
Alcoa: The Alloy Constraint Analyzer
Daniel Jackson, Ian Schechter and Ilya Shlyakhter

Laboratory for Computer Science
Massachusetts Institute of Technology

dnj@lcs.mit.edu

ABSTRACT

Alcoa is a tool for analyzing object models. It has a range of
uses. At one end, it can act as a support tool for object
model diagrams, checking for consistency of multiplicities
and generating sample snapshots. At the other end, it
embodies a lightweight formal method in which subtle
properties of behaviour can be investigated.

Alcoa’s input language, Alloy, is a new notation based on
Z. Its development was motivated by the need for a notation
that is more closely tailored to object models (in the style of
UML), and more amenable to automatic analysis. Like Z,
Alloy supports the description of systems whose state
involves complex relational structure. State and behavioural
properties are described declaratively, by conjoining
constraints. This makes it possible to develop and analyze a
model incrementally, with Alcoa investigating the
consequences of whatever constraints are given.

Alcoa works by translating constraints to boolean
formulas, and then applying state-of-the-art SAT solvers. It
can analyze billions of states in seconds.

KEYWORDS

Object models, relational logic, constraint satisfaction,
model checking, formal specifications, software analysis.

1 LANGUAGE FEATURES

Much of the novelty of Alcoa, in comparison to other
analyzers, arises from two key features of its input language,
Alloy [8].

First, Alloy is relational: its underlying data structures are

sets and relations. This makes it easy to describe structures
such as file systems, architectural topologies, naming
schemes, etc. While relational structures can often be
encoded with primitive datatypes, such as arrays and
records, they can be expressed more succinctly, and
analyzed more effectively, when relational notions are built-
in. For example, in a file system description, the Alloy
expression Root.*children & Dir might describe the set of
directory objects reachable from the root directory. In
languages without explicit support for relations, such a
notion—if expressible at all—would require an explicit
algorithm for computing the transitive closure.

Second, Alloy is declarative: the model is built by layering
properties using conjunction, in contrast to operational
languages in which the model is given by an abstract
program. This allows partial models to be built, in which
constraints describe how state components are related to
one another, without explicit rules for how each component
is updated. An Alloy model can thus be developed
incrementally, using Alcoa at each step to investigate the
consequences of constraints already given.

The reader might reasonable wonder why a new language
was necessary. In short, by designing a language with
analysis in mind, it was possible to offer a coherent
collection of features that fit together in a simple manner.
Defining a subset of a language such as Z [18], in contrast,
would yield a language with ad hoc restrictions. Moreover,
existing languages do not offer adequate hooks for tool
support: Z, for example, does not distinguish syntactically
amongst definitions, invariants, operations and assertions,
which Alcoa treats differently from one another. The Object
Constraint Language [20] of UML was considered as an
input language, but its semantics are still unsettled, and it is
not yet stable enough as a foundation for tool development.

2 ALCOA S ANALYSIS

Alcoa provides two kinds of analysis, addressing the two
principal risks of declarative modelling. The first risk is that
the constraints given are too weak. Flaws of this sort are
found by checking assertions, theorems that certain

consequences follow from the constraints. Alcoa can check,
for example, that an operation preserves an invariant, that
one operation refines another, or that one invariant implies
a second.

The second risk is that the constraints given are too
strong; in the worst case, the constraints contradict one
another and all states or transitions are ruled out. Flaws of
this sort are found by exercising invariants or operations: ie,
attempting to find satisfying states and transitions
respectively.

Alloy is not a decidable language, so Alcoa cannot
provide a sound and complete analysis. Instead, it conducts
a search within a finite scope chosen by the user that bounds
the number of elements in each primitive type. For example,
an analysis of a file system might restricted to a scope that
allows at most 6 file system objects. Alcoa’s output is either
an instance—a particular state or transition—or a message
that no instance was found in the given scope. When
checking an assertion, an instance is a counterexample and
indicates that the theorem was not valid. When exercising
an invariant or operation, an instance is a demonstration of
consistency.

In theory, the user is not entitled to infer anything when
no instance is found. In practice, however, if an instance

exists, there is usually one in a small scope. So when no
instance is found, there is a good chance that an assertion
holds, or that an invariant is inconsistent.

Even in small scopes, the number of cases to consider is
usually vast. A relation in a scope of k has 2k×k possible
values; a model with only 3 relational state components in a
scope of 3 thus has about a billion states. Of course many of
these will be ruled out by constraints, and the search
mechanism will prune away large parts of the space. In
checking that an operation preserves an invariant, for
example, the search might exclude most of the post-states
that do not violate the invariant, thus considering only ‘bad’
executions of the operation, effectively executing it
backwards. This scheme therefore can account for billions
of possible executions of the operation, by ruling out in
advance large classes that are not to cause problems.

3 HOW ALCOA WORKS

Alcoa is essentially a compiler. It translates the problem to
be analyzed into a (usually huge) boolean formula. This
formula is handed to a SAT solver, and the solution is
translated back by Alcoa into the language of the model. The
algorithm is described in [9]; an earlier version of the

Figure 1: Alcoa screenshot

translation scheme for an intermediate language without
quantifiers appears in [10].

Alcoa comes with a suite of public domain SAT solvers
whose parameters can be adjusted within Alcoa itself.
Deterministic solvers based on the Davis-Putnam method
[4], in particular SATO [21] and RelSAT [2], appear to work
best.

4 MODE OF USE

The screenshot in Figure 1 shows Alcoa’s user interface. On
the left is an editing pane in which the model is created and
modified. On the lower right, is a transcript pane to which
Alcoa writes its output. The tabbed panes in the upper right
allow the user to view the model in various intermediate
forms, to change the scope and to select a SAT solver and set
its parameters.

Alcoa is used as follows. First, a model is created and
compiled. Compilation takes a couple of seconds, and finds
superficl flaws, such as type errors. The user then selects a
schema—a paragraph of the model to be analyzed—and
starts a run. Alcoa responds either with an instance or a
message that none was found. The user may then choose to
edit the model, recompile and rerun, or to investigate the
same schema further, by changing the scope or adjusting the
solver parameters.

5 COMPARISONS

CASE tools focus on checking various forms of syntactic
consistency (eg, use of names), and often include
mechanisms for cooperative work and configuration
management. Rudimentary code generation is often
provided too, in which the model is construed not as an
abstract description of the system but as an outline of its
implementation. CASE tools developed for formal
specification languages (such as Logica’s Formaliser for Z
[16]) usually provide type checking and pretty printing.
None offer the kind of deep semantic analysis provided by
Alcoa.

Model checkers have the same aim as Alcoa: to provide
fully automatic semantic analysis. Model checkers are
primarily designed, however, for addressing the
complexities that arise from concurrency, and their input
languages therefore offer parallel composition and
communication mechanisms, and logics for describing
event and state sequences. Alcoa, in contrast, addresses the
complexity that arises from relational state structure.
Moreover, the input languages of model checkers are usually
abstract programming languages and are not designed for
declarative specification; SPIN’s language, Promela [6], for
example, is a C-like language with guarded commands.
Finally, model checking algorithms traverse the space of
reachable states, and can, unlike Alcoa, investigate elaborate

temporal properties. When an invariant is found to be
violated by an operation, Alcoa’s counterexample may be a
transition from an unreachable state; a model checker in
contrast will generate only feasible traces. The Alcoa user
may have to strengthen the invariant to eliminate the bogus
counterexample. This limitation has a flipside; model
checkers are intrinsically non-modular, and cannot analyze
partial descriptions in which only some operations are
specified.

Animation and testing tools such as IFAD’s VDM
Toolbox [1] require part of the model to be in an executable
sublanguage. Invariants may be given declaratively, but they
cannot be analyzed in their own right. Instead, the tool
executes operations from states constructed by the user, and
can check, for example, that the states that follow satisfy
invariants. Alcoa typically considers many more executions;
while an animation tool is usually stepped through
manually, Alcoa searches all possible executions— usually
billions—within the given scope. Alcoa can be induced to
behave like an animation tool. The user may specify a
condition, for example, and then request an execution of an
operation that starts from a state satisfying the condition;
she may equally choose to constrain the post-state and
‘execute’ the operation backwards.

Theorem provers can establish with certainty that the
model has particular properties. In contrast, Alcoa can be
viewed as a theorem ‘refuter’. Since theorem provers operate
symbolically, there is no restriction to a finite scope, and
properties even of infinite systems can be proven. Modern
theorem provers, such as PVS [17], make extensive use of
decision procedures, and can thus automate many low level
proof steps. Several theorem provers have been embedded
in tools for specific languages (eg, Z/EVES [3] for Z and LP
[5] for Larch) to bridge the gap between proof obligations
and assertions in the specification language. Despite these
advances, theorem provers are still tools for experts only,
since complex proofs will often fail because of flaws in the
proof strategy, rather than in the assertion being checked. So
although they can provide far greater assurance than tools
like Alcoa, they are often too demanding for everyday use.

6 MATURITY

Alcoa is the successor to our Nitpick tool [11]. It overcomes
two serious defiencies of Nitpick: a lack of scalability, and an
input language that did not include quantifiers. Alcoa can
handle a model with 20 relational state components, and can
perform analyses in a scope of 6 or more. Its input
language, Alloy [8], is close enough to UML to make a
transcription of an object model diagram into Alloy a trivial
task, and close enough to Z and VDM to make many
existing specifications amenable to automatic analysis for
the first time.

We have been using Alloy since September 1998. Its first

applications were to the design of a financial analysis tool
[7] and to the post-facto specification of the key invariants
of an air-traffic control system component [14].

Alcoa was made publicly available in September 1999. It
has mostly been used to analyze existing models. We recast
in Alloy our model of a mobile internet protocol we had
previously analyzed with Nitpick [12], and were able to
analyze it more effectively in Alcoa. A description of
aggregation properties of COM [19] was translated with ease
from Z into Alloy; Alcoa generates in seconds the flaws that
were originally found more painstakingly by hand. We have
also been using Alcoa in its own development, analyzing
strategies for pruning its search. Recently, we have
developed a method based on Alcoa for finding bugs in code
[13].

Alcoa has been used in courses to teach formal methods
at several universities (Kansas State University, Carnegie
Mellon, Rochester Institite of Technology and the
University of Hawaii). A variant of Alloy has been adopted
in the latest version of the undergraduate software
engineering text used at MIT [15].

The next release of Alcoa will offer a more efficient
analysis that exploits symmetry, and that in particular seems
to be able to exhaust a large space more rapidly when no
instances are present. It will also support a richer language,
with more powerful composition mechanisms, sequential
composition of operations, and implicit frame conditions.
The new tool will also be available as an API for
incorporation into other tools. Finally, we plan to provide
graphical display of instances.

7 AVAILABILITY

Alcoa is freely available for Windows, Linux and Solaris
from http://sdg.lcs.mit.edu/alcoa. The web site provides a
suite of annotated examples, a description of the Alloy
language, a comparison to Z and UML, and an FAQ.

REFERENCES

[1] Sten Agerhold & Peter Gorm Larsen. The IFAD VDM Tools:
Lightweight Formal Methods. FM-Trends 1998: 326-329.

[2] R.J. Bayardo Jr. & R. C. Schrag. Using CSP look-back
techniques to solve real world SAT instances. Proc. of the 14th
National Conf. on Artificial Intelligence, 203–208, 1997.

[3] Dan Craigen, Irwin Meisels, and Mark Saaltink. Analysing Z
Specifications with Z/EVES. In Industrial-Strength Formal
Methods in Practice, J.P. Bowen and M.G. Hinchey (Editors),
September 1999.

[4] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, Vol. 7, pp. 202–
215, 1960.

[5] Stephen J. Garland & John V. Guttag, A Guide to LP: the Larch
Prover, MIT Laboratory for Computer Science, December

1991. Also available as Research Report 82, Compaq Systems
Research Center, Palo Alto, CA.

[6] Gerard J. Holzmann. The Model Checker Spin. IEEE
Transactions on Software Engineering, Special issue on Formal
Methods in Software Practice, Volume 23, Number 5, May
1997, 279-295.

[7] Joseph B. Irineo. An Object-Oriented, Maximum-Likelihood
Parameter Estimation Program for GARCH(p,q). Masters
Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, June 1999.

[8] Daniel Jackson. Alloy: A Lightweight Object Modelling
Notation. Technical Report 797, MIT Laboratory for
Computer Science, Cambridge, MA, February 2000.

[9] Daniel Jackson. An Automatic Analysis for a First-Order
Relational Logic. Submitted for publication. Available at:
http://sdg.lcs.mit.edu/~dnj/publications.

[10] Daniel Jackson. An Intermediate Design Language and its
Analysis. Proc. ACM Conference on Foundations of Software
Engineering, Florida, November 1998.

[11] Daniel Jackson and Craig A. Damon. Elements of Style:
Analyzing a Software Design Feature with a Counterexample
Detector. IEEE Transactions on Software Engineering, Vol. 22,
No. 7, July 1996, pp. 484–495.

[12] Daniel Jackson, Yuchung Ng and Jeannette Wing. A Nitpick
Analysis of IPv6. To appear, Formal Aspects of Computing.

[13] Daniel Jackson & Mandana Vaziri. Finding Bugs in Code using
a Relational Constraint Solver. Submitted for publication.
Available at: http://sdg.lcs.mit.edu/~dnj/publications.

[14] Seung (Albert) Lee. Object Modelling Applied to CTAS.
Masters thesis Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
June 1999.

[15] Barbara Liskov and John V. Guttag. Program Development in
Java: Abstraction, Specification, and Object-Oriented Design.
To appear.

[16] Logica UK Ltd. Formaliser: A Specification Support Tool.
Information at http://www.16.com/offerings/Formaliser.html.

[17] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich
von Henke. Formal verification for fault-tolerant
architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107-125,
February 1995.

[18] J. Michael Spivey. The Z Notation: A Reference Manual.
Second ed, Prentice Hall, 1992.

[19] K.J. Sullivan, J. Socha and M. Marchukov. Using Formal
Methods to Reason about Architectural Standards.
Proceedings of the International Conference on Software
Engineering (ICSE’97), Boston, Massachusetts, May 1997.

[20] Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley,
1999.

[21] Hantao Zhang. SATO: An Efficient Propositional Prover.
Proc. of International Conference on Automated Deduction
(CADE-97).

