
Minimum Spanning Tree in Deterministic Linear
Time For Graphs of High Girth

Sarah Eisenstat1, Dana Moshkovitz1?, Robert E. Tarjan2, and Siyao Xu1

1 Department of Electrical Engineering and Computer Science, MIT.
Emails: seisenst@mit.edu, dmoshkov@csail.mit.edu, siyao xu@mit.edu.

2 Department of Computer Science, Princeton University.
Email: ret@cs.princeton.edu.

Abstract. We show a simple deterministic linear time algorithm for
computing the minimum spanning tree of graphs on n vertices with girth
at least b(t, lg n), where t ≥ 1 is a constant and b(x, y) is a variant of the
inverse of the fast-growing Ackermann function.
We also prove: (i) A deterministic linear time algorithm for general
graphs follows from an algorithm for graphs with girth at least g for
any constant g ≥ 1; (ii) To find the minimum spanning tree of a graph
G, it suffices to find the minimum spanning of any graph Ĝ obtained
from G by removal of O(n/b(t, lg n)) edges for any constant t ≥ 1; (iii)
Our high girth algorithm yields an alternative deterministic linear time
algorithm for random graphs.

1 Introduction

Given a connected undirected graph G = (V,E) on n = |V | vertices and m =
|E| edges, where the edges have real non-negative weights w : E → R+, a
minimum spanning tree (MST) of G is a connected sub-graph T on the n vertices
that minimizes

∑
e∈T w(e). For simplicity, we assume that the edge weights are

distinct, in which case the MST is unique. Finding the minimum spanning tree of
a given graph is a fundamental algorithmic problem with numerous applications,
e.g., to design of networks, clustering, approximation algorithms for NP-hard
problems, and more. The interested reader is referred to surveys such as [1, 7].

The most efficient deterministic algorithm currently known for the minimum
spanning tree problem was found by Chazelle [4] and runs in O(mα(m,n)) time,
where α is the inverse Ackerman function. There is a randomized MST algorithm
by Karger, Tarjan and Klein [8] that runs in expected time O(m+n). Finding a
deterministic linear time algorithm is an open problem. In order to solve it, one
can concentrate only on sparse graphs:

Corollary 1 (Sparse graphs suffice). If there exists a deterministic linear-
time algorithm for computing the minimum spanning tree of a graph G with
m ≤ 3

2n, then there exists a deterministic linear-time algorithm for computing
the minimum spanning tree of any graph.
? This material is based upon work supported by the National Science Foundation

under Grant Number 1218547.

Fredman and Tarjan [5] have shown that there exists a deterministic linear time
algorithm for graphs with m ≥ n log(t) n edges for any constant t ≥ 1. Chazelle’s
algorithm [4] takes linear time for graphs with m and n satisfying the equa-
tion A(t, dm/ne) ≥ lg n, where A(i, j) is the Ackermann function and t is any
constant. But for graphs where m is O(n), the problem remains open.

The girth of a graph is the length of its shortest cycle. Graphs of high girth are
graphs that look like trees locally, even though they may have cycles. They arise
in many real-life applications, and are the subject of much theoretical interest.
In fact, almost all sparse graphs are of high girth after the removal of a small
number of edges.

We observe that without loss of generality, we may assume that our graph
does not have constant-sized cycles:

Lemma 1 (No constant-sized cycles). For any constant g ≥ 1, if there ex-
ists a deterministic linear-time algorithm for computing the minimum spanning
tree of a graph G with girth ≥ g, then there exists a deterministic linear-time
algorithm for computing the MST of any graph.

The main contribution of this work is a simple deterministic linear time
algorithm for graphs whose girth is at least b(t, lg n), where b(x, y) is a variant
of the inverse Ackermann function, and t is any constant > 1.

Theorem 1 (High girth MST algorithm). There is a deterministic linear
time algorithm that, given a weighted graph G on n vertices whose girth is at
least b(t, lg n) for some constant t > 1, finds a minimum spanning tree of G.

Since there is a gap between the girth in Theorem 1 and the girth in Lemma 1,
we do not get a deterministic linear time algorithm for general graphs this way.

We show that in order to obtain a linear time algorithm for the minimum
spanning tree problem, it suffices to solve the problem on a graph that is obtained
from the input graph by removal of a small number of edges:

Lemma 2 (Input approximation). The minimum spanning tree of a graph
G can be found in linear time given the minimum spanning tree of a graph Ĝ
that is obtained from G by removal of at most O(n/b(t, lg n)) edges where t ≥ 1
is a constant.

Using this lemma and the facts that: (i) a sparse random graph is close to
having large girth, while (ii) there is a linear time algorithm for somewhat dense
graphs, we get a deterministic linear time algorithm for computing the minimum
spanning tree of a graph with randomly chosen edges and arbitrary edge weights:

Corollary 2 (Deterministic linear time algorithm for almost all graphs).
There is a deterministic linear time algorithm that satisfies the following: There
exists δ = δ(n) = 1/poly(n), such that for any p = p(n) ∈ [0, 1], with probability
at least 1− δ over G ∼ G(n, p), the algorithm computes the minimum spanning
tree of G, regardless of the choice of edge weights. With the remaining probability,
the algorithm declares that it is unable to compute the MST of G.

In 1980, Karp and Tarjan [9] gave a deterministic O(m) algorithm for computing
the minimum spanning tree on graphs with randomly chosen edges and random
edge weights. In 2002, Pettie and Ramachandran [11] gave a deteministic O(m)
algorithm for computing the minimum spanning tree on graphs with randomly
chosen edges and arbitrary edge weights. Our algorithm provides an alternative
to Pettie and Ramachandran’s results.

Multi-edge blue and red rule. The red rule is that any edge that is heaviest on a
cycle is not in the MST. The blue rule is that any edge that is lightest in a cut
is an MST edge. We suggest and use throughout this work the following rules
that determine the fate of many edges at once:

– The multi-edge red rule is that if G is a graph and H is a sub-graph of G, then
edges not in the MST of H are not in the MST of G, i.e., E(H)−MST(H) ⊆
E(G)−MST(G). The reason is that any edge not in the MST of H is heaviest
in some cycle in H, and hence in G.

– The multi-edge blue rule is that if G is a graph and H is obtained from
merging vertices of G, then edges in the MST of H are in the MST of G,
i.e., MST(H) ⊆ MST(G). The reason is that any edge in the MST of H is
lightest in some cut of H, which corresponds to a cut in G.

Organization. We start with definitions. Then, we present a procedure required
for our algorithm in Section 3. The procedure finds a linear-sized matching of
MST edges in an appropriate modification of the input graph. We then describe
the high girth algorithm in Section 4. The rest of the claims from the introduction
are proven in Section 5.

2 Definitions

In this paper, every graph G = (V (G), E(G)) is assumed to be undirected. When
not otherwise defined, m = |E(G)| and n = |V (G)|. A graph G is weighted if it
is accompanied by a weight function w : E(G)→ R+. For simplicity, we assume
that all the edge weights are distinct. We overload set notation by defining
G− S = (V (G), E(G)− S) and G ∪ S = (V (G), E(G) ∪ S).

Let G be a connected graph. A spanning tree of G is a connected subgraph
that contains all vertices of G and has no cycles. Let ST(G) be the set of all
spanning trees of G. Then the minimum spanning tree MST(G) is:

MST(G) = arg min
T∈ST(G)

(∑
e∈T

w(e)

)
.

The Ackermann function A(i, j) is defined as follows:

A(i, j) =

j + 1 if i = 0
A(i− 1, 1) if j = 0 and i 6= 0
A(i− 1, A(i, j − 1)) otherwise

Using the Ackermann function, we can define two different types of inverse,
similar to those defined in Goel et al. [6]:

α(m,n) = min{i ≥ 1 | A(i, dm/ne) > lg n}
b(x, y) = min{z ≥ 0 | A(x, z) > y}

Note the relationship between these two functions: if m = n · b(t, lg n), then
α(m,n) = t. The girth of a graph G is the length of the shortest cycle in G. In
this paper, we consider a graph to have high girth if it has girth ≥ b(t, lg n) for
any constant t.

When we contract an edge (x, y) ∈ E(G), the result is a graph H with
vertices x and y fused into a new vertex z. The notation H = G\S means that
H is the result of contracting each edge e ∈ S. Contraction is very useful in
computing minimum spanning trees — in particular3, if S ⊆ MST(G), then
MST(G) = S ∪MST(G\S).

3 Finding a Matching of MST Edges

In general, the minimum spanning tree of a graph might not contain a large
matching. For instance, if the minimum spanning tree is a star, then it does not
contain a matching of size larger than 1. However, as we show in this section,
any graph G can be transformed into an equivalent graph Ĝ whose minimum
spanning tree contains a matching M of size at least n/3

Our deterministic algorithm for computing Ĝ and M was adapted from a
randomized parallel algorithm by Pettie and Ramachandran [12]. It relies on the
following lemma:

Lemma 3 (from [12]). Suppose that w(x, y) > w(y, z), where (x, y), (y, z) are
edges in a weighted graph G. Let Ĝ be derived from G by replacing (x, y) with
an edge (x, z) of the same weight. Then (x, y) ∈ MST(G) if and only if (x, z) ∈
MST(Ĝ).

This lemma, which Pettie and Ramachandran call the “Endpoint relocation
property,” lets us take any pair of edges (x, y) and (y, z) and perform local mod-
ifications to construct the edge (x, z), without affecting the rest of the minimum
spanning tree. Furthermore, if (y, z) is in the minimum spanning tree, then the
newly created edge must also be in the minimum spanning tree.

To compute Ĝ and M , we begin by performing one round of Bor̊uvka’s al-
gorithm, in which we find a smallest edge incident to each vertex. Because each
such edge is a minimum-weight edge crossing the cut between the vertex and
the rest of the graph, all of those edges are in a minimum spanning tree of the
graph. Let F be a rooted forest of MST edges. We take advantage of the end-
point relocation property to connect pairs of siblings directly, without having to
3 Although contracting an edge (x, y) changes the endpoints of the edges incident to

x and y, we still consider them to be the same edge for the purposes of calculating
the set of edges contained in the minimum spanning tree.

MST-Match(F)

1 use depth-first search to root each tree in F and calculate depths
2 set M = {}
3 set D = {}
4 set U = {v ∈ V | depth(v) > 0}
5 while there exists x ∈ U
6 pick a node x ∈ U with maximum depth
7 set y to the parent of x
8 if y has another child z ∈ U
9 if w(x, y) < w(y, z)

10 set D = D ∪ {(y, z)}
11 else
12 set D = D ∪ {(x, y)}
13 set M = M ∪ {(x, z)}
14 set U = U − {x, z}
15 else
16 set D = D ∪ {(x, y)}
17 set M = M ∪ {(x, y)}
18 set U = U − {x, y}
19 return (M, D)

Fig. 1: An algorithm for converting a forest F ⊆ E(G) of edges that are part of the
minimum spanning tree of some graph G into a matching of minimum spanning tree
edges for a modified version of G. The set D contains edges to be removed from the
original graph G; the set M contains edges to be added to G. The number of edges in
the matching M is at least n/3, where n is the number of vertices in the forest. We
use the set U to keep track of which vertices are still unused.

match them to their parent, and then remove them from the forest. If a node
has no siblings, then it can be matched with its parent and removed from the
forest. To maximize the number of pairs generated in this way, we begin with
the deepest nodes and work our way up the tree. Once there are no more nodes
to pair up, the algorithm MST-Match, formally defined in Figure 1, returns
the set of matched pairs M and the set of deleted edges D.

Theorem 2. Let G be a graph of n vertices, let F be a subset of the edges in
MST(G), and let (M,D) = MST-Match(F). Then the pair (M,D) satisfies
the following properties: (i) |M | = |D| ≥ n/3; (ii) M is a matching, i.e., for
any two pairs (x1, y1), (x2, y2) ∈ M , {x1, y1} ∩ {x2, y2} = φ; (iii) MST(G) =
D ∪MST(((G−D) ∪M)\M).

Proof. First, we wish to show that |M | ≥ n/3. Let T1, . . . , T` be the set of trees
in F and for each Ti, let ki be the number of vertices in Ti. Then there are
initially ki − 1 vertices of Ti in the set U . Every iteration, if x ∈ V (Ti) then
|V (Ti) ∩ U | decreases by at most 2, and otherwise |V (Ti) ∩ U | does not change.
Because ki ≥ 2, the number of iterations for tree Ti is at least ki/3, and therefore

the total number of iterations is at least
∑
ki/3 = n/3. Each iteration increases

the size of M by 1, so |M | ≥ n/3.
Next, we wish to show that all of the pairs in M are disjoint. To do so, we

must characterize the set of nodes removed from U . When a pair of nodes (x, z)
is removed from U in line 14, x has maximum depth, and z is its sibling, so
neither node can be the parent of any node still in U . When a pair of nodes
(x, y) is removed from U in line 18, x has maximum depth, y is the parent of x,
and x has no other siblings in U . So neither x nor y is the parent of any node
still in U after the pair has been removed.

When some pair (x, y) is added to M in line 17, x is guaranteed to belong
to U , but y is not. However, because y is the parent of x, y cannot have been
removed from U on any previous iteration. So if y is not in U , then y was never
in U . Hence y must be a root, and at the time (x, y) is added to M , x must be
the only child of y left in U . Once (x, y) is added to M , x will be removed from
U , so any root y will occur at most once in M .

Each non-root vertex can only be added to a pair in M if, at the time of the
addition on line 13 or line 17, it belongs to the set U . However, immediately after
being added to M , each such vertex will be removed from U . So any non-root
vertex will also occur at most once in M , ensuring that M is a matching.

Let H = (G−D) ∪M . For i ∈ {1, . . . , |M |}, let mi be the edge added to M
in iteration i, and let di be the edge added to D in iteration i. By construction,
either mi = di, or we can relocate di to mi using Lemma 3. Because each di ∈
F ⊆ MST(G), mi ∈ MST(H). Hence, we have MST(G) = (MST(H)−M) ∪D.
Because M ⊆ MST(H), this is equivalent to saying MST(G) = MST(H\M)∪D,
which is precisely what we wanted. ut

Lemma 4. The running time of MST-Match(F) is linear in the number of
vertices in F .

Proof. Depth-first search requires linear time, and can be used to compute node
depths. The set U can be stored as a boolean associated with each vertex. Be-
cause no vertex is added back to U after it has been removed, we can implement
the main loop by examining each vertex once, in decreasing order of depth.

To find a sibling z ∈ U efficiently, each parent y should store an array of its
children and a pointer to the first child contained in U , updated whenever the
algorithm looks for a sibling. Although it may take linear time to find the next
child in the worst case, the amortized time for each computation is O(1). All
other operations in the loop cost O(1), so the total running time is O(n). ut

Next we show that even if we contract the matching M in Ĝ, the girth of the
remaining graph is not much smaller than the girth of G:

Lemma 5. Let G be a graph of girth g ≥ 8, and let F ⊆ G be an arbitrary
forest. If (M,D) = MST-Match(F), then the girth of H = ((G−D) ∪M)\M
is ≥ g/4.

Proof. Suppose, to the contrary, that H contains a cycle CA of length < g/4.
We construct the corresponding cycle CB ∈ ((G−D)∪M) by “un-contracting”

the edges of M — splitting each vertex z ∈ CA that was the result of contracting
(x, y) ∈M . Because all of the edges in M are disjoint, |CB | ≤ 2|CA| < g/2.

Next, we define a multiset of edges S as follows. For each edge (x, z) ∈ CB ,
if (x, z) ∈ G, add (x, z) to S. Otherwise, (x, z) ∈M and must have been added
on line 13 of the algorithm in Figure 1. By examining this algorithm, we can see
that there must exist some vertex y (the parent of x and z in the rooted forest)
such that either (x, y) ∈ D or (y, z) ∈ D. Furthermore, both (x, y) and (y, z)
must be edges in the original graph G. In this case, we add both (x, y) and (z, y)
to S. As a result, we have |S| ≤ 2|CB | < g

We wish to show that there is at least one edge in S that is not duplicated.
No two edges CB are the same, so any duplicate edge in S must have been
generated by some (x1, z1) ∈ CB − E(G). Let y1 be the parent of x1 and z1
in the rooted forest, so that (x1, y1) and (y1, z1) are the edges added to S. For
contradiction, suppose that both (x1, y1) and (y1, z1) occur twice. By construc-
tion, either (x1, y1) ∈ D or (y1, z1) ∈ D. Without loss of generality, suppose
that (x1, y1) ∈ D. Then (x1, y1) /∈ ((G − D) ∪M), and so (x1, y1) /∈ CB . So
for (x1, y1) to be duplicated, the other copy must have been generated by some
other pairing (x2, z2) ∈ CB − E(G). Let y2 be the parent of x2 and z2 in the
rooted forest. Because M is a matching, {x1, z1}∩{x2, z2} = φ. Hence, to ensure
that (x1, y1) is duplicated, we must have x1 = y2 and either x2 = y1 or z2 = y1.
Therefore, x1 is the parent of both x2 and z2, and either x2 or z2 is the parent
of x1. This is clearly a contradiction, so it must be at most one of (x1, y1) and
(y1, z1) occurs twice.

We have seen that if S contains any edges, then S must contain at least one
non-duplicated edge. By construction, S is an Eulerian tour. So if we remove all
duplicate edges of S, there must be at least one cycle CC ⊂ S. Hence we have
|CC | ≤ |S| ≤ 2|CB | ≤ 4|CA| < g, which is a contradiction. ut

4 Minimum Spanning Tree for High-Girth Graphs

In this section, we present an algorithm for computing the minimum span-
ning tree of a high-girth graph. Intuitively, this algorithm is a modification of
Bor̊uvka’s algorithm [2, 3, 10], with a few key differences.

We begin by reducing the degree of the input graph to a constant d in a girth-
preserving way. The specifics of this transformation are detailed in Lemma 7.
Next, we associate with each vertex a Fibonacci heap containing all of the edges
incident to that vertex, thus allowing us to efficiently calculate the minimum-
weight incident edge. When a pair of vertices is contracted, the edge between
them is removed from their heaps, and their heaps are merged. We use the
MST-Match algorithm of Section 3 to ensure that all of the heaps are of roughly
equal size. Finally, we only perform a limited number of iterations — determined
by the girth of the graph — before switching to Chazelle’s minimum spanning
tree algorithm. This way we never have to remove more than one edge from
heaps when we contract an edge. A more formal description of this algorithm
may be found in Figure 2.

MST-High-Girth(G, g)

1 create a table H[·]
2 for each vertex v ∈ V (G)
3 set H[v] = Make-Heap({})
4 for each edge e = (u, v) ∈ E(G)
5 Heap-Insert(H[u], e)
6 Heap-Insert(H[v], e)
7 set G0 = G
8 set T = {}
9 set ` = blog4 gc − 2

10 for i from 1 to `
11 set F = {}
12 for each vertex v ∈ V (Gi−1)
13 set e = Heap-Min(H[v])
14 set F = F ∪ {e}
15 set (M, D) = MST-Match(F)
16 set T = T ∪D
17 set Gi = Gi−1 −D
18 for each edge e = (x, y) ∈ D
19 Heap-Remove(H[x], e)
20 Heap-Remove(H[y], e)
21 for each pair (x, y) ∈M
22 merge x and y in Gi to create a vertex z
23 update the endpoints for all edges originally incident to x or y
24 set H[z] = Heap-Merge(H[x], H[y])
25 return T ∪MST-Chazelle(G`)

Fig. 2: Pseudocode for a deterministic linear-time algorithm for computing the mini-
mum spanning tree for input graphs of girth g ≥ b(t, lg n).

Lemma 6. Given a graph G with maximum degree d and girth g ≥ b(t, lg n)
the algorithm MST-High-Girth computes the minimum spanning tree in time
O((t+ 1)(m+ n) + n lg d).

Proof. First, we wish to bound the runtime. By Theorem 3, we need only bound
the number of comparisons performed by the algorithm. By using techniques
similar to the Union-Find data structure to implement the endpoint reassign-
ment in line 23, it is possible bound the running time without using the results
of Theorem 3, but we omit this explanation for the sake of brevity.

Creating an empty heap takes time O(1); inserting into a Fibonacci heap
takes time O(1). Hence, the overall running time of lines 1 through 6 is O(m+
n). Let ni be the number of vertices in Gi. During iteration i, we contract
|M | ≥ ni−1/3 edges. Thus ni ≤ (2/3) · ni−1, and therefore ni ≤ n · (2/3)i.
Let ti be the maximum size of any heap at the beginning of iteration i. By
definition, t1 = d. Because M is a matching, each heap is merged with at most

one other heap during iteration i. Hence, ti+1 ≤ 2ti, and therefore ti ≤ d · 2i−1.
Thus each Heap-Remove operation takes time O(lg(d · 2i−1)) = O(i + lg d).
We perform 2|M | such operations per iteration of the loop, for a total cost of
O(ni−1 · (i + lg d)) = O(n · (i + lg d) · (2/3)i). All other heap operations take
time O(1), and none are performed more than O(ni−1) times per iteration, so
the runtime of a single iteration is dominated by the Heap-Remove operation.
The MST-Match algorithm also requires time O(ni−1).

By summing these costs, we may compute the runtime of the main loop:

c ·
∑̀
i=1

n · (i+ lg d) ·
(

2
3

)i = cn ·
∑̀
i=1

i
(

2
3

)i + cn lg d ·
∑̀
i=1

(
2
3

)i = O(n lg d)

Finally, we must compute the running time for MST-Chazelle(G`). The
graph G` has n` vertices and at most m edges. Because m ≥ n we know that

m

n`
≥ n

n
(

2
3

)` =
(

3
2

)blog4 gc−2
> lg g ≥ lg b(t, lg n) ≥ b(t+ 1, lg n)

Hence the cost of running MST-Chazelle(G`) is O((t + 1)(m + n)), and the
overall runtime of MST-High-Girth is O((t+ 1)(m+ n) + n lg d).

Next, we must examine correctness. To do so, we wish to show that each
edge e computed on line 13 is in fact the lowest-weight edge leaving v. Every
edge e ∈ D that is removed from the graph on line 17 is also removed from both
containing heaps on lines 19 and 20. No other edges are removed from the heaps.
Furthermore, for every pair of vertices in M that are fused, the corresponding
heaps are merged. Hence, as long as there are no self-loops in Gi, the minimum-
weight edge in H[v] is the same as the minimum-weight edge leaving v. Self-loops
are generated by contracting parallel edges. A pair of parallel edges forms a cycle
of length 2. By combining Lemma 5 with an inductive argument, we can show
that the girth of Gi is at least g/4i ≥ g/4` ≥ 4, so there are no self-loops.

By construction, Gi = ((Gi−1 − D) ∪ M)\M . Because F is equal to the
set of Bor̊uvka merges, we may use Theorem 2 to show that MST(Gi−1) =
D ∪MST(Gi). Hence, the result returned by MST-High-Girth is correct. ut

To use the algorithm MST-High-Girth, we want to ensure that the max-
imum degree d is constant, without adversely affecting the girth of the graph.
The following lemma shows how to achieve this:

Lemma 7 (Degree reduction). Given a graph G we can find in linear time
a graph H where: (i) All the vertices in H have degree ≤ 3; (ii) The size of H
is linear in the size of G; (iii) The girth of H is as high as the girth of G; (iv)
Given MST(H) one can compute MST(G) in linear time.

Proof. We define H as follows:

1. For each vertex u ∈ V (G), let v1, . . . , vku
be the neighbors of u. For each

neighbor vi, construct a vertex xu,vi
. For each 1 ≤ i ≤ ku − 1, construct an

edge of weight 0 between the new vertices xu,vi
and xu,vi+1 .

2. For each edge (u, v) ∈ E(G), construct an edge of weight w(u, v) between
the new vertices xu,v and xv,u.

If we contract all edges added to H in step 1, the resulting graph is equal to
G. All of the contracted edges have weight 0, so all of them will be included in
MST(H). Hence, we can use MST(H) to compute MST(G) in linear time.

By construction, the maximum degree of H is 3. Because xu,v1 , . . . , xu,vku
are

connected in a path, any cycle in H must involve at least one edge (xu,v, xv,u).
So if there is a cycle of length < g in H, we can contract all of the edges added
in step 1 to get an even shorter cycle in G. ut

Hence, if we run the algorithm MST-High-Girth on H, it will correctly com-
pute MST(H) in time O((t+ 1)(m+ n) + n lg 3) = O(m+ n). From there, it is
trivial to compute MST(G). This completes the proof of Theorem 1.

5 Proofs of Claims From the Introduction

In this section we prove the lemmas and corollaries presented in the introduction.
We use the following theorem derived by Pettie and Ramachandran [11]:

Theorem 3. If there exists some algorithm of any runtime that deterministi-
cally computes the minimum spanning tree of a graph using T ∗(m,n) edge-weight
comparisons, then it is possible to construct a deterministic algorithm for com-
puting the minimum spanning tree of a graph with overall runtime O(T ∗(m,n)).

Hence, when constructing an algorithm, it is sufficient to examine the number of
comparisons performed; all other computations do not affect the overall runtime.

Our first claim follows directly from Lemma 7, as a result of the relationship
between m and n in graphs of constant degree:

Corollary 3 (Sparse graphs suffice, Corollary 1 in the introduction).
If there exists a deterministic linear-time algorithm for computing the minimum
spanning tree of a graph G with m ≤ 3

2n, then there exists a deterministic linear-
time algorithm for computing the minimum spanning tree of any graph.

Next we show how to apply Theorem 3 to remove all cycles of constant size:

Lemma 8 (No constant-sized cycles, Lemma 1 in the introduction).
For any constant g ≥ 1, if there exists a deterministic linear-time algorithm for
computing the minimum spanning tree of a graph G with girth ≥ g, then there
exists a deterministic linear-time algorithm for computing the MST of any graph.

Proof. For each cycle of length at most g, find the heaviest edge in the cycle and
remove it. Then apply the algorithm for graphs of girth at least g. Since for each
cycle of length at most g we perform g comparisons, but remove one non-MST
edge from the graph, the overall number of comparisons is at most g ·m = O(m).
By the premise, the number of comparisons required for finding the MST after
the removal of cycles of length g is at most O(m+ n). Hence, the total number
of comparisons is linear, and the lemma follows from Theorem 3. ut

Lemma 9 (Input approximation; Lemma 2 in the introduction). The
minimum spanning tree of a graph G can be found in linear time given the
minimum spanning tree of a graph Ĝ that is obtained from G by removal of at
most O(n/b(t, lg n)) edges where t ≥ 1 is a constant.

Proof. Suppose that r edges were removed from G to obtain Ĝ. Let us denote
them by Er. Let T be a minimum spanning tree of Ĝ. We find a minimum
spanning tree in T ∪Er as follows: We perform O(b(t, lg n)) Bor̊uvka merges. At
the beginning of merge i, let ni be the number of nodes left, and let mi be the
number of edges left. Let `i be the number of edges contracted during merge i.
Each contraction decreases the number of nodes by at most 1, and decreases the
number of edges by at least 1. So we have ni+1 ≥ ni − `i and mi+1 ≤ mi − `i.
We can combine these equations to see that mi+1 ≤ mi − (ni − ni+1). So the
total time required for performing q = Θ(b(t, lg n)) Bor̊uvka merges is:

q∑
i=1

c ·mi ≤ c ·
q∑
i=1

m1 −
i−1∑
j=1

(nj − nj+1)

 = c ·
q∑
i=1

(m1 − (n1 − ni))

≤ c · (m1 − n1)q + c ·
q∑
i=1

ni

By construction, n1 = n and m1 = (n− 1) + r, so m1−n1 = r+ 1. The number
of nodes ni shrinks geometrically, so the running time for our Bor̊uvka merges
is O(n+ rq) = O(n+ r · b(t, lg n)). After q = Θ(b(t, lg n)) merges, the number of
vertices in the graph is O(n/b(t, lg n)), which allows us to apply the algorithm
of Chazelle [4] for an additional runtime cost of O(n). When the costs of all the
steps are combined, we find that computing the minimum spanning tree of the
original graph G takes time O(m+ n+ r · b(t, lg n)). ut

The next lemma and corollary show that almost all sparse graphs are close
to having high girth:

Lemma 10. Given a graph G ∼ G(n, p), let Zk be the number of cycles of length
k. If pn ≤ 100 lg n and k ≤ lg lg n, then Pr[Zk > n/ lg2 n] < O

(
n−(2−ε)).

The proof of Lemma 10 involves computing the expectation and variance of Zk,
and then applying Chebyshev’s inequality. For those interested, the details can
be found in the appendix.

Using a union bound on the probability that some Zk might exceed n/ lg2 n,
it is straightforward to show the following:

Corollary 4. Given a graph G ∼ G(n, p) with arbitrary edge weights, where
pn ≤ 100 lg n, the probability that G has more than O(n/b(t, lg n)) cycles of
length ≤ g = b(t, lg n) for some integer t ≥ 2 is at most O

(
n−(2−δ)) for any

constant δ > 0.

By combining Theorem 1 with Corollary 4, we can derive an alterate algo-
rithm for random graphs:

Corollary 5 (Deterministic linear time algorithm for almost all graphs;
Corollary 2 in the introduction). There is a deterministic linear time algo-
rithm that satisfies the following: There exists δ = δ(n) = 1/poly(n), such that
for any p = p(n) ∈ [0, 1], with probability at least 1 − δ over G ∼ G(n, p), the
algorithm computes the minimum spanning tree of G, no matter what are the
weights on its edges. With the remaining probability, the algorithm declares that
it is unable to compute the minimum spanning tree of G.

Acknowledgments

We are grateful to David Karger for discussions and to Ronitt Rubinfeld for
encouraging us to write up this paper.

References

1. C. F. Bazlamaçci and K. S. Hindi. Minimum-weight spanning tree algorithms a
survey and empirical study. Comput. Oper. Res., 28(8):767–785, July 2001.

2. O. Bor̊uvka. O jistém problému minimálńım (about a certain minimal problem).
Praáce mor. př́ırodověd. spol. v Brně III, pages 37–58, 1926.

3. O. Bor̊uvka. Př́ıspěvek k řešeńı otázky ekonomické stavby elektrovodńıch śıt́ı (con-
tribution to the solution of a problem of economical construction of electrical net-
works). Elektronický Obzor, 15:153–154, 1926.

4. B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type
complexity. Journal of the ACM, 47(6):1028–1047, 2000.

5. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

6. A. Goel, S. Khanna, D. Larkin, and R. Tarjan. Disjoint set union with random-
ized linking. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1005–1017.

7. R. L. Graham and P. Hell. On the history of the minimum spanning tree problem.
IEEE Ann. Hist. Comput., 7(1):43–57, January 1985.

8. D. Karger, P. Klein, and R. Tarjan. A randomized linear-time algorithm to find
minimum spanning trees. Journal of the ACM, 42:321–328, 1995.

9. Richard M Karp and Robert Endre Tarjan. Linear expected-time algorithms for
connectivity problems. Journal of Algorithms, 1(4):374 – 393, 1980.

10. J. Nešetřil, E. Milková, and H. Nešetřilová. Otakar bor̊uvka on minimum spanning
tree problem: Translation of both the 1926 papers, comments, history. Discrete
Math., 233(1-3):3–36, April 2001.

11. S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm.
Journal of the ACM, 49(1):16–34, 2002.

12. S. Pettie and V. Ramachandran. Randomized minimum spanning tree algorithms
using exponentially fewer random bits. ACM Transactions on Algorithms, 4(1),
2008.

A Omitted Proofs

Proof (of Lemma 10). Let Ck be the set of potential cycles of length k. For each
potential cycle c ∈ Ck, let Yc be an indicator random variable that is 1 if and
only all the edges in c occur in G. Then we can write Zk =

∑
c∈Ck

Yc. The expected

value of Zk is:

E[Zk] =
∑
c∈Ck

E[Yc] =
∑
c∈Ck

pk =
(
n

k

)
· (k − 1)!

2
· pk ≤ (pn)k

Because pn ≤ 100 lg n and k ≤ lg lg n, we may show that E[Zk] = O(nδ) for any
constant δ > 0. The variance of Zk is:

Var[Zk] = E[(Zk)2]− (E[Zk])2 =
∑
c1∈Ck

∑
c2∈Ck

(E[Yc1Yc2]− E[Yc1] · E[Yc2])

For each pair of cycles c1, c2 ∈ Ck, the number of shared edges can range between
0 and k. If the number of shared edges is 0, then Yc1 and Yc2 are independent
variables, so E[Yc1Yc2] − E[Yc1]E[Yc2] = 0. If the number of shared edges is k,
then c1 = c2, so E[Yc1Yc2]− E[Yc1] · E[Yc2] = pk − p2k ≤ pk.

Otherwise, let 0 < j < k be the number of shared edges. There are
(
k
j

)
≤ (k!)

possible ways to pick those j edges from the edges in c1, which fixes at least
j + 1 of the vertices in c2. So the number of cycles c2 sharing j edges with c1 is
at most nk−(j+1) · (k!). Hence, we may bound the variance by:

Var[Zk] ≤ |Ck| ·

pk +
k−1∑
j=1

nk−(j+1) · (k!) · p2k−j

≤ |Ck| · pk ·

1 +
k−1∑
j=1

1
n
· (pn)k−j · (k!)

≤ (pn)k ·

1 +
k!
n

k−1∑
j=1

(pn)k−j

 .

Because pn ≤ 100 lg n and k ≤ lg lg n, the variance is also O(nδ) for any δ > 0.
Hence we may use Chebyshev’s inequality to show that

Pr[Zk > n/ lg2 n] = Pr[Zk − E[Zk] > n/ lg2 n− E[Zk]]

≤ Var[Zk](
n/ lg2 n− E[Zk]

)2 ≤ O(1
n2−ε

)
for any ε > 0. ut

Proof (of Corollary 4). For each k ≤ g < lg lg n, let Zk be the number of cycles
in G of length k. The total number of cycles of length ≤ g is equal to

∑
Zk.

If the total number of short cycles is more than n/b(t, lg n), then at least one
of Z3, . . . , Zg must be greater than n/((g − 3) · b(t, lg n)) > n/g2 > n/ lg2 n.
Hence, we can use a union bound on the probability of Lemma 10 to show that
Pr[# of short cycles > n/b(t, lg n)] ≤ (g − 3) · O(n−(2−ε)) ≤ O(n−(2−δ)) for any
constant δ > 0. ut

Proof (of Corollary 5). We present an algorithm that makes a linear number of
comparisons. The corollary then follows from Theorem 3.

If the graph is dense in the sense that m ≥ n log(t) n, we use the algorithm
of Fredman and Tarjan [5]. In the remainder of the proof we assume that p ≤
(100 lg n)/n. For larger p the graph is sufficiently dense except with exponentially
low probability (and in this low probability event, the algorithm can declare so).
We also assume that the number of cycles in G with length less than g = b(t, lg n)
for t ≥ 2 is r = O(n/b(t, lg n)). By Corollary 4, this is the case except with
probability 1/poly(n). Moreover, in the low probability event that this is not so,
the algorithm can detect that.

We begin by finding all cycles of length≤ g. For each of the r short cycles, pick
an arbitrary edge on the cycle. Let S be the union of those edges. We construct a
graph Ghigh = (V,E−S) by removing all edges in S from G. Because S contains
at least one edge from each short cycle in G, the girth of Ghigh must be at least
g = b(t, lg n). Therefore, we may use the high-girth algorithm from Theorem 1
to compute the MST of Ghigh in O(m + n) time. Next we apply Lemma 2 to
compute the minimum spanning tree of G. ut

