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Abstract

We propose a candidate reduction for ruling out polynomial-time algorithms for unique
games, either under plausible complexity assumptions, or unconditionally for Lasserre semidef-
inite programs with a constant number of rounds. We analyze the completeness and Lasserre
solution of our construction, and provide a soundness analysis in a certain setting of interest.
Addressing general settings is tightly connected to a question on Gaussian isoperimetry.

Our construction is based on a suggestion in [30] wherein the authors study the com-
plexity of approximately solving a system of linear equations over reals and suggest it as an
avenue towards a (positive) resolution of the Unique Games Conjecture. The construction
employs a new encoding scheme that we call the real code. The real code has two useful
properties: like the long code, it has a unique local test, and like the Hadamard code, it has
the so-called sub-code covering property.
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1 Introduction

1.1 The Unique Games Conjecture

The Unique Games Conjecture [27] is currently one of the important questions in theoretical
computer science. It is a perplexing question in the sense that researchers have no consensus
regarding its correctness and a tantalizing question in the sense that its resolution might possibly
be on the horizon. As shown in [29], the conjecture can be phrased equivalently in terms of
solving a nearly-satisfiable system of discrete linear equations, where each equation depends on
two variables:

Definition 1. 2Lin(F) Problem: Given N variables x1, . . . , xN taking values over a finite
field F and M equations C1, . . . , CM where each equation Ci is of the form xi1 − xi2 = bi and
bi ∈ F. The goal is to find an assignment that maximizes the fraction of equations satisfied.

Note that in each equation, for any value for either of the two variables, there is a unique
value for the other variable that satisfies the equation. The Unique Games problem is a bit
more general: each constraint is on two variables, the variables take values from an alphabet
Σ, and for any value for either of the two variables in a constraint, there is a unique value for
the other variable that satisfies the constraint (so a constraint corresponds to a permutation
on Σ and different constraints may correspond to different permutations). As shown in [29],
the essence of the Unique Games problem is captured even when the constraints are linear over
a finite field and one may restrict to the 2Lin(F) problem. In particular, the Unique Games
Conjecture can be stated as:

Definition 2 (The Unique Games Conjecture). For any constant ε > 0, there is a finite field
F of a constant size, such that given a 2Lin(F) instance that has an assignment that satisfies
(1 − ε) fraction of all equations, it is NP-hard to find an assignment that satisfies even an ε
fraction of all equations.

If true, the Unique Games Conjecture implies optimal NP-hardness of approximation for a
large number of optimization problems and in some cases, for entire classes of problems (see the
surveys [28, 47] for more background on the Unique Games Conjecture). For example, Raghaven-
dra [39] shows that, assuming the Unique Games Conjecture (and P6=NP), basic semidefinite
programs (SDP) yield optimal approximation algorithms for constraint satisfaction problems
and in particular, for the Unique Games problem itself. Indeed, researchers had already designed
algorithms for the Unique Games problem based on semidefinite programs [20, 27, 13, 46], as
well as constructed matching integrality gaps, showing that these algorithms do not disprove
the Unique Games Conjecture [33]. After Raghavendra’s work, the integrality gap construc-
tions have been extended to SDPs that are more general, amounting to a combination of a basic
SDP and a super-constant number of rounds of the so-called Sherali-Adams linear programming
relaxation [32, 40].

More recently, researchers have been looking at semidefinite programs that are even more
general. A promising approach is to consider the Lasserre hierarchy of semidefinite programs [6,
22]. In contrast to all the semidefinite programs considered before, current techniques seem
inadequate to construct integrality gaps against the Lasserre hierarchy. Some of the limitations
of current techniques towards constructing Lasserre integrality gaps have been formalized in [3].
The latter work shows that integrality gaps against weaker SDPs can be solved using only a
constant number of rounds of the Lasserre hierarchy.
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1.2 A Weak Unique Games Conjecture

In this paper we focus on a weak version of the Unique Games Conjecture that rules out
polynomial-time algorithms for unique games, either under plausible complexity assumptions,
or unconditionally for Lasserre semidefinite programs with a constant number of rounds. The
weak UGC focuses on a special case of unique games where the underlying field is boolean.

Definition 3. Boolean 2Lin: Given N variables x1, . . . , xN taking {−1, 1}-values and M
equations C1, . . . , CM where each equation Ci is of the form xi1 · xi2 = bi and bi ∈ {−1, 1}. The
goal is to find an assignment that maximizes the fraction of equations satisfied.

Assuming the Unique Games Conjecture, given an instance of Boolean 2Lin where 1 − ε
fraction of the equations can be satisfied, it is NP-hard to satisfy 1 − Ω(

√
ε) fraction of the

equations [29, 18]. We refer to this approximation problem as the (1 − ε, 1 − Ω(
√
ε)) gap

problem of 2Lin. An NP-hardness result for it could perhaps be equivalent to the Unique
Games Conjecture. Even though an equivalence is not known formally (in fact, a promising
direction for proving it was ruled out in [42, 5]), researchers tend to agree that the boolean case
captures the main difficulty of general Unique Games. If one were able to prove NP-hardness
of (1 − ε, 1 − Ω(

√
ε)) gap in the boolean case, the proof might likely extend to NP-hardness

of (1 − ε, 1 − K(F) ·
√
ε) gap for the general finite field case, where K(F) is a constant with

K(F) → ∞ as |F| → ∞. The latter result would then be enough, via parallel repetition, to
amplify the gap to (1 − o(1), o(1)) and prove the Unique Games Conjecture [41]! At present
however, we do not even know a (1 − ε, 1 − C · ε) gap with C → ∞, even for general Unique
Games, and even as Lasserre integrality gap. Hence, the weak UGC focuses on this “modest”
goal as opposed to the more ambitious NP-hardness result.

In order to rule out a time nd algorithm for unique games it suffices to show a size-2εn/d

reduction from a problem with a (conjectured) exponential lower bound 2εn (n is the input
size). The problem we focus on is kCSP(PHLin). In this problem one is given a set of boolean
variables together with arity-k constraints over them. Each constraint restricts its k variables to
lie in a certain linear subspace (specifically, the constraint is the hypergraph linearity predicate
used in [43]; see Definition 7). The goal is to find an assignment to the variables that satisfies
as many constraints as possible. Chan [12] showed that the (1− o(1), (1 + o(1))(k+ 1)/2k) gap
problem of kCSP(PHLin) is NP-hard. Tulsiani [48] showed hardness for the natural Lasserre
semidefinite program with linear number of rounds, even for random instances of kCSP(PHLin).

Definition 4 (Weak Unique Games Conjecture). For any C ≥ 1, any t ≥ 1, any sufficiently
small ε > 0, any ζ > 0 and any sufficiently large n ≥ 1, there is a reduction from size-n instances
of random kCSP(PHLin) with gap (1−o(1), (1+o(1))(k+1)/2k) to size-2ζn instances of Boolean
2LIN with gap (1−ε, 1−C ·ε). Furthermore, the reduction maps Ω(n)-round Lasserre solutions
of kCSP(PHLin) to t-round Lasserre solutions of Boolean 2LIN.

The weak Unique Games Conjecture has two implications: (1) It rules out polynomial-time
algorithms for the (1 − ε, 1 − C · ε) gap version of Boolean 2LIN under the assumption that
the appropriately gapped version of random kCSP(PHLin) requires exponential time. (2) Via
Tulsiani’s result [48], it rules out any constant round Lasserre-based algorithm for the (1−ε, 1−
C · ε) gap version of Boolean 2LIN.

In this paper we construct a candidate reduction towards a proof of the weak Unique Games
Conjecture. We show the completeness of the reduction, i.e., how assignments satisfying 1−o(1)
fraction of the constraints of kCSP(PHLin) translate to assignments satisfying 1−ε fraction of the

3



constraints of Boolean 2LIN. More than that, Ω(n)-round Lasserre solutions for kCSP(PHLin)
translate to t-round Lasserre solutions of Boolean 2LIN. We do not know how to prove the
soundness of the reduction, namely that assignments that satisfy at least 1−C ·ε fraction of the
equations of Boolean 2LIN translate to assignments that satisfy (1 + o(1))(k + 1)/2k fraction
of the constraints of kCSP(PHLin). However, we show soundness for a fairly general family of
assignments. Our analysis (or potentially a variant of it) might imply soundness in general, but
this depends on a solution to a certain question about Gaussian isoperimetry.

1.3 The Real Code and Gaussian Isoperimetry

Inapproximability reductions meant to prove the hardness of a certain target problem typically
follow these steps:

1. PCP Theorem [2, 1]: Start with a kCSP instance on variablesX and constraints C1, . . . , CM .
The PCP Theorem establishes the NP-hardness of approximating kCSP to within some
constant.

2. Parallel repetition [42]: Generate a new instance whose variables are sets of variables in
X, where each set induces several constraints from C1, . . . , CM . Constraints on the new
instance check consistency between sets that intersect in several variables. The parallel
repetition theorem shows that the new instance is harder to approximate.

3. Long Code [7, 23]: Replace each set with an encoding of its assignment via the long
code. Replace each constraint with constraints of the target problem over the long code
variables.

Inapproximability of unique games does not follow from this framework, since the long code
does not have a unique test for checking consistency between sets. In this work we suggest a
related framework in order to prove the weak Unique Games Conjecture. In this framework
one considers all sets of a certain large size (this is the reason that the reduction is nearly
exponential). The long code is replaced with a new code, the real code, that does have a unique
consistency test (see Section 1.4).

Unlike the long code, the real code no longer uses functions over the boolean hypercube
{−1, 1}n, but over Rn with the underlying space equipped with the standard Gaussian mea-
sure. The range of the functions is {−1, 1} still. Specifically, we use half-spaces (or rather a
“periodized” version of half-spaces1). For z ∈ R, define:

interval(z) =


+1 if z ∈ [2k, 2k + 1) for some k ∈ Z

−1 if z ∈ [2k − 1, 2k) for some k ∈ Z.

The real encoding of a string σ = (σ1, . . . , σn) ∈ {−1, 1}n is now defined as the function fσ :
Rn → {−1, 1}:

fσ(x) = interval

(
n∑
i=1

σi · xi

)
.

Borell [9] showed that half-spaces are the solutions to the isoperimetric problem in Gaussian
space. That is, among all sets of measure 1/2, half-spaces have the least surface area. This

1In the periodized version, adding 1 to any coordinate flips the sign of the function. This property is useful
for arguing that the function strongly depends on all its coordinates.
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suggests the following unique “noise test” for checking whether an odd function f : Rn →
{−1, 1}, f(−x) ≡ −f(x), is a half-space (or a real code function): pick Gaussian x ∈ Rn, and
pick a small Gaussian shift of x, which we denote x′ ∈ Rn. Check whether f(x) = f(x′). The
probability that the test rejects is roughly proportional to the surface area of the set f−1(1).
The oddness of the function guarantees that the set is of measure 1/2. Borell [10] shows that
half-spaces pass the test with maximal probability. Further work [19, 11, 14, 37, 38] establishes
that any odd function that passes the test with maximal probability, or even slightly less, must
be a half-space, except on a set of points of small measure. There are, however, odd functions
that are not even correlated with a half-space, yet pass the test with high probability. Consider,
for instance, the XOR of three far apart half-spaces. the probability that the XOR fails the test
is bounded by three times the probability that a single half-space fails the test. More generally,
we define real code juntas as follows:

Definition 5 (Real code junta). A real code junta is a function of the form

f(x) = G(fσ1(x), . . . , fσl(x))

where G : {−1, 1}l → {−1, 1} is a combining function on which each coordinate has constant
influence (i.e., for every 1 ≤ i ≤ l we have Ey−i [Varyi [GS(y1, . . . , yl)]] ≥ Ω(1)). The number l
is the size of the junta.

The probability that a real code junta fails the test is at most l times the probability that a
real code function fails the test. We show the soundness of our construction assuming that only
(approximate) real code juntas can be used in lieu of real code functions.

Theorem 1.1 (Main). Our reduction from random kCSP(PHLin) to Boolean 2Lin satisfies the
following:

1. Completeness: An assignment that satisfies 1 − o(1) fraction of the constraints of the
kCSP(PHLin) instance can be translated to an assignment that satisfies 1 − ε fraction of
the equations of the 2Lin instance.

2. Lasserre completeness: A vector solution to Ω(n)-round Lasserre for the kCSP(PHLin)
instance can be translated to a t-round Lasserre solution for 2Lin.

3. Restricted soundness: If there is no assignment to the kCSP(PHLin) instance that satisfies
(1 + o(1))(k + 1)/2k fraction of the constraints, then there is no assignment that satisfies
1 − C · ε fraction of the equations of the 2Lin instance while only using approximate,
O(1)-sized, real code juntas in lieu of real code functions.

Whether the weak Unique Games Conjecture could follow (either directly from our analysis
or from a strengthening of it) depends on whether the case addressed in our restricted soundness
is “essentially” the only case. The underlying mathematical question is of independent interest:

Robust Gaussian Isoperimetry: Which functions2 fail the noise test with prob-
ability only a constant times larger than a (periodized) half-space? Are functions
“influenced” by a constant number of (periodized) half-spaces the only such func-
tions?

2Among functions that satisfy f(−x1, . . . ,−xn) = −f(x1, . . . , xn) and f(x1, . . . , xi + 1, . . . , xn) =
−f(x1, . . . , xi, . . . , xn) for all x1, . . . , xn ∈ R and 1 ≤ i ≤ n.
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Without periodization, low degree polynomial threshold functions pass the noise test with prob-
ability not much larger than half-spaces [25]. We remark that our techniques apply even if the
function is correlated with a real code junta only after a random restriction of a constant fraction
of the coordinates.

It is interesting to note the analogy between real code testing and long code testing. The
long code consists of functions fi(x) = xi for 1 ≤ i ≤ n. It too has a unique test, obtained by
comparing f(x) = f(x′) where x is uniform in the boolean hypercube and x′ is obtained from
x by flipping each coordinate with a small probability. Long code functions depend only on a
single coordinate, and therefore pass the test with exceptionally high probability. Juntas, which
are functions that depend on a constant number of coordinates, fail the test with probability
that is only a constant times larger than that of long code functions. It is known [29, 18] that the
only functions that pass the test with high probability are those that have a constant number of
influential coordinates for an appropriate definition of influence. (In an amusing turn of events,
this is proved by drawing an analogy between functions with no influential coordinates over the
boolean hypercube and functions in Gaussian space, and relying on Borell’s theorem mentioned
above.)

1.4 The Real Code: Combining Advantages of Long Code and Hadamard

Inapproximability reductions typically either use the long code or use the Hadamard code (see,
e.g., [26]). The long code encodes an index i ∈ [n], or equivalently a log n bit string, as the
dictator function f(x1, . . . , xn) = xi defined over (x1, . . . , xn) ∈ {−1, 1}n. Hadamard code
encodes a string (σ1, . . . , σn) ∈ {−1, 1}n as the function f(x1, . . . , xn) =

∏
j:σj=−1 xj defined

over (x1, . . . , xn) ∈ {−1, 1}n. Evidently, the long code has a much worse rate than the Hadamard
code; that is, one encodes much less information using the long code compared to the Hadamard
code.

Unlike the long code, the Hadamard code does not have a unique local test (it is nevertheless
very useful in other applications, thanks to tests with three or more queries [8]). The reason is
simple: for any two distinct locations x, x′ ∈ {−1, 1}n, half of the legitimate Hadamard codes
satisfy f(x) = f(x′) and the remaining half satisfy f(x) 6= f(x′), and thus any unique local test
fails with probability 1

2 on some legitimate Hadamard code.
However, the Hadamard code has the following sub-code covering property: the Hadamard

code of a string (σ1, . . . , σn) is nearly uniformly covered by the Hadamard codes of its proper
substrings.3 This property is potentially useful as follows: an encoding of a set is nearly uni-
formly covered by the encodings of slightly smaller sets. Since the encodings of the smaller sets
are already “contained” in the encodings of the larger sets, only the latter explicitly appear in
the “PCP proof”, the former being “present implicitly”. Now, one may simply run a test (a

3Here is a more precise statement. Pick a random subset S ⊆ [n] of size (1 − δ)n and a random string
x′ ∈ {−1, 1}S ; define a string x ∈ {−1, 1}n by letting xj = x′j if j ∈ S and xj = 1 otherwise; then the distribution
of x is statistically close to uniform over {−1, 1}n (provided δ � 1√

n
, see [31]). Note that x denotes a typical

location in the Hadamard code of a string σ ∈ {−1, 1}n. The bit of the code at this location is
∏
j:σj=−1 xj and

since the coordinates of x outside S are set to 1, this bit depends only on the coordinates in S, i.e. on x′. On
the other hand, x′ denotes a typical location in the Hadamard code of the substring σ|S , i.e. σ restricted to S.
In this sense, the Hadamard codes of substrings of σ of length (1 − δ)n nearly uniformly cover the Hadamard
code of σ. The specific manner in which x is chosen can be restated as follows. Pick a random subset S ⊆ [n] of
size (1− δ)n; pick the coordinates in S uniformly at random from {−1, 1}; pick the coordinates outside S to be
“small” in value. In the boolean field {−1, 1}, “small” amounts to the value 1, i.e. a value that has no effect on
the bit of the code at location x.
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unique local test if one intends to show hardness of the Unique Games problem) on the encoding
of the larger sets. In the soundness analysis, one is able to “list-decode” this encoding. Since
the encoding is nearly uniformly covered by the encodings of smaller sets, essentially the same
list-decoding also serves as the list-decoding for smaller sets, leading to “consistent decodings”
on all sets, completing the soundness analysis. In [31], this recipe is demonstrated using the
Hadamard code. Therein the application is different (and not to the Unique Games problem,
since the Hadamard code does not have a unique local test).

The real code combines the advantages of both the long code (unique local test) and Hadamard
(sub-code covering property). We discussed the local test in the previous section. Moreover,
the real code has a property analogous to the sub-code covering property (see footnote for a
comparison with the Hadamard code). Pick a random subset S ⊆ [n] of size (1 − δ)n and a
random input x′ ∈ RS from the standard Gaussian measure; define an input x ∈ Rn by letting
xj = x′j if j ∈ S and a uniformly random number in [−δ, δ] otherwise; then x “looks like” an
input chosen from Rn with the standard Gaussian measure. The reason is that a typical input
chosen from Rn with the standard Gaussian measure does have a fraction δ of the coordinates
with magnitude O(δ) and so “looks like” the input x. Akin to the Hadamard code, the coordi-
nates of x outside S are small in value and do not influence much the bit of the real encoding
at location x.

Remark 1.1. In recent years, researchers suggested the “short code” (aka the “low degree long
code”) as a more efficient alternative to the long code [4, 16]. The short code has a unique test,
but does not have the sub-code covering property.

1.5 Soundness for Real Code Juntas

In this section we discuss what goes into the proof that our reduction is sound assuming that
the only functions used in lieu of the real code are (approximate) real code juntas.

Like most PCP constructions, our construction composes an outer construction with large
alphabet and an inner construction with binary alphabet. In our setup the outer construction
does not have the uniqueness property, while the inner construction does, therefore resulting in
a unique game. The key difficulty is that in our construction – unlike in standard constructions
– the inner construction leaks information about the outer construction. The outer construction
can be described as a direct product game. A verifier picks at random two sets over a known
universe such that the sets intersect. Each set is sent to a different player. Each player responds
with a label for each of the elements in its set. The verifier checks that the two players agree
on the intersection of the two sets. In the composed construction there is fS : Rn → {−1, 1}
for every set S ⊆ [N ], |S| = n. An outer verifier performs a direct product game with sets S,R
and the inner verifier queries different parts of fS , fR depending on the intersection S ∩R. List
decodings of fS , fR partition Rn in adversarial ways, and may therefore give information about
the intersection.

We present a general technique for handling direct product games with leakage, and show
that a direct product game with limited leakage (approximately) contains a slightly smaller
standard direct product game. In our analysis we build on information-theoretic ideas that
originated in the study of parallel repetition [42, 24]. Parallel repetition too can be viewed in
terms of games with leakage. There the leakage takes the form of the event that the two players
succeed in certain rounds, and the goal is to fix n− 1 elements such that the remaining element
is approximately unaffected by leakage. In our setup the leakage is more general and the goal
is to fix only a small fraction of elements.
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1.6 Approximate Real Linear Equations

An important intermediate point of our construction is the approximate real linear equations
problem. In this problem, one is given a system of linear equations over reals and each equation
is of the form:

k∑
j=1

bjyj = 0,

where bj ∈ {−1, 1} and yj are real variables. One wishes to satisfy the equations approximately,
and not necessarily exactly. Also, one wishes to assign at least a constant fraction of the variables
values that are at least a constant in magnitude (and so, one cannot “cheat” by assigning the
zero value to all the variables). Given a real valued assignment to the variables, the margin (or

the error) on a typical equation as above is
∣∣∣∑k

j=1 bjyj

∣∣∣ and the goal is to find an assignment

that (approximately) minimizes the average margin over all the equations. Note that, assigning
the variables yj random {−1, 1} values, one can always achieve a margin of O(

√
k) on average,

so the question is whether one can do better (and the answer is negative as explained next).
In analogy to the discrete case, we refer to the approximate real linear equations problem as

kLin(R). In the paper [30], the authors prove an optimal NP-hardness result for the problem
3Lin(R), i.e. even when each equation has only three variables. The authors show that when
an assignment with average margin ε exists, it is NP-hard to find an assignment with average
margin O(

√
ε), i.e. there is a quadratic gap. This is shown to be optimal in the sense that there

is a matching SDP algorithm (effectively a least square fit algorithm). In [30], the coefficients
bj in the equations are allowed to be in a bounded interval, as opposed to being {−1, 1}, but
this is a minor point. In the current paper, we show a reduction from random kCSP(PHLin) to
kLin(R), and reduce from kLin(R) to Boolean 2Lin.

1.7 Organization

We discuss constraint satisfaction problems, their Lasserre semidefinite programs, and Tulsiani’s
result in Section 2. We obtain the integrality gap for approximate real linear equations problem
in Section 3. We discuss the real code in Section 4, and how to incorporate constraint test in
the real code in Section 5. We show how to check consistency between real codes in Section 6.
The overall candidate integrality gap instance for the Boolean 2Lin problem is in Section 7, and
in Sections 8, 9 and 10 we prove soundness for real code juntas.
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Appendix

2 Constraint Satisfaction Problems and their Lasserre Semidef-
inite Programs

A predicate P : {−1, 1}k 7→ {0, 1} leads to a constraint satisfaction problem (CSP) as follows.
There are N variables taking values in {−1, 1} and M constraints, each defined on some (or-
dered) tuple of k variables. In a constraint, each variable first gets a {−1, 1} sign (“polarity”),
and then the predicate P is applied on the tuple of polarized variables:

Definition 6. For a predicate P : {−1, 1}k 7→ {0, 1}, an instance of CSP(P ) consists of N
variables x1, . . . , xN and M constraints C1, . . . , CM , where each constraint C is over a k-tuple
of variables {xi1 , . . . , xik} and is of the form P (b1xi1 , . . . , bkxik) where b1, . . . , bk ∈ {−1, 1}.

We overload notation by using C to denote a typical constraint, as well as the tuple of
variables appearing in it. For j ∈ [k], we let C[j] ∈ [N ] denote the index of the jth variable in
C and bC ∈ {−1, 1}k be a vector such that its jth coordinate bC [j] indicates the polarity of the
jth variable in C. For u, v ∈ {−1, 1}k, let u ◦ v ∈ {−1, 1}k denote the coordinate-wise product
of u, v. A random instance of CSP(P ) is one where the constraints are on randomly chosen
k-tuples of variables, and the polarities of variables are randomly chosen as well (independently
for occurrences in different constraints).

The optimization problem associated with CSP(P ) is to find an assignment to the variables
that satisfies the largest number of constraints. If Φ is an instance of CSP(P ), then we denote
the maximum number of satisfied constraints by OPT (Φ).

The t-round Lasserre semidefinite program for the CSP(P ) problem has a vector variable VS,α
for every set of variables S ⊆ [N ], |S| ≤ t, and an assignment α ∈ {−1, 1}|S| to the variables in
S. In the intended solution, VS,α is some (globally fixed) unit vector if S is assigned α, and is
the zero vector otherwise. If α1 ∈ {−1, 1}t1 is an assignment to a set S1 ⊆ [N ] of variables, and
α2 ∈ {−1, 1}t2 is an assignment to a set S2 ⊆ [N ] of variables, then we say that α1 and α2 agree
if they assign the same values to variables in S1 ∩S2; otherwise, we say that they disagree. The
Lasserre program attempts to maximize the number of satisfied constraints as reflected by the
vector variables, subject to consistency constraints on the variables:

Lasserre semidefinite program

max
M∑
i=1

∑
α∈{−1,1}k

P (α ◦ bC)‖VCi,α‖2

s.t.

Orthogonality : 〈VS,α, VS,β〉 = 0 ∀S, α 6= β (1)

Consistency : VS,α = VS∪{x},α∪{+1} + VS∪{x},α∪{−1} ∀S, α, x /∈ S (2)

Non− negativity : 〈VS,α, VT,β〉 ≥ 0 ∀S, T, α, β (3)

Normalization : ‖Vφ,φ‖2 = 1. (4)
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Local distributions: In any feasible solution to the semidefinite program, for every S, we
have ∑

β∈{−1,1}|S|
‖VS,β‖2 = 1.

Thinking of ‖VS,β‖2 as probabilities, a vector solution to the Lasserre semidefinite program
induces a distribution over assignments to S, referred to as the local distribution on S. In
particular, for each constraint C, one has a local distribution on assignments to that constraint.
Any set S ⊇ C induces a distribution over assignments to C by picking β ∈ {−1, 1}|S| with
probability ‖VS,β‖2 and restricting β to the variables in C. The feasibility of the solution ensures
that this induced distribution coincides with the local distribution on C.

Note that the objective function of the program, measuring the quality of the solution, de-
pends only on the local distributions. If one only has local distributions and consistency among
them, rather than vector solutions and consistency among them, one gets the so-called Sherali-
Adams linear programming relaxation. In the first reading, the reader might want to focus only
on the local distributions. We rely on a result of Tulsiani concerning CSPs with the following
linear predicate:

Definition 7. The Hypergraph Linearity Test Predicate: For k = 2s− 1, the hypergraph
linearity test predicate PHLin : {−1, 1}k 7→ {0, 1} is defined as follows. Index the k coordinates
by non-empty subsets A ⊆ [s] and assume w.l.o.g. that the first s coordinates correspond to
the singleton sets. Then x ∈ {−1, 1}k is a satisfying assignment of the predicate PHLin (i.e.,
PHLin(x) = 1) if and only if

xA =
∏
i∈A

x{i} ∀ 2 ≤ |A| ≤ s.

In other words, the satisfying assignments of the predicate are precisely the Hadamard codewords
and 2s = k + 1 in number.

Samorodnitsky and Trevisan [44] constructed a UGC-based PCP using the Hypergraph Lin-
earity Test Predicate, and Chan [12], in a recent remarkable result, constructed a similar PCP
without relying on the UGC. Regarding the Lasserre integrality gap, Tulsiani, building on the
works of Grigoriev and Schoenebeck [21, 45], shows the following (the statement is tailored to
our needs):

Theorem 8 (Tulsiani [48]). Let T be an arbitrarily large constant. Let Φ be a randomly chosen
instance of CSP(PHLin) with N variables and M = TN constraints for large enough (growing)
N . Let n0 = bηNc where η = 1

T 25 . Then with high probability over the choice of Φ:

1. Completeness: Φ has an n0-round Lasserre SDP solution with objective value M , where for
every constraint C, the local distribution on C is uniform over the satisfying assignments
to C (i.e. uniform over P−1

HLin(1) ◦ bC).

2. Soundness: OPT (Φ) ≤ (1 + o(1))k+1
2k
·M .

In the soundness case, note that since the hypergraph linearity test predicate has k+ 1 satis-
fying assignments, the expected number of constraints satisfied by a random {−1, 1} assignment
to the variables is ((k + 1)/2k) ·M . A standard argument shows that, with high probability
over the choice of the instance, no assignment satisfies a slightly larger fraction of constraints
(here the o(1) term becomes arbitrarily small as T increases). What is remarkable is that in the
completeness case, there is a SDP solution, up to a linear number of rounds of Lasserre, which
“pretends” that there is an assignment satisfying all the constraints.
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3 Lasserre Integrality Gap for Approximate Real Linear Equa-
tions

In this section, we construct a Lasserre integrality gap for approximate real linear equations
problem. The construction is essentially a re-interpretation of Tulsiani’s Lasserre integrality
gap for the hypergraph linearity test predicate, where we re-interpret a predicate over boolean
domain as an equation over reals with carefully chosen coefficients. As Tulsiani’s instance is a
random instance of CSP(PHlin), our integrality gap can be thought of as a random, or average-
case, analog of our NP-hardness result in [30].

Recall that the predicate PHLin : {−1, 1}k 7→ {0, 1} has exactly k + 1 satisfying assignments
and k = 2s − 1. It is easily verified that for any two distinct satisfying assignments a, b ∈
P−1
HLin(1), we have

∑k
j=1 ajbj = −1. Indeed, since the k co-ordinates are indexed by non-empty

subsets A ⊆ [s], for some distinct x, y ∈ {−1, 1}s, we have

k∑
j=1

ajbj =
∑

A⊆[s], A 6=φ

∏
i∈A

xi ·
∏
i∈A

yi = −1.

Let Φ be an instance of CSP(PHLin) with N variables and M constraints. A typical constraint is
denoted as C along with the vector bC of polarities. We construct a system of linear equations
over reals by replacing each constraint C by a set of k + 1 linear equations over reals, one
equation, as below, for each sign vector ε ∈ P−1

HLin(1):

k∑
j=1

εj · bC [j] · yC[j] = 0,

where y1, . . . , yN are real-valued variables. In the following, a constraint C will refer to the
constraint as in the CSP(PHLin) instance, and also to any of the k + 1 real linear equations
constructed from it. It should be clear from the context which is being referred to. We observe
that a uniformly random satisfying assignment to the constraint C (i.e. uniform in P−1

HLin(1)◦bC)
is, on average, a good assignment to each of the linear equations constructed from it, in terms
of the average `1 error (i.e. margin).

Fact 3.1. Let ε ∈ P−1
HLin(1) be any fixed sign vector. Then

E
α∈P−1

HLin(1)◦bC

∣∣∣∣∣∣
k∑
j=1

εj · bC [j] · αj

∣∣∣∣∣∣
 =

2k

k + 1
.

Proof. Substituting α = β ◦ bC above and canceling out the polarities, the expectation is

E
β ∈P−1

HLin(1)

∣∣∣∣∣∣
k∑
j=1

εj · βj

∣∣∣∣∣∣
.

Note that PHLin has k + 1 satisfying assignments. Out of these, there is one assignment that
equals ε and the inner sum equals k. For the remaining k assignments β 6= ε and the inner sum
equals −1 as observed before.
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Motivated by the observation that {−1, 1}-valued assignments to the variables suffice for
approximate satisfaction of the real linear equations we defined, we continue to refer to the
Lasserre semidefinite program we described before, which has a variable VS,α per set S of at
most t variables and per {−1, 1} assignment α to the variables in S. We keep the feasibility
conditions of this program, but drop the objective function (which talks about satisfying the
predicate PHLin).

Theorem 8 now directly implies our Lasserre integrality gap for approximate real linear equa-
tions problem, stated as Theorem 9 below. In the completeness part, we have a feasible vector
solution inducing local distributions that on average approximate each equation up to a margin
O(1). In the soundness part, we have that every boolean assignment to the variables has average
margin Ω(

√
k), averaged over all the equations.

Theorem 9. Let T be an arbitrarily large constant. Let Φ be a randomly chosen instance of
kLin(R) with N variables and M = TN constraints for large enough (growing) N , as described
above. Note that every equation is of the form

∑k
j=1 εj · bC [j] · yC[j] = 0. Let n0 = bηNc where

η = 1
T 25 . Then w.h.p. over the choice of Φ we have:

1. Completeness: Φ has an n0-round Lasserre SDP feasible solution, where for every con-
straint C, the local distribution is uniform on its satisfying assignments, i.e. P−1

HLin(1)◦bC .
In particular, for every sign vector ε ∈ P−1

HLin(1), when taking expectation over the local
distribution on C,

E
σ∈P−1

HLin(1)◦bC

∣∣∣∣∣∣
k∑
j=1

εj · bC [j] · σ(C[j])

∣∣∣∣∣∣
 =

2k

k + 1
≤ 2. (5)

2. Soundness: For some absolute constant c > 0, the following holds: for any global assign-
ment σ : [N ] 7→ {−1, 1}, for a c fraction of the equations (where an equation is specified
by constraint C and a sign vector ε), the margin is at least c ·

√
k, i.e.∣∣∣∣∣∣

k∑
j=1

εj · bC [j] · σ(C[j])

∣∣∣∣∣∣ ≥ c ·
√
k. (6)

Proof. The completeness part follows from Theorem 8 and Fact 3.1. The soundness part is
a standard probabilistic argument over the choice of the instance Φ: fix a global assignment
σ, fix the tuples of variables that appear in all the constraints, and consider the choice of the
polarities for all the constraints. Given a constraint C and a sign vector ε, over the choice of
random polarities bC [j], the sum

∑k
j=1 εj · bC [j] · σ(C[j]) is at least c ·

√
k in magnitude with

probability c for some absolute constant c > 0. Since the polarities are chosen independently
for different constraints and the number of constraints TN is large relative to the number of
variables N , one can apply Chernoff bound and a union bound.

Remark 3.1. (1) In the soundness case above, it is easy to extend the conclusion to all assign-
ments σ : [N ] 7→ R (as opposed to only boolean assignments σ : [N ] 7→ {−1, 1}) as long as σ
assigns, to a constant fraction of the variables, values that are at least a constant in magnitude.
(2) The gap (O(1), Ω(

√
k)) in the completeness versus the soundness case in Theorem 9 is our

starting gap. We re-emphasize some of the points mentioned before. Dividing by a normaliza-
tion factor of k, the gap here is (O( 1

k ),Ω( 1√
k
)), i.e., a quadratic gap. In [30], the authors indeed
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prove that it is NP-hard to distinguish such a quadratic gap even when equations involve three
variables. Thus Theorem 9 is the integrality gap analogue of NP-hardness result in [30]. The
authors therein propose that there may be a further reduction from the system of equations with
three variables (3Lin(R)) to a system of equations with two variables (2Lin(R)) and/or the
closely related Boolean 2Lin problem. This note may substantiate their proposal, albeit in the
context of Lasserre integrality gaps. We are at present unable to show soundness of our con-
struction. If the construction is sound and the techniques to analyze soundness are developed,
it may be possible to extend the integrality gap construction to a NP-hardness reduction.

4 The Real Code and the Gaussian Noise Test

The encoding scheme in our construction is the real code as explained in the introduction.
Recall that for some assignment σ : [n] 7→ {−1, 1}, its real code encoding fσ : Rn 7→ {−1, 1} is
supposed to be the interval function of σ. Specifically, defining for z ∈ R,

interval(z) =


+1 if z ∈ [2k, 2k + 1) for some k ∈ Z

−1 if z ∈ [2k − 1, 2k) for some k ∈ Z,
(7)

we let, with underlying standard Gaussian measure on Rn (denoted N n),

fσ(x) = interval

(
n∑
i=1

σ(i) · xi

)
. (8)

Let Φ be an instance of kLin(R) as in Theorem 9 along with the Lasserre SDP solution. For
every set S ⊆ [N ], |S| = n, our final construction has a copy of the “gadget” fS : Rn 7→ {−1, 1}
which is supposed to be the real encoding of the assignment to S. We use a standard PCP trick
called folding to enforce certain basic properties of fS :

Folding: The encoding f = fσ in Equation (8) satisfies

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) = −f(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn),

for any i ∈ [n] and x ∈ Rn. Moreover f is odd, i.e., f(−x) = −f(x) for any x ∈ Rn. By
using these identities for evaluating f , we can assume that the functions f in our Boolean 2Lin
instance always satisfy these identities.

Now we describe a test that checks that a given function f : Rn 7→ {−1, 1}, at least loosely
speaking, resembles an encoding of some assignment σ : [n] 7→ {−1, 1}, or more generally of
some reasonable assignment σ : [n] 7→ R. We call it the low boundary test. It fails with only a
small probability whenever f is indeed a correct encoding of a boolean assignment (there will
be more tests, namely a constraints test and a consistency test that will be added later). The
test below is applied on a given function f : Rn 7→ {−1, 1}. We think of the parameter α as
infinitesimally small.

Low Boundary Test with Parameter α

• Pick x,w ∈ N n independently and let y = (1−α)x+
√

2α− α2w (thus y is a α-perturbation
of x).
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• Reject if and only if f(x) 6= f(y).

Lemma 4.1. If f : Rn 7→ {−1, 1} is an encoding of a boolean assignment σ : [n] 7→ {−1, 1} as
in Equation (8), then f rejects the low boundary test with probability O(

√
αn).

Proof. This is because f , viewed as a partition of Rn, has a Gaussian boundary/surface-area
O(
√
n) and then one uses Corollary 14 in [35]. Alternately, it is easily seen that the two sums∑n

i=1 σ(i) · xi and
∑n

i=1 σ(i) · yi are typically spread over a band of width Θ(
√
n) around the

origin and typically differ by O(
√
αn). Thus the probability that the two sums lie in adjacent

odd/even intervals is O(
√
αn).

5 The Real Code Augmented with Constraint Test

We now augment the basic gadget with an additional test that allows for checking kLin(R)
constraints. Suppose that there is a constraint C ⊆ [n] of the kLin(R) instance of the form:

k∑
j=1

εj · bC [j] · yC[j] = 0.

For any such constraint C, let vC denote the unit vector in Rn that has
εj ·bC [j]√

k
in the position

C[j] and zero elsewhere. Let β be a parameter thought of as infinitesimally small.

The Constraint Test for a Given Constraint C and Parameter β

• Pick x, y ∈ Rn such that both x, y are distributed as N n and y = x + β`vC and ` ∼ N .
Specifically, x, y are picked by first selecting their common component orthogonal to vC
and then selecting their components along vC in a (1− β2

2 )-correlated manner.4

• Reject if and only if
f(x) 6= f(y). (9)

Note that x, y differ only on coordinates in C. Next we analyze the behavior of the test on
local distributions induced by the Lasserre SDP solution:

Lemma 5.1. Suppose an assignment σ : [n] 7→ {−1, 1} is sampled from the local distribution on
set S as given by the Lasserre SDP solution. Let C ⊆ [n] be a constraint with a corresponding
linear equation of the form

∑k
j=1 εj · bC [j] · yC[j] = 0. Then the average rejection probability of

the Constraint Test (w.r.t. constraint C) over the choice of σ is at most O( β√
k
).

Proof. Note that in the Lasserre solution, the restriction of σ to the constraint C is uniformly
distributed over the satisfying assignments to C. Hence, over the choice of σ,

k∑
j=1

εj · bC [j] · σ(C[j]) =


−1 with probability k

k+1

k with probability 1
k+1 .

(10)

4If y∗ and x∗ denote the components along vC , then this amounts to saying y∗ = (1− β2

2
)x∗ +

√
β2 − β4

4
w∗

for x∗, w∗ ∼ N . Thus y∗ − x∗ ∼ βN .
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In the first case, 〈σ,vC〉 = − 1√
k
, hence

〈σ, y − x〉 ∼ β√
k
N ,

and the Constraint Test (9) rejects with probability O( β√
k
). This is because the sums

∑n
i=1 σ(i)·

xi and
∑n

i=1 σ(i) · yi are spread over a band of width Θ(
√
n) around the origin, and their

difference is distributed as β√
k
N as shown. Thus the probability that the two sums lie in

adjacent odd/even intervals is O( β√
k
).

Similarly, in the second case, 〈σ,vC〉 =
√
k, hence

〈σ, y − x〉 ∼ β
√
k N ,

and the Constraint Test (9) rejects with probability O(β
√
k). Overall, the Constraint Test

rejects with probability O( β√
k
).

The constraint test examines the behavior of the function along a small number k of coordi-
nates among the n coordinates, whereas the low boundary test might be insensitive to changes
in such a small number of coordinates. This motivates a generalization of the low boundary test
which focuses on any given subset K of the coordinates (this generalization will also be a part
of our final construction). For x ∈ Rn, let xK denote the restriction of x to the coordinates in
K ⊆ [n], and let xK denote the restriction of x to coordinates in {1, . . . , n} \K. As before, we
think of the parameter α as infinitesimally small.

General Low Boundary Test with Parameter α on Subset K ⊆ {1, . . . , n}

• Pick x,w ∈ N n independently. Let yK = xK and yK = (1− α)xK +
√

2α− α2wK .

• Reject if and only if f(x) 6= f(y).

WhenK = {1, . . . , n}, this test is same as the low boundary test we defined before. Lemma 4.1,
analyzing the boundary test on the real code, continues to hold for any K ⊆ {1, . . . , n} with
the appropriate scaling:

Lemma 5.2. If f : Rn 7→ {−1, 1} is an encoding of a boolean assignment σ : [n] 7→ {−1, 1}
as in Equation (8), then f rejects the general low boundary test on subset K with probability
O(
√
α |K|).

6 The Consistency Test

Our proposed integrality gap instance for the Boolean 2Lin problem (in Section 7) has a block
of variables for every subset S ⊆ [N ], |S| = n, for an appropriate setting of the parameter n.
The variables correspond to points in Rn (discretized appropriately and weighed according to
the standard Gaussian measure). The variables are boolean and an assignment to the variables
in a block corresponds to a function fS : Rn 7→ {−1, 1}. For some global assignment τ : [N ] 7→
{−1, 1}, the function fS is intended to be the encoding of σ = τ |S as in Equation (8). On each
block, we are going to perform the two tests described so far. In addition, we need a test to
check consistency between different blocks (i.e., to check, in at least some loose sense, that the
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functions fS for different blocks are encodings of block assignments σ(S) that are consistent
across blocks, giving rise to consistent global assignment). We describe the consistency test
next.

Roughly speaking if there are two blocks S and R such that |S ∩ R| ≈ (1 − δ)n, then the
(intended) linear interval functions fS and fR are nearly the same and thus we may test that
this is indeed the case. We describe the test formally below. An absolutely crucial aspect of
the test is that the coordinates in S \R and R \ S are very small compared to the coordinates
in S ∩R.

The test has a parameter δ satisfying 1
n1/2 � δ � 1

n1/3 . It is not clear what the correct setting

should be. For now think of δ = 1√
n

. Let I = [−s, s] be an interval whose measure w.r.t. the

standard Gaussian is δ (and thus s ≈
√

2π δ
2). Let DI and DĪ denote the distribution of x ∼ N

conditional on being x ∈ I and x 6∈ I respectively.

Consistency Test with Parameter δ

Given functions {fS : Rn 7→ {−1, 1} | S ⊆ [N ], |S| = n}.

• Pick a set S ⊆ [N ], |S| = n at random.

• Pick U ⊆ S by including each element of S with probability 1−δ. Pick U ′ ⊆ S, |U ′| = n/2
at random. Pick R ⊆ [N ], |R| = n such that S ∩R = U ∪ (U ∩ U ′).

• Pick x ∼ D|U |
Ī

. Pick x′ ∼ D|U∩U
′|

I , yS , yR ∼ Dn−|U∪(U∩U ′|)
I independently. We think of

the coordinates of x, x′, yS , yR as indexed by the elements of U , U ∩ U ′, S \ (S ∩ R) and
R \ (S ∩R) respectively.

• Reject if and only if
fS(x, x′, yS) 6= fR(x, x′, yR).

Note that the distribution of both the queries (x, x′, yS) and (x, x′, yR) is precisely N n.
Moreover, note that (x, x′, yS) (similarly, (x, x′, yR)) does not give away S ∩R (S ∩R is known
to contain the large coordinates, but might contain other coordinates as well). We have the
following lemma regarding the rejection probability of the test when the functions fS and fR
are indeed encodings of consistent assignments.

Lemma 6.1. Suppose the functions fS and fR are encodings of assignments σ(S) : S 7→ {−1, 1}
and σ(R) : R 7→ {−1, 1} respectively such that σ(S)|S∩R = σ(R)|S∩R =: π. Then the failure
probability of the Consistency Test above is at most O(δ

√
δn) (which is � 1 by our choice of

δ � 1
n1/3 ).

Proof. We have:

fS(x, x′, yS) = interval

∑
i∈U

π(i) · xi +
∑

i∈U∩U ′
π(i) · x′i +

∑
`∈S\(S∩R)

σ(S)(`) · yS`

 .

fR(x, x′, yR) = interval

∑
i∈U

π(i) · xi +
∑

i∈U∩U ′
π(i) · x′i +

∑
`∈R\(S∩R)

σ(R)(`) · yR`

 .
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Note that the sums are spread over a band of width Θ(
√
n) around the origin whereas the

difference between the two sums is attributed to yS and yR and is typically O(δ
√
n−m) =

O(δ
√
δn) in magnitude. Therefore the two interval functions differ with probability O(δ

√
δn).

7 The Overall Construction

We are now ready to describe our proposed construction of the Boolean 2Lin integrality gap
instance. Let Φ be the instance of kLin(R) with N variables and M = TN constraints as in
Theorem 9. We think of k as a large constant, T as a constant large enough after choosing k
and N as a growing parameter. As we noted, every constraint C of Φ is a homogeneous linear
equation over reals:

k∑
j=1

εj · bC [j] · yC[j] = 0.

Let n = ζn0/(t logN) for n0 as in Theorem 9, a parameter ζ that dictates the size of the
construction and a parameter t which is the number of Lasserre rounds for the instance we
construct. As mentioned before, in our Boolean 2Lin instance, there is a block of variables for
every subset S ⊆ [N ], |S| = n. The variables correspond to points in the space Rn (discretized
appropriately) and an assignment to this block corresponds to a function fS : Rn 7→ {−1, 1}.
Note that the size of the construction is bounded by 2ζM .

Choice of Parameters: Let α, β be infinitesimally small, 1
n1/2 � δ � 1

n1/3 .

Test: Run the following three tests with appropriate probabilities:

(1a) Low Boundary Test with parameter α is carried out with probability proportional to 1√
αn

.

Pick a set S ⊆ [N ], |S| = n at random. Run the Low Boundary Test with parameter α on
fS .

(1b) General Low Boundary Test with parameter α is carried out with probability proportional
to 1√

αk
.

Pick a set S ⊆ [N ], |S| = n at random. Pick a constraint C ⊆ S at random (note that
|C| = k). Run the General Low Boundary Test with parameter α on subset C and fS .

(2) Constraint Test with Parameter β is carried out with probability proportional to 1
β/
√
k
.

Pick a set S ⊆ [N ], |S| = n at random. Pick a constraint C ⊆ S at random. Run the
Constraint Test for constraint C and parameter β on fS .

(3) Consistency Test with Parameter δ is carried out with probability proportional to 1
δ
√
δn
.

Remark 7.1. Note that the probability with which each test is performed is inversely propor-
tional to the rejection probability of the test in Lemmas [4.1, 5.2], 5.1 and 6.1 respectively. These
are the rejection probabilities in the “completeness case” (see below). Thus, in the complete-
ness case, the different tests contribute equally towards the overall rejection probability. In the
soundness case, it is enough to show that for any integral solution, for at least one of the tests,
the rejection probability is significantly larger than that in the completeness case.
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Next we describe how the n0-round Lasserre integrality gap for approximate real linear equa-
tions instance in Section 3 can be transformed into a feasible solution for t-rounds of Lasserre
SDP for our Boolean 2Lin instance. We also analyze the objective value achieved by the Lasserre
solution.

Let {VS,α} be the vector solution for approximate real linear equations instance. Let us
denote the vector solution for our Boolean 2Lin instance by {UT,β}. Let T be a set of at most t
variables from the Boolean 2Lin instance. Let the ith variable in T correspond to a pair (Si, xi)
where Si ⊆ [N ], |S| = n and xi ∈ Rn, i.e. the variable appears in the block Si and corresponds

to the point xi ∈ Rn in that block. Let S =
⋃|T |
i=1 Si, so that |S| ≤ t · n = n0. The set S will

be referred to as the super-block corresponding to set T . The main observation is that every
assignment α ∈ {−1, 1}|S| to the variables in S induces an assignment α(T ) ∈ {−1, 1}|T | for
the variables in T as follows: an assignment α ∈ {−1, 1}|S| induces, by restriction, assignments
σi : Si 7→ {−1, 1} to the blocks, which in turn induce assignments fσi(xi) to the points xi ∈ Rn
via the encodings fσi : Rn 7→ {−1, 1}. This yields the induced assignment α(T ) is claimed.
With this observation in mind, for every β ∈ {−1, 1}|T |, let

UT,β =
∑

α:α(T )=β

VS,α.

For every T , by orthogonality,∑
β∈{−1,1}|T |

‖UT,β‖22 =
∑

β∈{−1,1}|T |

∑
α:α(T )=β

‖VS,α‖22 =
∑
α

‖VS,α‖22 = 1.

The local distributions associated with {UT,β} assign β to T with probability ‖UT,β‖22. As
we show below, the consistency conditions of the solution {UT,β} follow from the consistency
conditions of the solution {VS,α}.

Orthogonality: Let T be a set of at most t variables from our Boolean 2Lin instance. Let
β1 ∈ {−1, 1}|T |, β2 ∈ {−1, 1}|T | be distinct assignments to the variables of T . Let S ⊆ [N ] be
the super-block associated with T . For every assignments α1, α2 to S such that α1(T1) = β1 and
α2(T2) = β2, it holds that α1, α2 disagree. Hence, from the feasibility of the original solution,
〈VS,α1 , VS,α2〉 = 0. Therefore,

〈UT,β1 , UT,β2〉 = 〈
∑

α1:α1(T )=β1

VS,α1 ,
∑

α2:α2(T )=β2

VS,α2〉

=
∑

α1:α1(T )=β1

∑
α2:α2(T )=β2

〈VS,α1 , VS,α2〉

= 0.

Consistency: Let T be a set of at most t− 1 variables from the Boolean 2Lin instance. Let
p /∈ T be an additional variable. Let S, S+ ⊆ [N ] be the super-blocks associated with T and
T ∪ {p} respectively. Note that either S+ = S or S+ = S ∪ S′ for some S′ ⊆ [N ], |S′| = n. If
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S+ = S, then

UT,β =
∑

α:α(T )=β

VS,α

=
∑

α:α(T∪{p})=β∪{+1}

VS,α +
∑

α:α(T∪{p})=β∪{−1}

VS,α

= UT∪{p},β∪{+1} + UT∪{p},β∪{−1}.

If S+ = S ∪ S′, then

UT,β =
∑

α:α(T )=β

VS,α

=
∑

α:α(T )=β

∑
α′

VS∪S′,α∪α′

=
∑

α:α(T )=β

∑
α′:α′(p)=+1

VS∪S′,α∪α′ +
∑

α:α(T )=β

∑
α′:α′(p)=−1

VS∪S′,α∪α′

= UT∪{p},β∪{+1} + UT∪{p},β∪{−1}.

Non-negativity: For any sets T1, T2 of up to t variables and assignments β1, β2 to them,
letting S1, S2 be the super-blocks associated with them, we have,

〈UT1,β1 , UT2,β2〉 = 〈
∑

α1:α1(T1)=β1

VS1,α1 ,
∑

α2:α2(T2)=β2

VS2,α2〉

=
∑

α1:α1(T1)=β1

∑
α2:α2(T2)=β2

〈VS1,α1 , VS2,α2〉 ≥ 0.

Completeness: The completeness of our construction follows from the completeness of the
approximate real linear equations instance in Theorem 9, and Lemmas [4.1, 5.2], 5.1 and 6.1
analyzing the boundary, constraint and consistency tests, respectively. We elaborate a bit more.

Consider a hypothetical scenario that the instance in Theorem 8 and Theorem 9 has a per-
fectly satisfying (global) assignment. Considering its restrictions to blocks, we have: (1) for
each block S, an assignment σ(S) such that (2) σ(S) satisfies all the constraints C that appear
inside S and (3) the assignments σ(S) and σ(R) for any two blocks are consistent, i.e. they
agree on S ∩R. In this scenario, letting each function fS to be the correct encoding fσ(S), the
failure probability of all the tests is bounded as in Lemmas [4.1, 5.2], 5.1 and 6.1.

Of course, the instance in Theorem 8 and Theorem 9 is highly unsatisfiable and the scenario
is impossible. Still, the main point is that the Lasserre SDP solution to the instance effectively
pretends that the hypothetical scenario holds. Namely, we have (1) for each block S, a set of
assignments σ(S) (the “local” distribution is uniform on this set) such that (2) every assignment
σ(S) satisfies all the constraints C that appear inside S and (3) sampling a random assignment
τ for the block S ∪ T and letting σ(S) = τ |S and σ(R) = τ |R yields assignments to blocks S
and R that are consistent.

Moreover, there are vectors VS,σ(S) that satisfy all the Lasserre feasibility conditions. Now,
to each block S, instead of assigning an encoding fσ(S) : Rn 7→ {−1, 1}, we effectively assign a
“vector super-position” of such encodings, informally written as∑

σ(S)

fσ(S) · VS,σ(S).
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To be precise, if a typical variable in the Boolean 2Lin instance is denoted by a pair (S, x), then

U(S,x),{+1} =
∑

σ(S):fσ(S)(x)=+1

VS,σ(S),

U(S,x),{−1} =
∑

σ(S):fσ(S)(x)=−1

VS,σ(S).

We need to show that the SDP solution achieves an objective value that is same as the failure
probability of the tests in Lemmas [4.1, 5.2], 5.1 and 6.1. We demonstrate this for the low
boundary test (i.e. Lemmas [4.1) and the others are treated similarly.

The low boundary test (for some fixed block S) picks two points x, y ∈ Rn and rejects
if fS(x) 6= fS(y). The analogue of the rejection probability from the viewpoint of the SDP
objective is

‖U{(S,x),(S,y)},{+1,−1}‖2 + ‖U{(S,x),(S,y)},{−1,+1}‖2,
or more precisely, the expectation of this expression over the choice of x and y. Using the
feasibility conditions, this is same as

〈U(S,x),{+1}, U(S,y),{−1}〉+ 〈U(S,x),{−1}, U(S,y),{+1}〉.

Using the expression for the vector U(S,x),{+1} and others as observed, this is same as∑
σ(S):fσ(S)(x) 6=fσ(S)(y)

‖VS,σ(S)‖2.

Taking the expectation over the choice of x and y, the SDP objective is∑
σ(S)

‖VS,σ(S)‖2 · Pr
x,y

[
fσ(S)(x) 6= fσ(S)(y)

]
.

Now we observe that
∑

σ(S) ‖VS,σ(S)‖2 = 1 and Prx,y
[
fσ(S)(x) 6= fσ(S)(y)

]
is the rejection prob-

ability of the test as in Lemma 4.1.

Soundness road map: In the next few sections we analyze the soundness of the construction
for (approximate) real code juntas. We start by proving several information theoretic lemmas
in Section 8. Then we analyze direct product testing in the presence of leakage in Section 9.
Finally, we derive the soundness proof for (approximate) real code juntas in Section 10.

8 Information Theoretic Lemmas

8.1 Extractors

Definition 10 (Min entropy). A distribution P over a space U has min-entropy k if the maxi-
mum probability P (u) over u ∈ U is 2−k.

Definition 11 (Extractor). A bipartite graph G = (A,B,E) is a (δ, ε)-extractor if for every
distribution PA over A with min-entropy at least log(δ |A|) the distribution induced on Y by
picking a ∼ PA and a uniform neighbor of a is ε-close to uniform over B.

Lemma 8.1. Let 0 < ε < 1. Consider the bipartite graph that has on one side all sets S ⊆ [N ],
|S| = n, and on the other side all M constraints. A set is connected to all the constraints it
contains. Then, the graph is an ((1/ε)·2−ε2n/k, O(ε))-extractor (k is the arity of the constraints).
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8.2 Basic Facts From Information Theory

The informational divergenceD(Y ||X) of two random variables Y,X over a space U isD(Y ||X)
.
=∑

u∈U Pr [Y = u] log Pr[Y=u]
Pr[X=u] . The convention is that log(0/0) = 0, whereas if there exists u ∈ U

such that Pr [X = u] = 0 and Pr [Y = u] > 0, then D(Y ||X) =∞.

Lemma 8.2. If X1, . . . , Xn are independent random variables, and Y1, . . . , Yn are any random
variables, then ∑

i

D(Yi||Xi) ≤ D(Y1, . . . , Yn||X1, . . . , Xn).

Lemma 8.3. If E is an event with probability at least 2−d, X is a random variable, and
X ′ = X|E, then

D(X ′||X) ≤ d.

Lemma 8.4.
|Y −X|1 ≤

√
2 ln 2 ·D(Y ||X).

8.3 A Couple of Lemmas

The setup for the next couple of lemmas is as follows. Let n ≥ k ≥ 1 be natural numbers. Let
d ≥ 1. Let b1, . . . , bn be binary i.i.d random variables. Let E be an event that depends only on
b1, . . . , bn and such that Pr [E] ≥ 2−d. For S ⊆ [n] letBS = {bi | i ∈ S} andB′S = {bi | i ∈ S} |E.

Lemma 8.5. Pick S ⊆ [n], |S| = k, uniformly at random. Then,

E
S

[∣∣B′S −BS∣∣1] ≤
√

2 ln 2 · dk
n

.

Proof. Applying Lemma 8.4 and convexity,

E
S

[∣∣B′S −BS∣∣1] ≤ E
S

[√
2 ln 2 ·D(B′S ||BS)

]
≤
√

2 ln 2 ·E
S

[
D(B′S ||BS)

]
.

We can pick S by first picking a partition (S1, . . . , Sn/k) of [n] into parts of size k, and then
picking one of the part of S. Hence,

E
S

[
D(B′S ||BS)

]
= E

S1,...,Sn/k

[
k

n

∑
i

D(B′Si ||BSi)

]
.

By linearity of expectation and Lemma 8.2,

E
S1,...,Sn/k

[
k

n

∑
i

D(B′Si ||BSi)

]
≤ k

n
· E
S1,...,Sn/k

[
D(B′S1

· · ·B′Sn/k ||BS1 · · ·BSn/k)
]
.

By Lemma 8.3,
k

n
· E
S1,...,Sn/k

[
D(B′S1

· · ·B′Sn/k ||BS1 · · ·BSn/k)
]
≤ dk

n
.

The lemma follows by combining all of the above.
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Lemma 8.6. Let V be a random variable such that b1, . . . , bn are independent conditioned on
V = v for every v. Pick S ⊆ [n], |S| = k, uniformly at random. Then,

E
S

[
E
v|E

[|BS |(V = v,E)−BS |(V = v)|1]

]
≤
√

2 ln 2 · dk
n

.

Proof. By linearity of expectation, Lemma 8.5 and convexity arguments,

E
S

[
E
v|E

[|BS |(V = v,E)−BS |(V = v)|1]

]
= E

v|E

[
E
S

[|BS |(V = v,E)−BS |(V = v)|1]

]

≤ E
v|E

[√
2 ln 2 · k

n
· log

(
1

Pr [E|V = v]

)]

≤

√√√√2 ln 2 · k
n

· log

(
E
v|E

[
Pr [V = v]

Pr [E] · Pr [V = v|E]

])

=

√
2 ln 2 · k

n
· log

(
1

Pr [E]

)
≤

√
2 ln 2 · dk

n

8.4 Correlated Sampling

Correlated sampling [34, 24] is a protocol for two non-communicating players with access to
shared randomness to pick a common element from a space U with high probability, where the
first player has a distribution D1 over U , the second players has a distribution D2 over U , and
|D1 −D2|1 ≤ ε. This is done by using the shared randomness to specify a sequence of pairs
(u, p) ∈ U× [0, 1]. Each player scans the sequence and outputs the first u such that p is bounded
by u’s probability according to its distribution. The probability that the two players output
different u’s is most ε.

9 Direct Product Game With Leakage

9.1 Direct Product With Nearly Identical Sets

Let U be a set of elements, n be a natural number, and 0 < δ, q < 1. We define the n-direct
product game as follows. A verifier picks a set S ⊆ U , |S| = n, uniformly at random, and
a sequence of n bits, b1, . . . , bn ∈ {0, 1}. We have bi = 1 with probability δ independently.
The verifier orders the n elements in S in some arbitrary fashion. The verifier constructs a set
R ⊆ U , |R| = n, by picking for every 1 ≤ i ≤ n such that bi = 1 a uniform ui ∈ U , and picking
the i’th element of S for every 1 ≤ i ≤ n such that bi = 0. One player receives S, and the other
player receives R. Each player responds with n bits one for each element in its set. The verifier
picks each element in S ∩ R with probability q. The players are said to q-win if the bits they
assign to the elements picked by the verifier are the same. The strategy of the players is given
by functions A,B :

(
U
n

)
→ {−1, 1}n.
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Observe that the players can agree on an element in their intersection with probability 1 −
δ, and can devise their assignments depending on the said element. Direct product testing
theorems show that for a small random set S0 ⊆ U of elements and an assignment to them
s0 : S0 → {−1, 1}, the players’ strategy on sets that contain S0 and on which the players agree
on assignment s0 to S0 is mostly consistent with a single function FS0←s0 : U → {−1, 1}.

In this work δ is very small, and hence the two sets S,R are nearly identical. Previous work
on direct products analyzed the case of δ which is a large constant, but it can be extended to
the nearly identical case.

Theorem 12 (Direct Product Testing with Nearly Identical Sets [17, 36, 15]). For every 0 <
η < 1 there exists 0 < η′ < 1, such that the following holds. Consider a strategy A,B :

(
U
n

)
→

{−1, 1}n of the players that 1/2-wins with probability at least 2−δη
′n. Let S0 ⊆ U , |S0| = ηn, be

a random set and let s0 : S0 → {−1, 1}.
There exists FS0←s0 : U → {−1, 1} such that when picking uniformly S ⊇ S0, |S| = n,

such that A(S)|S0
= s0, the probability that for a random element x ∈ S − S0 it holds that

A(s)(x) = FS0←s0(x) is at least 1− η.

9.2 Direct Product With Leakage

The n-direct product game with d-leakage extends the n-direct product game. A verifier picks
a set S ⊆ U , |S| = n, uniformly at random, and a sequence of n bits, b1, . . . , bn ∈ {0, 1}. We
have bi = 1 with probability δ independently. The verifier also picks uniformly a set T ⊆ [n],
|T | = n/2. The verifier picks a random order on the elements and sorts the n elements in S.
The verifier constructs R ⊆ U , |R| = n, by picking for every i ∈ T such that bi = 1 a uniform
ui ∈ U , and picking the i’th element of S for every 1 ≤ i ≤ n such that bi = 0 or i /∈ T . The
first player receives S, and the second player receives R. In addition to S,R, the players are
provided with additional information in the form of leakage y that depends on b1, . . . , bn but
does not depend on T . The min-entropy of y is at most d. It is guaranteed that the distribution
of b1, . . . , bn conditioned on y and S is the same as the distribution of b1, . . . , bn conditioned on
y and R. Each player responds with n bits, one for each element in its set. The verifier picks
each elements in S ∩R with probability q. The players are said to q-win if the bits they assign
to the elements picked by the verifier are the same.

Even with leakage, no player knows for sure which of the n elements in its set also appears
in the other player’s set. Each player may have information on which elements are more likely
to appear in the other player’s set, as well as on which elements definitely do not appear in the
other player’s set.

We’ll show that players that win the n-direct product game with d-leakage also win a certain
Ω(n)-direct product game.

Lemma 9.1. A strategy that q-wins an n-direct product game with d-leakage with probability at
least p has a sub-strategy that q-wins the k-direct product game with probability at least p−O(ε),

where ε =
√

2 ln 2·dk
n/2−k .

Proof. We obtain a strategy for the k-direct product game from a strategy for the n-direct
product game with d-leakage by presenting an embedding of the k-direct product game inside
the n-direct product game with d-leakage. In the sequel S and R are the sets in the n-direct
product game with d-leakage and y is the leakage.
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• The players use shared randomness to fix a value to y. Let E be the event that y is as
fixed. Note that Pr [E] ≥ 2−d.

• The players pick uniformly at random I ⊆ {1, . . . , n}, |I| = k. Let SI , RI be the elements
of S,R in positions I, respectively. By Lemma 8.5, the expected distance between SI , RI |E
and the elements picked in the k-direct product game is bounded by ε.

• By Markov inequality, for a large fraction of the I’s, we have that SI , RI |E are O(ε)-close
to the distribution in a k-direct product. We will focus on such I’s. Each player embeds
the k elements from the k-direct product game in positions I.

In the sequel we will further restrict our choice of I, each time maintaining the probability that
an appropriate I exists positive. It remains to show that the players of a k-direct product game
can jointly sample the rest of the sets for the n-direct product game with leakage. Crucially, the
elements in positions {1, . . . , n} − I may be dependent on the elements in positions I given E.
In particular, {bi | i ∈ I}, which is determined by the elements that the players so far picked, is
unknown to any of the players, yet might be dependent on {bi | i /∈ I} given E. This may result
in correlations within {bi | i /∈ I} given what was so far decided that are unknown to any of the
players. To the rescue comes T that picks at random half of the positions as definitely common
to the two players and “breaks” the unknown correlations.

• The players use shared randomness to agree on T − I. The set T − I contains all the
indices outside I where S and R do not share common variables (and other indices as
well).

• Recall that we are guaranteed that {bi | i ∈ T − I} |(SI , E) is distributed the same as
{bi | i ∈ T − I} |(SI , RI , E) and as {bi | i ∈ T − I} |(RI , E).

• By Lemma 8.6, we have that {bi | i ∈ T − I} |(SI , RI , E) is ε-close in expectation to
{bi | i ∈ T − I}. We focus on I such that there is O(ε)-closeness. The players can use
correlated sampling to agree on {bi | i ∈ T − I} conditioned on all their choices so far.

Next the players agree on the elements in positions {1, . . . , n} − I. As we mentioned above,
the elements in positions {1, . . . , n} − I may depend on the elements in positions I given E.
The key observation is that each of the players has essentially all the information about the
elements in their set in positions {1, . . . , n} − I.

• Let RI , SI be the elements in positions {1, . . . , n}−I in R,S, respectively. By Lemma 8.6,
RI |(SI , SI , E) is ε-close in expectation to RI |SI . We focus on I’s in which O(ε)-closeness
holds.

• Hence, SI |(SI , RI , E) is O(ε)-close in expectation to SI |(SI , E):

E
sI,sI ,rI

[
Pr
[
SI = sI |SI = sI ∧RI = rI , E

]]
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= E
sI,sI ,rI

[
Pr
[
SI = sI ∧ SI = sI ∧RI = rI |E

]
Pr [SI = sI ∧RI = rI |E]

]

= E
sI,sI ,rI

[
Pr
[
RI = rI |SI = sI ∧ SI = sI , E

]
· Pr

[
SI = sI ∧ SI = sI |E

]
Pr [SI = sI ∧RI = rI |E]

]

≤ E
sI,sI ,rI

[
Pr [RI = rI |SI = sI ]

Pr [SI = sI ∧RI = rI |E]
· Pr

[
SI = sI ∧ SI = sI |E

]]
+O(ε)

= E
sI,sI ,rI

[
Pr [RI = rI ∧ SI = sI ]

Pr [SI = sI ∧RI = rI |E]
·

Pr
[
SI = sI ∧ SI = sI |E

]
Pr [SI = sI ]

]
+O(ε)

≤ E
sI,sI ,rI

[
Pr
[
SI = sI |SI = sI , E

]]
+O(ε)

The first inequality follows since RI |SI , SI , E is O(ε)-close to RI |SI . The second inequality
follows since RI , SI |E is O(ε)-close to RI , SI .

• This means that the first player, who knows SI and E, but does not know RI , can
approximately sample SI . Similarly, RI |(RI , SI , E) is O(ε)-close to RI |(RI , E), so the
second player, who knows RI and E, but does not know SI , can approximately sample
RI . Moreover, the players can jointly sample SI , RI (recall that SI , RI are correlated).
The players already agreed which elements they have in common. Therefore, they can use
correlated sampling to pick RI and SI .

10 Soundness for Approximate Real Code Juntas

We consider strategies that correspond to a list decoding of the real code. Recall that the real
code consists of the functions

fσ(x) = interval

(
n∑
i=1

σ(i) · xi

)
.

The fσ’s all satisfy the folding constraints and pass the low boundary test with high probability
1− O(

√
αn). However, these are not the only functions with this property. For three different

σ1, σ2, σ3 ∈ {−1, 1}n, take fσ1⊕fσ2⊕fσ3 . This function too satisfies folding, and the probability
that the low boundary test rejects it is at most three times the probability that it rejects a single
linear interval function. Note that unlike in the standard coding theoretic sense, fσ1 ⊕ fσ2 ⊕ fσ3
has no correlation with any single linear interval function. In this section we handle functions
like fσ1 ⊕ fσ2 ⊕ fσ3 that correspond to a “list decoding” of the real code.

Definition 13. An (l, γ)-list decoding strategy is as follows. For at least 1 − γ fraction of the
sets S ⊆ [N ], |S| = n, there are is a real code junta JS : Rn → {−1, 1} depending on at most l
real code functions, such that Prx [fS(x) = JS(x))] ≥ 1− γ.

Remark 10.1. Without loss of generality, we assume that for every S and 1 ≤ i 6= j ≤ l, if
fσS,i and fσS,j are the i’th and the j’th real code functions in JS, then the vectors σS,i and σS,j
disagree on at least Ω(γ/l2) fraction of the coordinates (if this is not the case, one can remove
one of σS,i, σS,j, adapt GS to use the other instead, and introduce only O(γ) approximation
error overall).
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The outcome of fσS,1(x), . . . , fσS,l(x) can give information on which are the small coordinates
of x (e.g., if x1 ≥ x2 ≥ x3 ≥ · · · ≥ 0, then it’s quite likely that x1 is large). The identity of the
small coordinates leaks information about which R’s could have been picked in the consistency
test together with S. We use our analysis of the direct product game with leakage to show that
for a random Φ the rejection probability for any (l, γ)-list decoding strategy is much higher than
the rejection probability in the completeness case.

Theorem 14 (Soundness for list decoding strategies). Let 0 < γ < 1/4 be a constant and let
l ≥ 1 be a constant. Assume β � 1. Let δ

√
δ � ε � δ. With high probability over Φ, for any

(l, γ)-list decoding strategy, at least one of the two holds:

1. The consistency test rejects with probability at least Ω(
√
εn) (where the rejection probability

in the completeness case is O(δ
√
δn)).

2. The constraint test rejects with probability at least Ω(β) (where the rejection probability in
the completeness case is O(β/

√
k)).

Proof. Fix an assignment to our gap instance such that the probability that the consistency test
rejects is o(

√
εn). One can view the consistency test as comprising an outer verifier that picks

sets S,R as in the n-direct product game, and an inner verifier that picks queries (x, x′, yS)
and (x, x′, yR) to fS , fR, respectively. Except with probability 2γ there are list decodings
σS,1, . . . , σS,l and σR,1, . . . , σR,l. Let the leakage specify the information that fσS,1 , . . . , fσS,l and
fσR,1 , . . . , fσR,l convey on the identity of the small coordinates. The min-entropy of the leakage
is bounded by a constant since l and γ are constants (see Remark 10.1). Let the answers
A(S), B(R) of the players be random σS,i, σR,j respectively from each of their lists.

Suppose that for every 1 ≤ i, j ≤ l it holds that σS,i, σR,j disagree on at least εn elements in
the intersection S ∩R. In this case, since δ

√
δ � ε, the consistency test rejects with probability

at least Ω(
√
εn). By our assumption, this happens with probability at most o(1).

In contrast, if there exists 1 ≤ i, j ≤ l such that σS,i, σR,j disagree on at most εn elements in
the intersection S ∩ R, then the probability of 1/2-win in the direct product game is at least
(1/l2) ·2−εn ≥ 2−o(δn). Overall, the probability of 1/2-win is at least 2−o(δn). By Lemma 9.1 and
Theorem 12, for a random set S0 ⊆ [N ] of fraction |S0| /n that is sufficiently small with respect
to γ, 1/l and k the arity of the constraints, and for s0 : S0 → {−1, 1} there exists FS0←s0 :
[N ] → {−1, 1} such that when picking uniformly S ⊇ S′ ⊇ S0, |S| = n, |S′| = Ω(n) (where
the constant in the Ω(·) depends on l and γ), with A(S)|S0

= s0, we have A(s)(x) = FS0←s0(x)
for at least 1 − c/100k fraction of x ∈ S′ − S0 (where c is a small constant; see below). We
focus on S, S′, S0 and s0 such that the probability that the constraint test fails conditioned on
S ⊇ S′ ⊇ S0, A(S)|S0

= s0 and the constraint being contained in S′ − S0, is at most a constant
times larger than the probability the constraint test fails in general. Let UNSAT ⊆ [M ] specify
those real linear equations whose margin under the assignment FS0←s0 is at least c ·

√
k. We

know that |UNSAT | ≥ c ·M with high probability. Let us focus on this event. By Lemma 8.1,
when picking uniformly S ⊇ S′ ⊇ S0 as above, and a constraint in S′ − S0, there is a constant
probability that all of the following occur:

• The constraint is in UNSAT .

• S has a list decoding fσS,1 , . . . , fσS,l , and A(S) = σS,i for a uniform i ∈ {1, . . . , l}.

• The A(S) assignment to all the variables in the constraint agrees with FS0←s0 .
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When the above items hold, the constraint test rejects fσS,i with probability at least Ω(β). Since
β � 1, and σS,1, . . . , σS,l are sufficiently far apart, it is likely that only one of fσS,1 , . . . , fσS,l
changes as a result of the shift of the constraint test. Hence, the constraint test rejects fS with
probability at least Ω(β). Overall, the probability that the constraint test rejects is at least
Ω(β).
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