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~0;~z, ~y1, ~y2))

]
≥ 1− δ − 3ε
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A Combinatorial Lemma

Let us prove the lemma of Raz and Safra [17] that we use. First, let us introduce several

notations. Given a graph G = (V, E) and a vertex v ∈ V , the neighbors of v are NG(v)
def
=

{u ∈ V | (v, u) ∈ E }. The degree of v is dG(v)
def
= |NG(v)|. The connected component of v

is CG(v)
def
= {u ∈ V | u is reachable from v}. The non-neighbors of v within its connected

component are denoted DG(v)
def
= CG(v) \ ({v} ∪ NG(v)).

Lemma A.1 (graph partition, [17]). Let G = (V, E) be an undirected graph in which every
two non-neighbors u, v ∈ V , (u, v) /∈ E, have at most ε |V | common neighbors. Then, there
exists a partition of the vertices into cliques, V =

⊎t
i=1 Vi, such that

1. (all non-trivial cliques are large) For every 1 ≤ i ≤ t, either |Vi| = 1, or |Vi| > 2
√

ε |V |.
2. (almost all edges are within cliques)

Pr
u,v∈V

[(u, v) /∈ E ∨ ∃i u, v ∈ Vi] ≥ 1− 5
√

ε

Proof. Consider the following operation on graphs, meant to improve transitivity by removing
some edges:

Pick a vertex v ∈ V .

1. If dG(v) ≤ 2
√

ε |V |, remove all the edges that touch v.

2. If dG(v) > 2
√

ε |V |, remove all edges between neighbors of v and non-neighbors of v (these
edges are necessarily within v’s connected component).

If there is no vertex for which this operation causes removal of edges, then the graph is necessarily
transitive, and, moreover, all its non-trivial cliques are of size more than 2

√
ε |V |.

Hence, iteratively perform this operation, picking each time an arbitrary vertex for which
edges would be removed, until this is no longer possible. Let v1, v2, . . . , vl denote the picked
(not necessarily distinct) vertices. Let G1, G2, . . . , Gl denote the subgraphs obtained in the l
iterations. Let I1 be the set of all indices 1 ≤ i ≤ l in which step 1 was performed. Let I2 be
the set of all indices 1 ≤ i ≤ l in which step 2 was performed.

We will bound the total number of edges removed. Observe that if step 1 is performed for a
vertex vi, then its connected component becomes a singleton. Thus, |I1| ≤ |V |, and we have

∑

i∈I1

|NGi(vi)| ≤
∑

i∈I1

2
√

ε |V | = |I1| · 2
√

ε |V | ≤ 2
√

ε |V |2
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Observe that if step 2 is performed for a vertex vi, then after the i’th operation, the vertices
of NGi(vi) and the vertices of DGi(vi) do not belong to the same connected component. Thus,∑

i∈I2
|DGi(vi)| · |NGi(vi)| ≤ |V |2 (no pair of vertices appears twice in this sum). By the almost-

transitivity, for every i ∈ I2, every vertex u ∈ DGi(vi) has at most ε |V | neighbors in NGi(vi)
(each is a common neighbor of u and vi). Therefore, we can bound the total number of edges
removed in step 2 by

∑

i∈I2

|DGi(vi)| · ε |V | <
∑

i∈I2

|DGi(vi)| · ε · |NGi(vi)|
2
√

ε
≤
√

ε

2
·
∑

i∈I2

|DGi(vi)| · |NGi(vi)| ≤
√

ε

2
|V |2

Therefore, the total number of edges removed is at most 2.5
√

ε |V |2 and the total number of
pairs u, v ∈ V for which (u, v) ∈ E but u and v are not in the same clique is at most 5

√
ε |V |2.
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