
6170 Lecture Notes
Daniel Jackson, Fall 2k

Lecture 1: Introduction

1.1 Course overview

Course is actually three courses in one:
· crash course in object-oriented programming
· software design in the medium
· studio course on team construction of software

Emphasis is on design. Programming is included because it’s a prerequisite; the project is included
because at this stage, you don’t really understand designs until you implement them.

You will learn:
· how to design software using some powerful abstraction mechanisms and a collection of patterns

that have been found to work well in practice;
· how to get it right, by construction and by modular reasoning;
· how to articulate your design ideas and critique other people’s designs;

and on the way:
· how to to think about a problem
· how to code in Java
· how to work in a team

Materials
· new textbook by Liskov
· lecture notes
· other recommended stuff on website (eg, Sun’s Java documentation)

Prerequisites
· 6001, or some experience programming in a high-level language

1.1.1 Course organization and policy

Course in two halves. First half of term is lectures and weekly assignments done individually; second
half is team project. Problem sets for first half build up to implementation of MapQuick, a local ver-
sion of MapQuest using the US Census Bureau Database. Team project is Gizmoball, with some new
and exciting features.

What we expect from you:
· attend lectures and recitations;
· complete readings in advance of lectures;
· do problem sets weekly for first half of term;
· do closed-book quiz at half term;
1

· attend project reviews;
· complete design and implementation of project.

What you can expect from us:
· lectures that explain new ideas and show how to apply them;
· recitations that offer practice and critique;
· problem sets that increase your skill with minimal grunt work;
· timely grading of your work;
· openness of lecturers to chat (drop by, and send email);
· availability of TA’s during office hours;

availability of lab assistants online;

Collaboration and IP policy:
· you may talk about course material with your colleagues;
· you may not share insights into weekly assignments;
· you may use any code we provide, and any code in the standard Java library;
· you may copy code and algorithms from textbooks or from general online sources;
· you may not copy each other’s code, or use code written in 6170 by previous students;
· in the team project, you may share everything but should all contribute to all aspects.

Grading
· 75% on individual work: 45% problem sets, 25% quiz, 5% recitation participation
· 25% on team project
· we reserve the right to normalize across sections

Late policy
· no credit for late work
· but one slack weekend: can hand in Monday at noon instead of Friday at noon
· can’t use slack on final project

Completion credit
· for problem sets 1 to 5, some part of the grade is for completing the implementation
· that means documenting, testing too
· can get this credit later if you weren’t awarded it the first time
· you’ll need work from earlier problem sets in later ones

Programming diagnostic
· to help us gauge your background
· due on Friday (September 8)
· not graded, but you cannot take the course unless you complete it

Signup sheet
· due at end of class today

1.1.2 Why does software engineering matter?

Software’s contribution to US economy (1996 figures)
· greatest trade surplus of exports
2

· $24B software exported, $4B imported, $20B surplus
· compare: agriculture 26-14-12, aerospace 11-3-8, chemicals 26-19-7, vehicles 21-43-(22), manu-

factured goods 200-265-(64)
· from Software Consipracy

Role in infrastructure
· not just the Internet
· transportation, energy, medicine, finance

How good is our software?
· failed developments
· accidents
· poor quality software

1.2 Development failures

IBM survey, 1994
· 55% of systems cost more than expected
· 68% overran schedules
· 88% had to be substantially redesigned

Advanced Automation System (FAA, 1982-1994)
· industry average was $100/line, expected to pay $500/line
· ended up paying $700-900/line
· $6B worth of work discarded

Bureau of Labor Statistics (1997)
· for every 6 new systems put into operation, 2 cancelled
· probability of cancellation is about 50% for biggest systems
· average project overshoots schedule by 50%
· 3/4 systems are regarded as ‘operating failures’

1.3 Accidents

“The most likely way for the world to be destroyed, most experts agree, is by accident. That’s where
we come in. We’re computer professionals. We cause accidents.”
Nathaniel Borenstein, inventor of MIME
Programming as if People Mattered: Friendly Programs, Software Engineering and Other Noble Delu-
sions (Princeton University Press, Princeton, NJ, 1991)

Therac-25 (1985-87)
· radiotherapy machine with software controller
· hardware interlock removed, but software had no interlock
· software failed to maintain essential invariants:
· either electron beam mode
· or stronger beam and plate intervening, to generate X-rays
3

· several deaths due to burning
· programmer had no experience with concurrent programming
· see: http://sunnyday.mit.edu/therac-25.html

Ariane-5 (June 1996)
· European Space Agency
· complete loss of unmanned rocket shortly after takeoff
· due to exception thrown in Ada code
· faulty code was not even needed after takeoff
· due to change in physical environment: undocumented assumptions violated
· see: http://www.esa.int/htdocs/tidc/Press/Press96/ariane5rep.html

London Ambulance Service (1992)
· loss of calls, double dispatches from duplicate calls
· poor choice of developer: inadequate experience
· see: http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html

In the short term, these problems will become worse because of the pervasive use of software in our
civic infrastructure. PITAC report recognized this, and has successfully argued for increase in fund-
ing for software research:

“The demand for software has grown far faster than our ability to produce it. Furthermore, the
Nation needs software that is far more usable, reliable, and powerful than what is being produced
today. We have become dangerously dependent on large software systems whose behavior is not well
understood and which often fail in unpredicted ways.”

Information Technology Research: Investing in Our Future
President’s Information Technology Advisory Committee (PITAC)
Report to the President, February 24, 1999
Available at http://www.ccic.gov/ac/report/

RISKS Forum
· collates reports from press of computer-related incidents
4

· http://catless.ncl.ac.uk

1.4 Software Quality

One measure: bugs/kloc
· measured after delivery
· industry average is about 10
· high quality: 0.1 or less

Some rough guesses:

Praxis CDIS system (1993)
· UK air-traffic control system for terminal area
· used formal methods: precise specification
· no increase in net cost
· much lower bug rate: about 0.75 defects/kloc
· even offered warranty to client!

Sample contracts:
· Cosmotronic Software Unlimited Inc. does not warrant that the functions contained in the pro-

gram will meet your requirements or that the operation of the program will be uninterrupted or
error-free. However, Cosmotronic Software Unlimited Inc. warrants the diskette(s) on which the
program is furnished to be of black color and square shape under normal use for a period of
ninety (90) days from the date of purchase.
5

· We don’t claim Interactive EasyFlow is good for anything – if you think it is, great, but it’s up to
you to decide. If Interactive EasyFlow doesn’t work: tough. If you lose a million because Interac-
tive EasyFlow messes up, it’s you that’s out of the million, not us. If you don’t like this disclaimer:
tough. We reserve the right to do the absolute minimum provided by law, up to and including
nothing. This is basically the same disclaimer that comes with all software packages, but ours is in
plain English and theirs is in legalese.

ACM Software Engineering Notes, Vol. 12, No. 3, 1987.

1.5 Why Design Matters

“You know what’s needed before we get good software? Cars in this country got better when Japan
showed us that cars could be built better. Someone will have to show the industry that software can
be built better.”

John Murray, FDA’s software quality guru
quoted in Software Conspiracy, Mark Minasi, McGraw Hill, 2000

That’s you!

Our aim in 6170 is to show you that ‘hacking code’ isn’t all there is to building software. In fact, it’s
only a small part of it. Don’t think of code as part of the solution; often it’s part of the problem. We
need better ways to talk about software than code, that are less cumbersome, more direct, and less
tied to technology that will rapidly become obsolete.

Role of design and designers
· thinking in advance always helps!
· contrast with reliance on testing: more effective, much cheaper
· makes delegation and teamwork possible
· design flaws affect user: incoherent, inflexible and hard to use software
· design flaws affect developer: poor interfaces, bugs multiply

It’s a funny thing that computer science students areoften resistant to the idea of software develop-
ment as an engineering enterprise. Perhaps they think that engineering techniques will take away the
mystique, or not fit with their inherent hacker talents. On the contrary, the techniques you learn in
6170 will allow you to leverage the talent you have much more effectively.

Even professional programmers delude themselves. In an experiment, 32 NASA programmers
applied 3 different testing techniques to a few small programs. They were asked to assess what pro-
portion of bugs they thought were found by each method. Their intuitions turned out to be wrong.
They thought black-box testing based on specs was the most effective, but in fact code reading was
more effective (even though the code was uncommented). By reading code, they found errors 50%
faster!

Victor R. Basili and Richard W. Selby. Comparing the Effectiveness of Software Testing Strategies. IEEE
Transactions on Software Engineering. Vol. SE-13, No. 12, December 1987, pp. 1278–1296.

For infrastructural software (such as air-traffic control), design is very important. Even then, many
6

industrial managers don’t realize how big an impact the kinds of ideas we teach in 6170 can have. See
the article that John Chapin (another 6170 lecturer) and I wrote that explains how we redesigned a
component of CTAS, a new air-traffic control system, using ideas from 6170:

Daniel Jackson and John Chapin. Redesigning Air-Traffic Control: An Exercise in Software Design.
IEEE Software, May/June 2000. Available at http://sdg.lcs.mit.edu/~dnj/publications.

1.6 The Netscape Story

For PC software, there’s a myth that design is unimportant because time-to-market is all that mat-
ters. Netscape’s demise is a story worth understanding in this respect.

The original NCSA Mosaic team at the University of Illinois built the first widely used browser, but
they did a quick and dirty job. They founded Netscape, and between April and December 1994 built
Navigator 1.0. It ran on 3 platforms, and quickly became the browser of choice on Windows, Unix
and Mac. Microsoft began developing Internet Explorer 1.0 in October 1994, and shipped it with
Windows 95 in August 1995.

In Netscape’s rapid growth period, from 1995 to 1997, the developers worked hard to ship new prod-
ucts with new features, and gave little time to design. Most companies in the shrink-wrap software
business (still) believe that design can be postponed: that once you have market share and a compel-
ling feature set, you can ‘refactor’ the code and obtain the benefits of clean design. Netscape was no
exception, and its engineers were probably more talented than many.

Meanwhile, Microsoft had realized the need to build on solid designs. It built NT from scratch, and
restructured the Office suite to use shared components. It did hurry to market with IE to catch up
with Netscape, but then it took time to restructure IE 3.0. This restructuring of IE is now seen within
Microsoft as the key decision that helped them close the gap with Netscape.

Netscape’s development just grew and grew. By Communicator 4.0, there were 120 developers (from
10 initially) and 3 million lines of code (up a factor of 30). Michael Toy, release manager, said:

“We’re in a really bad situation ... We should have stopped shipping this code a year ago. It’s dead...
This is like the rude awakening... We’re paying the price for going fast.”

Interestingly, the argument for modular design within Netscape in 1997 was driven by the desire to
go back to small team development. Without clean and simple interfaces, it becomes impossible to
divide up the work into independent groups.

Netscape set aside 2 months to re-architect the browser, but it wasn’t long enough. So they planned to
start again from scratch, with Communicator 6.0. But 6.0 was never completed, and its developers
were reassigned to 4.0. The 5.0 version, Mozilla, was made available as open source, but that didn’t
help: nobody wanted to work on spaghetti code. So Microsoft won the browser war, and AOL
acquired Netscape.

This is not the entire story, by the way. Platform independence was a big issue right from the start.
Navigator ran on Windows, Mac and Unix from version 1.0, and Netscape worked hard to maintain
as much platform independence in their code as possible. They even planned to go to a pure Java ver-
7

sion (“Javagator”), and built a lot of their own Java tools (because Sun’s tools weren’t ready). But in
1998 they gave up. Still, Communicator 4.0 contains about 1.2 million lines of Java.

You can read the whole story in:

Michael A. Cusumano and David B. Yoffie. Competing on Internet Time: Lessons from Netscape and its
Battle with Microsoft, Free Press, 1998.

See especially Chapter 4, Design Strategy.

Note, by the way, that it took Netscape more than 2 years to discover the importance of design. Don’t
be surprised if you’re not entirely convinced after one term; some things come only with experience.

1.7 Advice

Course strategy
· don’t get behind: first week especially is very fast!
· attend lectures: material is not all in textbook
· do the readings on time

Life strategy
· think in advance: don’t rush to code
· design is more fun than debugging!
· focus on ideas, not embodiments
· don’t be blinded by technology
· you should master Java, but realize that it will become obsolete

Be simple:

“I gave desperate warnings against the obscurity, the complexity, and over-ambition of the new
design, but my warnings went unheeded. I conclude that there are two ways of constructing a soft-
ware design: One way is to make it so simple there are obviously no deficiencies and the other way is
to make it so complicated that there are no obvious deficiencies.”

Tony Hoare, Turing Award Lecture, 1980
talking about the design of Ada

How to ‘Keep it simple, stupid’ (KISS)
· avoid skating where ice is thin: avoid clever hacks, complex algorithms & data structures
· don’t use most obscure programming language features
· don’t optimize until proven necessary
· be skeptical of complexity
· don’t be overambitious: spot ‘creeping featurism’ and the ‘second system effect’.

Remember that it’s easy to make something complicated, but hard to make something truly simple.
8

1.8 Closing Admin

What you must do:
· Hand in sign-up sheet before you leave.
· Complete and hand in PS0 (programming diagnostic) by Friday.

Recitation: tomorrow, we’ll send section assignments to you by email.

Help getting going with Java
· Electronic classrooms open Sunday and Tuesday, with TA’s on hand to help
9

Lecture 2: Object Semantics

In today’s lecture, we’ll focus on the heap semantics of Java: what the state looks like, in terms of vari-
ables, objects, and fields. We’ll see the distinction between mutable and immutable objects; later on
in the course, we’ll return to these ideas in more detail. I’ll illustrate particular states using object dia-
grams, which are our first step towards object models. Our aim is to be able to talk about properties
of the state precisely, without having to show code. Diagrams are less cumbersome, easier to grasp
(once you understand them), and can convey information that isn’t in the code about the intended
use of a class.

2.1 Variables, Declarations and Objects

Some types of objects can be created with literals. What happens when you run this?

String a = “zeeb”;
System.out.println (a);

It prints zeeb. The first statement is a declaration (of the variable a) and an assignment (to a) in one.
The expression “zeeb” is called a string literal. The second statement is a procedure call that prints a
representation of a to standard out; don’t worry for now about its details.

We can draw the result of the first statement as an object diagram, showing that a is a reference to an
object of type String:

What happens when you run this?

String a = “zeeb”;
String b = a.toUpperCase ();
System.out.println (b);

It prints ZEEB. The second statement is a call to the method toUpperCase. The method is applied to
the object referenced by a, sometimes called the ‘receiver’, and results in the creation of a fresh string
that is then bound to the variable b. Here’s the object diagram:

What would this do?

�]HHE�
�6WULQJ�

D

�]HHE�
�6WULQJ�

D

�=((%�
�6WULQJ�

E

10

String a = “zeeb”;
a.toUpperCase ();
System.out.println (a);

It prints zeeb. The second statement creates a fresh string that gets thrown away since it is bound to
no variable. The string object referenced by a is not changed: strings are immutable.

What about this?

String a = “zeeb”;
a = a.toUpperCase ();
System.out.println (a);

Again, no object changes. But a is made to refer to the new object by the second assignment, so the
result is ZEEB.

2.2 Aliasing, Mutability and Equality

Another example:

Vector v = new Vector ();
String a = “zeeb”;
v.addElement (a);
System.out.println (v.lastElement ());

This prints zeeb, because the third statement inserts (a reference to) the string into the vector
(referred to by) v:

 and the last statement extracts this element and prints it. Unlike toUpperCase, the method addEle-
ment does not return an object, but changes its argument object. Vectors are said to be mutable.

To see this, consider:

Vector v = new Vector ();
Vector w = v;
String a = “zeeb”;

������
����	
��

�����
����	
��

� �

�]HHE�
�6WULQJ�

D

�9HFWRU�

Y

HOWV>�@
11

w.addElement (a);
System.out.println (v.lastElement ());

This prints zeeb, since the two variables w and v are names for the same vector object: they are said to
be aliases. The call to addElement mutates the vector object, and the change is seen through both
variables:

Aliasing is pervasive in languages like Java, and very useful. But it adds a lot of complexity. For one
thing, it breaks the rule that a statement ‘affects only the variables it mentions’. Just because v isn’t
mentioned in w.addElement(a) doesn’t mean that the value test involving v alone won’t change.

How can we observe the aliasing? By testing equality:

Vector v = new Vector ();
Vector w = v;
if (v == w)

System.out.println (“same object”);

which results in same object being printed. The built-in == test tells you whether two references are
for the same object.

�]HHE�
�6WULQJ�

D

�9HFWRU�

Y

HOWV>�@

Z

�]HHE�
�6WULQJ�

D

�9HFWRU�

Y Z

�9HFWRU�

Y Z

�9HFWRU�

Y

9HFWRU�Y� �QHZ�9HFWRU����

Z� �Y�

6WULQJ�D� ��]HHE��

Z�DGG(OHPHQW��D��
12

What does this do?

Vector v = new Vector ();
Vector w = new Vector ();
if (v == w)

System.out.println (“same object”);

It prints nothing, because v and w are distinct objects. Here are the object diagrams for the two cases:

A puzzle: what does this do?

String a = “zeeb”;
String b = “zeeb”;
if (a == b)

System.out.println (“same object”);

Strangely, this prints same object, because the Java virtual machine automatically ‘interns’ string liter-
als: if it can tell that two string literals have the same sequence of characters, it only allocates one
object. You’d be right to think this is a bit confusing; it’s a performance optimization.

To determine whether two immutable objects have the same value, you use the equality method. The
String class provides a method equals which tells you whether two strings contain the same sequence
of characters or not. This code

String a = “zeeb”;
String b = a.toUpperCase ();
if (b.equals (“ZEEB”))

System.out.println (“same characters”);
if (b == “ZEEB”)

System.out.println (“same object”);

prints same characters.

Break for questions:
· Would you expect that generally x == y implies x.equals (y)? Yes, it should. Because the equals

method can be user-defined, just like any other method, you could make it behave in any way you
wanted. On a mutable type, it might even mutate the object! But that would be bad form: there’s a
generic contract that clients expect equals to obey. More on this later.

· Why would a language have immutable types? Because aliasing is complicated, and when you use
immutable types, the issue doesn’t arise. Also, code built with immutable types can sometimes be
more efficient.

��������

� �

��������

�

��������

�

13

2.3 Null References

What does this do?

String a = null;
System.out.println (a);

It prints null. The keyword null denotes a value that can be taken on my an object reference. It means
that the reference does not in fact refer to any object. There is no null object, by the way!

But note that

String a = null;
String b = a.toUpperCase ();
System.out.println (b);

throws a NullPointerException. What’s the difference? Every method call must have a receiver, and
because a is null, there is no receiver in the toUpperCase method call. But in the previous example,
the call to System.out.println is OK, since the null reference is an argument, and you can write a
method that tests whether an argument is null and does something appropriate.

Dereferencing null is a common programming mistake in Java. To avoid it, you can check whether a
reference is null before you attempt to call a method:

if (arg == null)
System.out.println (“error”)

else {
String x = arg.toUpperCase ();
...

A better solution is to avoid creating null references in the first place. You’ll learn about that when we
discuss representation invariants. Sometimes you can’t avoid it, and then it’s important to document
where the null references may occur. That’s one reason specifications are important: they can spare
you runtime errors and unnecessary checks.

Question:
· In general, would you expect a.equals (b) and b.equals (a) to have the same effect? No, because

when a is null and b is not, the first will throw an exception, and the second will (usually) return
false.

2.4 Instance Variables or Fields

Let’s make an object of our own.

class Alien {
String name;
String species;
}

The variables name and species are called ‘fields’, or ‘instance variables’. The class describes a collec-
14

tion of of objects, each of which has a name and a species.

What does this do?

Alien a = new Alien ();
a.name = “Jabba”;
a.species = “Hutt”;
System.out.println (a.name);

It prints Jabba. How many objects are there here? Three: two string objects, and an alien object. The
object diagram looks like this:

The ‘setter’ statement

a.name = “Jabba”;

mutates the object referenced by a, by making its name field point to a different object. This is not an
assignment. Assignments change the bindings of variables and can never mutate objects; mutations
change the values of fields, and thus mutate objects. Suppose that after the four lines of code above,
we execute

String s = a.species;
s = “Jedi”;
System.out.println (a.species);

If you think this makes Jabba a Jedi, you haven’t understand setter statements. It prints Hutt, because

�$OLHQ�

�-DEED�
�6WULQJ�

�+XWW�
�6WULQJ�

QDPH

VSHFLHV

D

15

the effect of the first two statements is this:

Note that the expression a.name means completely different things on the left and on the right. In
fact, because of this, it’s best not to call it an expression. On the right, it really is an expression; it
denotes the value of the name field of the variable a. But on the left, it acts as a setter; the statement

e1.name = e2;

says ‘make the name field of the object denoted by expression e1 point to the object denoted by the
expression e2’. So in a statement of the form

e.f.g = h;

e.f is an expression, but e.f.g is not.

2.5 Semantics of Method Call

Here’s our first method definition:

class Alien {
String name;
String species;

 void print () {
System.out.println (name + “ the ” + species);
}

}

Now we can write:

�$OLHQ�

�-DEED�
�6WULQJ�

�+XWW�
�6WULQJ�

QDPH

VSHFLHV

D

�$OLHQ�

�-DEED�
�6WULQJ�

�+XWW�
�6WULQJ�

QDPH

VSHFLHV

D

�-HGL�
�6WULQJ�

V

V

6WULQJ�V� �D�VSHFLHV�

V� ��-HGL��
16

Alien a = new Alien ();
a.name = “Jabba”;
a.species = “Hutt”;
a.print ();

and the result will be Jabba the Hutt.

Note that in the body of print, the expressions name and species are short for this.name and this.spe-
cies, where this is a reference to the receiver object that is passed implicitly. So they’re actually getters.
Here’s a method that sets a field:

void mutate (String s) {
species = s;
}

Don’t be confused: species here is short for this.species, so the statement is a setter equivalent to

this.species = s;

even if it looks like the assignment of a local variable.

Finally, here’s a constructor:

Alien (String n, String s) {
name = n; species = s;
}

and some code that uses it:

Alien a = new Alien (“Jabba”, “Hutt”);
a.mutate (“Ewok”);
a.print ();

which yields Jabba the Ewok. The object diagram cartoon below shows how this happens. Diagram 1
shows the state resulting from the constructor call. Diagram 2 shows the state inside the mutate
method, just after the call to mutate; the variable this has been assigned to the receiver, which can no
longer be accessed by the variable a (since it’s out of scope), and the variable s has been bound to the
string argument. Diagram 3 shows the result of the setter statement, which mutates the Alien object.
Diagram 4 shows the state just after the call to mutate has returned, with the names this and s no
longer in scope.

(A Java hint: if you try and now create an Alien object with new Alien (), the compiler will reject it.
The default constructor is only available when no explicit constructor has been declared. Now that
we have declared a constructor, it’s the only one we can use.)

The parameter passing mechanism is sometimes referred to as ‘call by sharing’, since the formal
arguments (such as this and s) share the objects with the variables of the calling context. But it can
equally be viewed as call by value, in which the values that are passed are references to objects.

To check that you understand the mechanism, consider this method
17

void marry (Alien spouse) {
String save = name;
name = spouse.name;
spouse.name = save;
}

and figure out the effect of the following code by drawing some object diagram cartoons:

�$OLHQ�

�-DEED�
�6WULQJ�

�+XWW�
�6WULQJ�

QDPH

VSHFLHV

D

�$OLHQ�

�-DEED�
�6WULQJ�

�+XWW�
�6WULQJ�

QDPH

VSHFLHV

WKLV

�(ZRN�
�6WULQJ�

V

>�@

>�@

�$OLHQ�

�-DEED�
�6WULQJ�

QDPH

VSHFLHV

WKLV

V

>�@

�$OLHQ�

�-DEED�
�6WULQJ�

QDPH

VSHFLHV

D

>�@

�(ZRN�
�6WULQJ�

�(ZRN�
�6WULQJ�
18

Alien a = new Alien (“Jabba”, “Hut”);
Alien b = new Alien (“Wicket”, “Ewok”);
a.marry (b);
a.print ();

What do aliens do when they marry? As a sign of affection, they exchange names. So the Alien previ-
ously called Jabba The Hutt is now called Wicket the Hutt.

2.6 Primitive Values

So far, all our variables and fields have had values that are objects (or more precisely, references to
objects). Java also has primitive values. Our alien, for example, may have an age:

class Alien {
String name;
String species;
int age;
}

The age field takes on an integer value. The lowercase name for the type is a Java convention that sig-
nals a primitive type. We can show the primitive value in an object diagram like this:

You can’t apply a method to a primitive value. In the expression 124 + 1, the plus sign is a built-in
arithmetic operator. But in the expression “Jabba” + “Hutt”, the plus sign is short for a call to a con-
catenation method.

There are a handful of other primitive types in Java; these include other integral types (such as long,
a 64-bit integer), floating point types (float and double), and boolean. Java has some (surprising)
implicit conversions amongst numeric types. You can read about them in the Java Language Specifi-
cation.

Sometimes,you need to make objects for primitive values. There is a class corresponding to each
primitive type. The Boolean class, for example, has two objects, which can be referred to as Bool-
ean.TRUE and Boolean.FALSE. But these are objects, and so both of these

System.out.println (Boolean.TRUE.equals (true));

�$OLHQ�

�-DEED�
�6WULQJ�

�+XWW�
�6WULQJ�

QDPH

VSHFLHV

D

DJH

���
19

System.out.println (Boolean.TRUE == true);

will be rejected by the compiler, since the boolean literal true is not an object. (More precisely, we
should say that true is not an object reference. As explained above, null is not an object, but we can
compare an expression to null with ==. The object equality operator takes two object references, and
returns true if they are references to the same object.)

2.7 Summary

In this lecture, we’ve introduced a number of fundamental notions:
· variables, objects and fields
· constructors and methods
· setters and getters
· mutable vs. immutable objects
· object equality (==) vs. value equality (.equals)

We’ve drawn a bunch of diagrams to illustrate Java states, of this form:

Occasionally, these are useful to make a point about a particular state. But usually we want to talk
about sets of states, and we’ll need a more powerful notation for that. Next time we’ll see how the sets
of states that can arise from the code we wrote can be described by a diagram like this:

��	�
 ���	
�

���

����	��
20

Lecture 3: Classes, subclasses & inheritance

In today’s lecture, we’ll look at the notion of subclassing, in which the implementation of one class
can implicitly incorporate code from another class, using a mechanism known as inheritance. We’ll
talk about interfaces and the role they play in Java next week, when we consider namespace issues.

Our focus will continue to be on the structure of the state. In a later lecture, we’ll address the ques-
tion of the behaviour of subclasses, in particular whether a subclass’s behaviour must in some way
conform to the behaviour of its superclass.

We’ll express the structure of the state using object models. An object model is a description of a
(usually infinite) set of states, each being a configuration of objects. In our last lecture, we used
object diagrams to show individual states; once we have object models, we’ll only need to fall back on
object diagrams occasionally when illustrating a particular state.

Object models can be used both to describe the structure of the state at the level of the executing Java
code, and at a more abstract level of the problem domain. We’ll see how to use object models for
characterizing problems later, and for now, we’ll give them a very concrete interpretation.

Although the elements of object models are very simple to understand, there are several important
subtleties that give the notation more power than it might at first seem to have. Read the technical
note on code object models available on the class website for a summary. We’ll be using object mod-
els extensively throughout the course, so it’s important that you master them early on.

Because we focus on the fundamental notions, and their expression with object models, we will not
be able to survey all the details of Java’s class mechanism. You should read one of the recommended
Java texts to learn about the subtleties of subclassing. Constructors are an especially tricky (and often
confusing) topic that you should make sure you understand.

3.1 Classes, fields & methods

Here’s a simple class for a bank transaction with a constructor and two fields:

class Trans {
int amount;
Date date;
Trans (int a, Date d) {

amount = a; date = d;
}

}

The class Date is part of the Java library; it belongs to the package java.util, along with Vector. To refer
to it without the package name, you’ll actually need an import statement. We’ll discuss this issue in
the lecture on namespace.

To create a new object we call the constructor with the special keyword new. Here’s a withdrawal of
$100, done now:

Trans t = new Trans (-100, new Date ())
21

which results in the state:

Note the call to the Date constructor also: this will create a date object corresponding to the date and
time at which the call is executed. Here’s a more interesting class:

class Account {
String name;
Vector transv;
int balance;
Account (String n) {

transv = new Vector ();
balance = 0;
name = n;
}

boolean checkTrans (Trans t) {
return (balance + t.amount >= 0);
}

void post (Trans t) {
transv.addElement (t);
balance += t.amount;
}

}

In addition to the constructor, we have a method for posting a transaction, and a method (to be
called first) that checks whether a transaction is allowed. The transactions are stored in a vector.

What’s the result of this code?

Account a = new Account (“Zeeb”);
Trans t = new Trans (100, new Date ());
if (a.checkTrans (t))

a.post (t);

�7UDQV� �'DWH�

����

GDWH

DPRXQW

W

22

It results in a state shown in this object diagram:

Often, we’ll want to elide collection objects such as the vector and only show the more interesting
user defined objects. The Vector is part of the representation of the Account object, and a client that
calls the methods of Account sees only a Trans and not the Vector itself. So we might draw this dia-
gram

in which the abstract field arrow labelled trans from the Account object to the Trans object hides the
Vector. This isn’t actually new; we did the same thing with Vector itself, not showing that it was imple-
mented with an array.

Many states can be created using these classes, but not all of them will be desirable. Three are shown
below. In the first, two Accounts share a name; this will mean that names cannot be used as unique
identifiers. In the second, two transactions in an account have the same Date object (and are thus
recorded as happening simultaneously). In the third, a transaction belongs to two accounts. Whether
these are in fact problematic depends on the intent of the designer of these classes, and the properties
of the problem domain. So we can’t say for sure whether these configurations are right or wrong. Our
interest in this lecture is just raising the issue, and showing how we can record a decision in an object
model. The crucial point is that the code itself does not indicate how it is to be used, so in addition to
succinctly summarizing some code features (such as which classes and fields there are), the object
model adds constraints about potential clients of the code.

In these diagrams, I’ve omitted the variable bindings and the primitive values, which are less relevant
than the objects. It will often be convenient to draw object diagrams and object models that corre-
spond to only part of the state, and sometimes we will even omit objects.

�7UDQV� �'DWH�

���

GDWH

DPRXQW

W

�$FFRXQW�

D

HOWV>@�9HFWRU�WUDQVY

�6WULQJ�

QDPH

�7UDQV� �'DWH�

���

GDWH

DPRXQW

W

�$FFRXQW�

D

WUDQV

�6WULQJ�

QDPH
23

Sometimes we will want to talk about the representations of objects, and for these we will not want to
elide intermediate objects, such as the vector. The diagrams below show two problematic states that
might arise. Both can be created by clients of the code we have seen, but both should not be. The first
embodies a rather subtle problem. If two Account objects share a vector, an execution of the post
method on one will cause a transaction to tbe added to the vector, but the balance of only one of the
Accounts to be updated. This will violate a ‘representation invariant’ that the balance should always
be the sum of the amounts of the transactions in the vector. Later, we will describe this problem as a
‘representation exposure’, in which part of the representation of an Account object -- its vector -- has

�7UDQV� �'DWH�GDWH�$FFRXQW� WUDQV

�6WULQJ�

QDPH

�7UDQV� �'DWH�GDWH�$FFRXQW� WUDQV

QDPH

�$FFRXQW�

WUDQV

�6WULQJ�

QDPH

�7UDQV� �'DWH�GDWH�$FFRXQW� WUDQV

�6WULQJ�

QDPH

�7UDQV�

�'DWH�

GDWH
�$FFRXQW� WUDQV>�@

�6WULQJ�

QDPH

�7UDQV�

WUDQV>�@

GDWH
24

leaked out, and become accessible from the outside, thus compromising the invariant. The second is
simpler: it shows a violation of the representation invariant that the transaction vector should only
hold Trans objects. Both of these states can be prevented by using Java language mechanisms, and by
coding the Account class more carefully.

3.2 Object Models of Code

We can summarize a set of states with an object model:

Each box corresponds to a class: it represents the set of all objects that belong to that class (in some
given state). The arrows are relations, sometimes called associations, and they represent the fields
that connect classes. For example, the arrow labelled transv from Account to Vector shows that each
object of the Account class has a field whose value is a Vector object.

The object model specifies a set of object diagrams, by imposing the constraint that each object in
the diagram belong to one of the object model boxes, and that any field arrow in the object diagram
connect objects from the appropriate boxes. So our object model allows, for example, this state:

but not this state:

Note that the object model (at least without multiplicity constraints, which we’ll talk about below)
can’t require that any object or field be present; it says what cannot be present. The model above

$FFRXQW 9HFWRU 7UDQV 'DWH

6WULQJ

WUDQVY

QDPH

HOWV>@ GDWH

������
�� �������� � ��
�����
�� ����!"#

������
�� �$����%���
25

places no constraints on the relative numbers of objects, so it admits crazy states such as:

which the code clearly rules out.

Even this simple object model is a bit more subtle than it might first appear to be. Although Account
represents all objects of that class, Vector will not represent all objects of the class Vector. Different
vectors hold different types of object. We’ll come back to this later; it’s called polymorphism. So while
we would never expect to see two boxes labelled “Account” in an object model, we might have two
boxes labelled “Vector”. For example, we might have a Bank class with a field accsv holding a vector
of Account objects:

When this happens, it’s convenient to annotate the polymorphic class with the class of its elements:
Vector [Account], for example, means that the box represents Vectors that hold Account objects.

How do we know that the Vector associated with the Account object always holds Trans objects and
not any other kinds of object? Last time we saw that we can call addElement on a String, for example.
Well, we see that the only call to addElement in the code of Account takes an object that has been
declared to be a Trans. That doesn’t actually clinch it though. It’s possible to add an object to the vec-
tor from the outside:

Account a = new Account (“Zeeb”);
a.transv.addElement (“Zork”);

This is bad, because presumably we’re planning to add other methods to Account that will do things
to the transactions, and such methods will fail if there are elements of the vector that aren’t transac-
tions. In a future lecture, we’ll talk about how to prevent this kind of thing from happening; it’ll rely
both on Java language mechanisms and a strategy for building abstract datatypes.

In the same way that we abstracted away Vectors in the object diagram, we can abstract away the Vec-

�$FFRXQW� �9HFWRU� �7UDQV�WUDQVY HOWV>�@

�'DWH�

�'DWH�

GDWH

GDWH

$FFRXQW
9HFWRU

>7UDQV@
7UDQVWUDQVY HOWV>@

%DQN
9HFWRU

>$FFRXQW@
DFFVY

HOWV>@
26

tor class in the object model:

3.3 Multiplicity

This model doesn’t constrain how many objects there are of each class in relation to one another. For
example, we might want to say that an Account can have several Trans objects, but a Trans can have
only one Date. Multiplicity annotations let us do this.

The multiplicity symbols are: * (zero or more), + (one or more), ? (zero or one) and ! (exactly one).
When a symbol is omitted, * is the default (which says nothing). The interpretation of these mark-
ings is that when there is a marking n at the B end of a relation R from class A to class B, there are n
objects of class B associated by R with each A. It works the other way round too; if there is a marking
m at the A end of a relation R from A to B, each B is mapped to by m objects of class A.

Now we can add multiplicity constraints to our model:

Let’s look at each of the multiplicity symbols and see what it tells us. We’ll start with those on the tar-
get ends, because they’re easier to understand
· Account to Vector. The ! on the head of the arrow from Account to Vector tells us that in any legal

state, there is exactly one Vector object associated with each Account object. In other words, the
transv field is never null.

· Vector to Trans. The lack of a symbol, equivalent to *, tells us that there are zero or more Trans
objects in the Vector.

· Trans to Date. The ! tells us that the date field of Trans is non-null.

$FFRXQW 7UDQV 'DWH

6WULQJ

WUDQV>@

QDPH

GDWH

� �&
�

$FFRXQW 9HFWRU 7UDQV 'DWH

6WULQJ

WUDQVY

QDPH

HOWV>@ GDWH
� �

�

"

27

Now let’s consider the symbols on the sources of the arrows:
· Account to Vector. The ? on the tail of the arrow from Account to Vector tells us that each of these

Vector objects is associated with at most one Account object. That is, Account objects don’t share
Vectors: two different Account objects must have different transv fields.

· Vector to Trans. The lack of a symbol says that each Trans may belongs to any number of Vectors,
so even though each Vector belongs to at most one Account, a Trans may be shared between
Accounts.

· Trans to Date. Again, the lack of a symbol says that two Trans objects may share the same Date.

Sometimes multiplicity constraints are enforced by the code. In this case, none of these are . It is pos-
sible to write code that uses the classes we have defined to create states that violate these constraints.
As a simple example, we can set the date field of a Trans to null. We’ll see later how we can enforce
some of these constraints in the code of the classes themselves by using mechanisms built into Java:
to enforce this one, we can make the date field private so that only the constructor sets it, and it guar-
anteed never to be assigned the null reference.

There are some constraints that cannot be enforced like this however, and for these the object model
is even more valuable (because it says something that can’t be said in the code). For example, we
might decide that no two Trans objects can occur at exactly the same moment, so that we can always
say of two Trans objects which is earlier. We can express this by placing a ? on the source end of the
date arrow from Trans to Date. Similarly, we might want Account objects to be uniquely identified by
their name fields. In both cases, these constraints cannot be conveniently enforced within the classes
themselves. Instead, we will ensure that they hold by careful design of collaborations amongst
objects.

3.4 Mutability

An object model can also show mutability information: how the relationships between objects are
allowed to change. We expect transactions to be added to an account, but we don’t expect the vector
holding the transactions to be replaced. This can be shown in the object model by marking the end
of the arrow from Account to Vector with a small hatch:

This means that the Vector associated with a given Account is fixed over the lifetime of that Account:
it’s set on creation (in the constructor) and not changed subsequently. Of course, the contents of the
vector can change: those are determined by the arrow from Vector to Trans instead.

When the right end of a relation is hatched, the relation is said to be right static. Should the name
relation from Account to String be right static too? There’s nothing in the code of Account that pre-
vents the name from being changed, but it seems like a reasonable constraint to impose.

Relations can be left static too. We can put a hatch on the left end of the arrow from Account to Trans,

�����
� ���������
��
28

like this:

This would say that which Account is associated with a given Vector does not change over the lifetime
of the Vector. This is subtly different from the constraint implied by the hatch on the other end of the
arrow: it means that if an account object is no longer used (and subsequently garbage collected by
the Java runtime environment), the vector cannot be reused. Our implementation satisifies this,
since the constructor always creates a fresh vector rather than reusing an old one.

3.5 Extending a class with inheritance

Suppose we want to implement a new kind of account that allows overdrafts. We might call it
AccountPlus, and code it like this:

class AccountPlus extends Account {
int creditLimit;
AccountPlus (String n, int c) {

super (n);
creditLimit = c;
}

boolean checkTrans (Trans t) {
return (balance + creditLimit + t.amount >= 0);
}

void bump (int i) {
creditLimit += i;
}

}

The keyword extends indicates that the implementation of AccountPlus extends the implementation
of Account by adding some new features. AccountPlus is said to inherit features from Account;
AccountPlus is a subclass of Account, and Account is a superclass of AccountPlus.

There is a new field, creditLimit, and a new method, bump, which increases the credit limit. Because
a new AccountPlus object needs to have the new field initialized, AccountPlus must have its own
constructor; this actually calls the constructor of Account (see Java text for details of this slightly
strange syntax). All the other methods and fields of Account are implicitly present in AccountPlus.

The method checkTrans appears again in AccountPlus, with different code in its body. This is called
overriding. When the code acc.checkTrans is executed, which method actually gets called will depend
on whether the object referenced by acc is an Account object or an AccountPlus object. The method
call is said to be dynamically resolved.

At runtime, each object has a type, equal to the class whose constructor created it. A variable that
appears in the code also has a type, given by its declaration at compile-time. At runtime, a variable

$FFRXQW 9HFWRUWUDQVY
29

can refer to an object whose type is not the variable’s type; it is sufficient that the object type be a sub-
class of the variable type.

(For now, by the way, we’re using the term type to mean classification by class name, to distinguish it
from the term class which usually carries the connotation of the code in the class too. Later in the
course, we’ll be more precise about what type means.)

Sometimes, it will be clear in the code what type an object will have at runtime:

AccountPlus acc = new AccountPlus (“Zeeb”, 100);
Trans t = new Trans (100, new Date ());
if (acc.checkTrans (t))

acc.post (t);

In this case, since acc is declared to be of type AccountPlus, and AccountPlus has no subclasses, we
know that the method of AccountPlus will be called.

Suppose we want to handle a collection of accounts. We might have a Bank class, implemented some-
thing like this:

class Bank {
Account [] accounts;
...
void chargeMonthlyFee () {

for (int i = 0; i < accounts.length; i++) {
Trans fee = new Trans (-1, new Date ());
if (accounts[i].checkTrans (fee))

accounts[i].post (fee);
}

}
...
}

A bank object holds an array of Account objects. An array is an object just like a Vector, but it can’t
grow or shrink dynamically. This Bank is unusual: it doesn’t hit you when you’re down. If deducting
the monthly fee would take you below your limit, it won’t do it.

The method chargeMonthlyFee works whether the accounts in the array are regular accounts (in the
Account class), or special accounts (in the AccountPlus class). The reason is that the declared type
given in the code says only that the object at runtime will belong to that class or one of its subclasses.
But at runtime, which method is selected will depend on the runtime type of the object. This code is
said to be ‘polymorphic’, meaning ‘many shapes’, since the same piece of code text can handle differ-
ent types of account. If the accounts array contains two objects of the class Account, and a third
object of class AccountPlus, the first and second time round the loop the call to the method check-
Trans will execute code from Account, but the third time round, it will execute the code from
AccountPlus. The call to post will always call the same code, since it appears only once (in Account),
although sometimes it will be called for an Account object, and sometimes an AccountPlus object.

Question: which constraint of the object model (of those we discussed) would be violated if the state-
30

ment

Trans fee = new Trans (-1, new Date ());

were hoisted out of the loop, and done just once at the start of chargeMonthlyFee?

3.6 A Template Method

Instead of making the client of the account class call the checkTrans method, we could call it inside
the post method like this:

boolean post (Trans t) {
if (!checkTrans (t)) return false;
transv.addElement (t);
balance += t.amount;
return true;
}

Look at the context this method sits in:

class Account {
boolean post (Trans t) {...}
boolean checkTrans (Trans t) {...}
}

class AccountPlus extends Account {
boolean checkTrans (Trans t) {...}
}

Which checkTrans method gets called inside post? It depends on the runtime type of the receiver.
Although post belongs to the class Account, we cannot assume that self will be an object whose
dynamic type is Account. Since the post method is not overridden in the subclass, executing acc.post
when acc is an AccountPlus object will cause the post method of Account to be executed; inside it,
the checkTrans method of AccountPlus will then be called. So although the post method only
appears in the code once, it actually behaves differently for AccountPlus and Account objects.

3.7 Downcasting

Arrays aren’t very convenient to program with, since they can’t grow or shrink. Suppose we imple-
ment Bank with a vector or accounts instead:

// bad code!
class Bank {

Vector accounts;
...
void chargeMonthlyFee () {

for (int i = 0; i < accounts.size(); i++) {
Trans fee = new Trans (-1, new Date ());
if (accounts.elementAt (i).checkTrans (fee))
31

accounts.elementAt (i).post (fee);
}

}
...
}

Vectors are provided as part of the standard Java library, but they’re not part of the language itself. So
there’s no special syntax to access a vector element: you have to call a method (here, elementAt (i) to
get the ith element). Also, when you declare a Vector, you can’t say what it’s a vector of. The elemen-
tAt method has this signature:

Object elementAt (int i)

It returns an object of class Object, the superclass of all classes.

So there’s no way to know that the expression accounts.elementAt(i) will actually evaluate to an
Account or an AccountPlus object. For this reason, the code above will actually be rejected by the
Java compiler. Instead we have to write this:

void chargeMonthlyFee () {
for (int i = 0; i < accounts.size(); i++) {

Trans fee = new Trans (-1, new Date ());
if (((Account) accounts.elementAt (i)).checkTrans (fee))

((Account) accounts.elementAt (i)).post (fee);
}

or better

void chargeMonthlyFee () {
for (int i = 0; i < accounts.size(); i++) {

Trans fee = new Trans (-1, new Date ());
Account acc = (Account) accounts.elementAt (i);
if (acc.checkTrans (fee))

acc.post (fee);
}

The (Account) on the fourth line is called a downcast. At runtime, it checks that the object returned
by the expression belongs to Account or one of its subclasses. If it does, execution continues nor-
mally; if it does not, the program is terminated with a ClassCastException. We’ll talk about excep-
tions in our next lecture. For now, it’s important just to understand that if execution continues at the
next line, the object bound to acc is guaranteed to be of class Account or AccountPlus, and must
therefore have the post method. So the Java compiler will accept this code, since the presence of the
downcast ensures that there will be no attempt to call a method that does not exist.

People are often confused about downcasts, and think that some kind of conversion is taking place.
This is not true. The downcast is simply a test; no change to the object occurs.
32

3.8 Subclassing in the Object Model

Here’s an object model that includes the relationship between Account and AccountPlus. A closed
arrowhead from A to B says that every A is a B, or that the set of objects denoted by A is a subset of
the set denoted by B. This can arise either because A is a subclass of B, or because A implements the
interface B (more on that later).

Because every AccountPlus is an Account, the field from Account to Trans also implicitly associates
AccountPlus objects with Trans objects. So the model allows states in which AccountPlus objects
have trans fields. Likewise, the multiplicity constraints are ‘inherited’. If we have a constraint that
says that no two Account objects can share a Trans, then this will mean that no two AccountPlus
objects can either, nor an Account object and an AccountPlus object.

In a more elaborate system, we might subclass Trans too:

This object model shows that different subclasses may have different fields. Transfer transactions
hold a reference to the other Account; Fee transactions may point to another transaction for which
the fee was charged; Regular transactions have neither. The filled in arrowhead indicates that in this
case the subsets exhaust the superset: namely that every transaction belongs to one of the subclasses.
In implementation terms, this will imply that Trans is an interface or an abstract class.

3.9 Static class members

Suppose we want to have a maximum credit limit allowed in special accounts. We can declare a static
field, maxCreditLimit, in AccountPlus like this:

class AccountPlus extends Account {
static int MAX_LIMIT;
int creditLimit;

$FFRXQW 7UDQV 'DWH

6WULQJ

WUDQV>@

QDPH

GDWH

$FFRXQW3OXV

�����
� ��
����
�!#

�����
�'��� ��
�(�� &������)��

(��
��*��

"

�

33

...
}

Being static means that there will be one value of MAX_LIMIT for the class as a whole; the field cred-
itLimit, in contrast, has a value for each object of the class.

Sometimes, we only want to create a singleton object: we want it to belong to a class, since the object
has code associated with it, but the class should contain no other objects. Here’s an example:

class Bank {
static Bank theBank = new Bank ();
Vector accounts;
...
}

The static variable theBank is initialized by creating a single Bank object and assigning it to the vari-
able. We can now refer to this object as Bank.theBank; we’ll see later that Java provides mechanisms
that will allow us to hide the constructor, so that it’s not even possible for a client of the Bank class to
create other Banks.

To show this singleton in the object model, we use a multiplicity markings in the box labelled Bank,
to show that it contains exactly one object:

Other multiplicity constraints on classes are illustrated in the technical note on Code Object Models.

3.10 Summary

We have had a brief tour of some fundamental notions of object-oriented programming:
· subclassing and inheritance
· dynamic resolution of method calls
· downcasts
· static members

We have also seen all the elements of code object models:
· sets and subsets
· field arrows, concrete and abstract
· multiplicity
· mutability

We saw how the object model captures succinctly some properties that are evident from the code, but
can also express constraints that are intended by the designer of a class (or collection of classes), but
which cannot be enforced using language mechanisms. This is another reason that object models are
a more useful design notation than code or code sketches.

$FFRXQW 7UDQVWUDQV>@%DQN�� DFFV>@
34

Lecture 4: Exceptions

In this lecture, we’ll look at Java’s exception mechanism. As always, we’ll focus more on design issues
than the details of the language, which can be found in one of the recommended Java texts. We’ll dis-
cuss the general issue of making your code more robust with runtime assertions; how to use excep-
tions for communicating back to callers of a method, even in non-failure situations; and how to
decide whether to use checked or unchecked ex ceptions.

4.1 Defensive Programming

Suppose you are designing a compiler. Since the compiler is under constant development, and is
large and complex, it is likely to contain some bugs despite your best efforts. Defensive programming
is a way to mitigate the effects of bugs without knowing where they are. Adopting defensive strategies
is not an admission of incompetence. Although any large program is likely to have bugs in it, even a
bug-free program can benefit from defensive programming. You may have to deal with a database
that may occasionally be corrupted. It would be too hard to predict every possible form of corrup-
tion, so you take a defensive strategy instead.

Here’s how defensive programming works. When you’re writing some code, you figure out condi-
tions that you expect to hold at certain points in the code; these are called invariants and we’ll have a
lot more to say about them later. Then, rather than just assuming that these conditions hold, you test
for them explicitly. If a condition is false, you abort the computation.

For example, suppose that in your compiler you maintain a vector of symbols, and some other vec-
tors, each of which contains objects holding information about symbols.

class Symbols {
Vector symbols;
Vector types;
Vector positions;
...
}

To access the information for a given symbol, you have to access the element of the information vec-
tor with the same index. Given a symbol sym, to obtain its type for example, we take the element of
the types vector in the same position:

int i = symbols.indexOf (sym);
Type t = types.get (i);

This code will only work if the symbol being looked up is indeed in the symbols vector, and if the two
vectors have the same length, so that the indexing in the second statement succeeds. If the second
statement fails, then something has gone wrong, and it is unlikely that the compiler will be able to
generate correct code. So it would be best to waste no more resources and terminate the program
immediately. In fact, we can do better and notice the problem after the first statement.

We do this by inserting a runtime assertion:
35

int i = symbols.indexOf (sym);
if (! (i >= 0))

System.exit (1);

...
Type t = types.get (i);

If the call to indexOf returns -1, indicating that the symbol is not in the vector, we terminate the
entire compiler by calling the special method exit of the System class.

To make runtime assertions easy to write, most programmers define a procedure, so they can write,
for example:

assert (i >= 0)

This also demonstrates the documentation value of assertions. Even if they are not executed, they
help someone reading the code immeasurably to understand what it’s doing.

Two important questions arise:
· Where and what kind of runtime assertions are best?
· How should you abort execution?

4.2 Runtime Assertions

We’ll have much more to say later in the course about what runtime assertions to write (when we
study preconditions and representation invariants). There are some useful general guidelines
though.

First, runtime assertions shouldn’t be used as a crutch for bad coding. You want to make your code
bug-free in the most effective way. Defensive programming doesn’t mean writing lousy code and
peppering it with assertions. If you don’t already know it, you’ll find that in the long run it’s much less
work to write good code from the start; bad code is often such a mess it can’t even be fixed without
starting over again.

When should you write runtime assertions? As you write the code, not later. When you’re writing the
code you have invariants in mind anyway, and writing them down is a useful form of documenta-
tion. If you postpone it, you’re less likely to do it.

Runtime assertions are not free. They can clutter the code, so they must be used judiciously. Obvi-
ously you want to write the assertions that are most likely to catch bugs. Good programmers will
typically use assertions in these ways:
· At the start of a procedure, to check that the state in which the procedure is invoked is as

expected. This makes sense because a high proportion of errors are related to misunderstandings
about interfaces between procedures. You’ll understand this better when we walk about precondi-
tions.

· At the end of a complicated procedure, to check that the result is plausible. In a procedure that
computes square roots for example, you might write an assertion that squares the result to check
that it’s (roughly) equal to the argument. This kind of assertion is sometimes called a self check.
36

· When an operation is about to be performed that has some external effect. For example, in a
radiotherapy machine, it would make sense to check before turning on the beam that the inten-
sity is within reasonable bounds.

Runtime assertions can also slow execution down. Novices are usually much more concerned about
this than they should be. The practice of writing runtime assertions for testing the code but turning
them off in the official release is like removing seat belts from a car after the safety tests have been
performed. A good rule of thumb is that if you think a runtime assertion is necessary, you should
worry about the performance cost only when you have evidence (eg, from a profiler) that the cost is
really significant.

Nevertheless, it makes no sense to write absurdly expensive assertions. Suppose, for example, you are
given an array and an index at which an element has been placed. It would be reasonable to check
that the element is there. But it would not be reasonable to check that the element is nowhere else, by
searching the array from end to end: that might turn an operation that executes in constant time into
one that takes linear time (in the length of the array).

4.3 Responding to Failure

Now we come to the question of what to do when an assertion fails.

You might feel tempted to try and fix the problem on the fly. This is almost always the wrong thing to
do. It makes the code more complicated, and usually introduces even more bugs. You’re unlikely to
be able to guess the cause of the failure; if you can, you could probably have avoided the bug in the
first place.

On the other hand, it often makes sense to execute some special actions irrespective of the exact
cause of failure. You might log the failure to a file, and/or notify the user on the screen, for example.
In a safety critical system, deciding what actions are to be performed on failure is tricky and very
important; in a nuclear reactor controller, for example, you probably want to remove the fuel rods if
you detect that something is not quite right.

Sometimes, it’s best not to abort execution at all. When our compiler fails, it makes sense to abort
completely. But consider a failure in a word processor. If the user issues a command that fails, it
would be much better to signal the failure and abort the command but not close the program; then
the user can mitigate the effects of the failure (eg, by saving the buffer under a different name, and
only then closing the program).

How do you structure an abort of a command in the code? With the mechanisms we’ve seen so far,
it’s extremely tedious. You’d need to give each procedure a special return value that indicates whether
it succeeded or failed, then at every call you’d need to check this value. When a procedure call fails,
the calling procedure must then itself return a failure value. Your code will look something like this:

boolean p (...) {
boolean success = q (...);
if (!success) return false;
success = r (...);
37

if (! success) return false;
...
}

Aside from being tedious (and depriving you of additional return values -- a big problem in a lan-
guage that only allows one return value), this approach has a serious modularity problem. Suppose
there is some part of the program that is expected not to fail, and is thus not coded in this special
style. Now you make some change deep in the procedure call hierarchy, introducing a procedure that
might fail. Now its caller, and the caller of its caller, and so, all the way to the top, must be modified.
Aaagh!

4.4 Non-local Jumps

What we need is a mechanism for making a non-local jump. Look at this code:

class Symbols {
Vector symbols;
Vector types;
Vector positions;
Type getType (Symbol s) {

int i = symbols.indexOf (s);
if (! (i >= 0))

throw new RuntimeException (“getType”);
}

...
}

class Compiler {
Symbols symbols;
...
void compile () {

try{
parse ();
typecheck ();
optimize ();
generate ():
}

catch (RuntimeException e) {
System.out.println (“Failed at: “ + e.getMessage ());
}

}
void typeCheck () {

...
Type t = symbols.getType (s);
...
38

}
}

This code shows how exceptions can be used in our compiler to do abort without killing the entire
execution. Even in the compiler this is useful, because it lets us print an informative error message. If
the assertion in getType fails, an exception is ‘thrown’. This not only causes the execution of getType
to abort, but also the execution of typeCheck, its caller. Execution of each caller in the call stack is
aborted, until a method such as compile is reached that has a handler for the exception. Now control
is transferred to the handler, labelled catch, and its code is executed.

The throw command doesn’t just transfer control: it passes an object along too. This allows informa-
tion about a failure to be passed. The constructor for the exception takes a message string which is
extracted in the handler. Here we’ve used it to convey information about where in the code the failure
occurred. This is a common strategy; you can make it more useful by adding more details, such as
the particular symbol that was looked up.

4.5 Exceptions for Special Results

Exceptions are not just for handling failures. They can be used to improve the structure of code that
involves procedures with special results.

A standard way to handle special results is to return special values. Lookup operations in the Java
library are often designed like this: you get an index of -1 when expecting a positive integer, or a null
reference when expecting an object. This approach is OK if used sparingly. It has two problems
though. First, it’s tedious to check the return value. Second, it’s easy to forget to do it. We’ll see that
with exceptions you can get help from the compiler in this.

(Why is Java designed like this? Probably because its inventors viewed exceptions as things to be used
in exceptional cases, and not routinely. CLU, the language in which 6170 used to be taught, invented
here at MIT by Barbara Liskov, supported a more pervasive use of exceptions. Programs in CLU used
exceptions whenever a procedure’s behaviours could not be easily accommodated by a single type of
return value. CLU implemented exceptions very efficiently, so that when they were not thrown, the
overhead was minimal. It also had a very lightweight syntax for exception handlers. Unfortunately,
exceptions are expensive both in runtime and in programmer effort in Java. A friend of mine mea-
sured the cost of writing a loop that iterates over the elements of an array in two ways: one terminat-
ing by checking the index with a conditional expression, the other terminating by catching an array
out of bounds exception. Throwing and catching the exception cost about the equivalent of 500 loop
iterations.)

Sometimes its not easy to find a ‘special value’. Suppose we have a BirthdayBook class with a lookup
method. Here’s one possible method signature:

Date lookup (String name)

What should the method do if the birthday book doesn’t have an entry for the person whose name is
given? Well, we could return some special date that is not going to be used as a real date. Bad pro-
grammers have been doing this for decades; they would return 9/9/99, for example, since it was obvi-
39

ous that no program written in 1960 would still be running at the end of the century.

Because of this, some pundits predicted failures on September 9th last year. The Wall Street Journal
reported that 9/9/99 was a non-event, although there were apparently a few incidents that may be
attributable to this bug, including a banking failure. See the following entries in the RISKS forum:
· http://catless.ncl.ac.uk/Risks/20.55.html#subj5.1
· http://catless.ncl.ac.uk/Risks/20.60.html#subj8.1

Here’s a better approach. The method throws an exception:

Date lookup (String name) throws NotFoundException {
...
if // not found

throw new NotFoundException ();
...

and the caller handles the exception with a catch clause. Now there’s no need for any special value,
nor the checking associated with it.

Novice Java programmers often make the mistake of using null references as special values. Be
warned that this is a bad idea, and can lead to code riddled with null dereferencing problems.

4.6 Checked and Unchecked Exceptions

We’ve seen two different purposes for exceptions: failures and special results. Java provides two dif-
ferent kinds of exception for these two purposes. They behave the same at runtime; the only differ-
ence is what kind of checking the compiler provides.

If a method might throw a checked exception, the possibility must be declared in its signature. Not-
FoundException would be a checked exception, and that’s why the signature ends throws NotFoun-
dException. If a method calls another method that may throw a checked exception, it must either
handle it, or declare the exception itself (since if it isn’t caught locally it will be propagated).

So if you call the lookup method and forget to handle the exception, the compiler will reject your
code. This is very useful, because it ensures that exceptions that are expected to occur should be han-
dled. On the other hand, exceptions that correspond to failures are not expected to be handled
except at the top level, and for reasons of modularity, we wouldn’t want to declare the possibility of
failure at every level.

For an unchecked exception, in contrast, the compiler will not check for try-catch or a throws decla-
ration. Java still allows you write a throws clause as part of a signature for an unchecked exception,
but this has no effect (and is thus a bit funny, and I don’t recommend doing it).

How do you create these two kinds of exception? By using different built-in classes, or subclassing
them to create your own exception classes. The object model is shown below.

The superclass of all errors and exceptions is Throwable. It has two direct subclasses, Exception and
Error. All subclasses of Exception, bar RuntimeException and its subclasses, are checked. The rest --
that is, Error and RuntimeException and their subclasses -- are unchecked. You may wonder why
40

there isn’t a simply division into two classes at the top level, one checked and one unchecked. The
reason is that Error is designed to be used for exceptions a program is not expected to catch, since
recovery is impossible: these included virtual machine errors, such as running out of memory. Runt-
imeException, on the other hand, is used for bad things that you might well catch, such as arithmetic
overflows and class cast errors.

All errors and exceptions may have a message associated with them. If not provided in the construc-
tor, the reference to the message string is null.

4.7 Built-in Java Exceptions

The subclasses of Error will not generally concern you, since there’s not much you can do about
them. If you run out of memory, you might try just increasing the heap size at the command line. On
the other hand, you may actually be using more memory than you really need, because you have a
‘conceptual memory leak’, in which you’re creating lots of objects that never get used after some
point, but which can’t be garbage collected because they are reachable (eg, because you put them in a
table that is reachable).

The subclasses of RuntimeException are more relevant in 6170, and worth studying, because they
represent common bugs:
· ArithmeticException: eg, if you divide by zero
· IndexOutOfBoundsException: accessing an array or vector with a bad index
· NullPointerException: calling a method with a null reference as receiver

7KURZDEOH

([FHSWLRQ (UURU

9LUWXDO0DFKLQH
(UURU

2XW2I0HPRU\
(UURU

+++5XQWLPH
([FHSWLRQ

$ULWKPHWLF
([FHSWLRQ

1XOO3RLQWHU
([FHSWLRQ

+++0\8QFKHFNHG
([FHSWLRQ

0\&KHFNHG
([FHSWLRQ

6WULQJPHVVDJH
"

41

· ClassCastException: thrown by ((T) e), when expression e does not evaluate to a T

4.8 User-Defined Exceptions

You will want to define your own exceptions. Let’s take a second look at the compiler example. We
threw RuntimeException on assertion failure, and caught it at the top level. But suppose somewhere
in our code an ArithmeticException is thrown, and is not caught anywhere else. Our top level han-
dler for RuntimeException will catch this, since ArithmeticException is a subclass of RuntimeExcep-
tion. This is called “capture”: our handler is unexpectedly catching other exceptions. In this case, it
may not be too bad, but in general, we want to make sure that inadvertent capture does not occur.

We therefore define our own exceptions, and make the handlers more specific. So instead of throw-
ing RuntimeException in this case, we would thrown our own failure exception:

class Symbols {
Vector symbols;
Vector types;
Vector positions;
Type getType (Symbol s) {

int i = symbols.indexOf (sym);
if (! (index >= 0))

throw new FailureException (“getType”);
}

...
}

class Compiler {
Symbols symbols;
...
void compile () {

try{
typecheck ();
...

}
catch (FailureException e) {

System.out.println (“Failed at: “ + e.getMessage ());
}

}
}

defined like this:

class FailureException extends RuntimeException {}
42

4.9 Handling Exceptions

A try statement can have several catch clauses:

try {
statement;
}

catch (Exception1 e1) {handler1;}
...
catch (ExceptionN eN) {handlerN;}

If the statement raises an exception, each catch clause is tested in turn until one is found whose
exception class matches the class of the thrown exception object. That is, if the thrown exception has
class E, we find the kth clause such that Ex ceptionK is a superclass of E. Equivalently, we find the first
handler variable to which the exception object can be assigned. The exception is bound to the vari-
able, and the handler is executed. If no handler is found, the exception is ‘reflected’ -- propagated to
the next enclosing try statement, or by having the method throw the exception again. There is also a
finally clause that holds code to be executed after any handler: read about it in a Java text.

A handler can itself throw an exception. This is often appropriate, when the exception being handled
is not at the right level of abstraction for the caller. For example, a caller of a method called lookup
should receive a NotFoundException, not a NullPointerException. Often the handler ‘masks’ the
exception, by causing control to continue normally (eg, by printing a message and carrying on).

4.10 Design Considerations

The rule we have given -- use checked exceptions for special results, and unchecked exceptions to
signal failures -- makes sense, but it isn’t the end of the story. The snag is that exceptions in Java aren’t
as lightweight as they might be (compared to CLU, a language which, like Algol-60, was ‘an improve-
ment on most of its successors’).

Aside from the performance penalty, exceptions in Java incur another (more serious) cost: they’re a
pain to use. If you design a method to have its own exception, you have to create a new class for the
exception. If you call a method that can throw a checked exception, you have to wrap it in a try-catch
statement (even if you know the exception will never be thrown). This latter stipulation creates a
dilemma. Suppose, for example, you’re designing a queue abstraction. Should popping the queue
throw a checked exception when the queue is empty? Suppose you want to support a style or pro-
gramming in the client in which the queue is popped (in a loop say) until the exception is thrown. So
you choose a checked exception. Now some client wants to use the method in a context in which,
immediately prior to popping, the client tests whether the queue is empty and only pops if it isn’t.
Maddeningly, that client will still need to wrap the call in a try-catch statement.

This suggests a more refined rule (see course text, p 73):
· You should use an unchecked ex ception only if you expect that clients will usually write code that

ensures the exception will not happen, because there is a convenient and inexpensive way to avoid
the exception, or because the exception reflects unexpected failures;

· Otherwise you should use a checked exception.
43

The cost of using exceptions in Java is one reason that many Java API’s use the null reference as a
special value. It’s not a terrible thing to do, so long as it’s done judiciously, and carefully specified.

4.11 Safe Languages

Exceptions are an important part of the design of a ‘safe’ programming language. Safe languages
aren’t (unfortunately) ones in which buggy programs can’t be written. They’re simply languages that
are designed so that errors of a certain sort are never masked: they are either caught by the compiler
(which is ideal, because then they can never occur), or caught at runtime as soon as they happen.

There is a ctually one respect in which safe languages do prevent the writing of buggy code. Memory
management errors, such as deallocating the storage associated with an object prior to its last use,
cannot occur in Java because memory is managed automatically by the virtual machine, and the pro-
gammer does no explicit deallocation.

An important consequence of safety is that the behaviour of the code can always be predicted. In
Java, when you’re coding a method that takes an argument of class X, you can assume that at runtime
the object bound to the argument will belong to a subclass of X. The type system guarantees it. But in
the C programming language, such assumptions are invalid. Because code can write to arbitrary
memory locations (eg, by exceeding the bounds of an array), there are no guarantees that objects are
well formed. Strings are by convention terminated with a special value in C, but you cannot assume
that a string argument is correctly terminated. In Java, on the other hand, a string argument will
always be a well formed string, on which the string methods behave predictably.

The errors that are prevented by safe languages are most of the errors that are due to program ‘anom-
alies’: that is, they are faults in the code that can be identified without any knowledge of what the pro-
gram is supposed to do. They include: type errors, such as adding a string to an integer, or calling a
method on an object that doesn’t exist; array bounds errors; returning from a method without a
value when one is required; failing to initialize a variable; etc.

To find errors at compile time, the compiler must be conservative, which means that sometimes it
will reject programs that would not have failed. For example, a Java compiler won’t allow this

int m () {code_later ();}
void code_later () {throw new RuntimeException (“unimplemented”);}

and will complain that m does not return a value, even though the call in the method m will always
cause the exception to be thrown so it should not matter. To find errors at runtime, the compiler will
usually insert checks. Your downcasts, for example, will be checked at runtime. Because of an oddity
in the design of arrays in Java, it also turns out that to enforce safety (for a reason we may discuss
later in the context of subtyping and subclassing), a downcast is performed every time an array ele-
ment is stored.

In practice, these are small prices well worth paying for the increase in reliability they produce. If an
error does occur, they also tend to make it less damaging (by terminating the program before dam-
age is done), and easier to trace.

Safe languages have been around since 1960. Famous safe languages include Algol-60, Pascal, Mod-
44

ula, LISP, CLU, Ada, ML, and now Java. It’s interesting that for many years industry claimed that the
costs of safety were too high, and that it was infeasible to switch from unsafe languages (like C++) to
safe languages (like Java). Java benefited from a lot of early hype about applets, and now that it’s
widely used, and lots of libraries are available, and there are lots of programmers who know Java,
many companies have taken the plunge and are recognizing the benefits of a safe language.

4.12 A Cautionary Tale

Exceptions are not a panacea. The Ariane 5 incident is a sad story in this respect. An arithmetic
exception was thrown after launch of the European unmanned rocket by a piece of code that was still
running, but was used only during launch itself. Because there was no handler, the exception propa-
gated to the top and terminated the entire control program. As a result, the takeoff was aborted and
the rocket was destroyed.

Had the code been written in an unsafe language (and not in Ada), it looks as if the disaster would
not have occurred, since no exception would have been raised and the irrelevant code would have
continued without interfering with the rest of the system, despite producing bad results.

Read about it at: http://www.esa.int/htdocs/tidc/Press/Press96/ariane5rep.html

4.13 Summary

Today, we’ve seen how exceptions can provide non-local jumps. These allow failures to be handled
gracefully, and support a common style of defensive programming. Exceptions are also often a better
way to convey results than special values.We looked at some features specific to Java, in particular the
distinction between checked and unchecked ex ceptions, and how to define your own exceptions.
45

Lecture 5: Namespace

This lecture is about the gross organization of programs, with a particular emphasis on names and
how they are used. We’ll look at the mechanisms that Java provides to name parts of the code, and to
structure the code of a large system hierarchically. Using Java’s access control mechanisms, we’ll see
how one can prevent access to certain methods and fields outside certain scopes. The hierarchical
namespace makes it possible to see what other parts of the code a particular method interacts
directly with. Access control takes this further and allows local reasoning; we’ll now be able to guar-
antee some of the object model properties of our banking example from Lecture 3 without knowing
about the clients that use that code.

The notion of dependence is essential for doing good software design. We’ll define dependences, and
see how the coupling they bring about causes problems by making a program less flexible and harder
to reason about. We’ll examine three language constructs that can be used to reduce dependences:
procedures, global variables and Java interfaces. Interfaces will be the most interesting and impor-
tant of the three.

We’ll see how, in an object-oriented language such as Java, the control flow at runtime does not nec-
essarily match the compile-time structure. This will be exposed as mismatches between the object
model and the module dependence diagram. It’s a tricky notion, but a useful one, since it let’s you use
dynamic configuration to obtain flexibility. Java interfaces are crucial support for this. Also, many of
the design patterns we’ll see later rely on this.

As always, our emphasis is on fundamental underlying notions, with an eye to design issues. You’ll
need to study a Java text to make sure you understand the subtleties of the Java features we discuss in
this lecture: packages and access control, static fields, interfaces and abstract classes. We don’t dis-
cuss inner classes, but you should know how to use them, as they are especially useful when generat-
ing objects to satisfy given interfaces.

5.1 Package Structure

Like any large written work, a program benefits from being organized into a hierarchical structure.
When trying to understand a large structure, it’s often helpful to view it top-down, starting with the
grossest levels of structure and proceeding to finer and finer details. Java’s naming system supports
this hierarchical structure.

It also brings another important benefit. Different components can use the same names for their
subcomponents, with different local meanings. In the context of the system as a whole, the subcom-
ponents will have names that are qualified by the components they belong to, so there will be no con-
fusion. This is vital, because it allows developers to work independently without worrying about
name clashes.

Just because it’s useful to view software top-down doesn’t mean that it should be produced top-down.
Early on, people advocated designing software by successively refining a description, building a
structure gradually by expanding the nodes of a tree. As you went down the tree, you moved closer to
implementation issues; the leaves of the tree were program statements. We now know that this strat-
46

egy tends not to work at all in practice, since it’s usually impossible to make the first decomposition
correctly. You don’t find out you’ve made a mistake until you get to the bottom, and then you find
you can’t build the smallest pieces that are needed to complete the structure, or that they are more
complicated than you’d hoped, and interact in complex ways. By then, it’s usually too late to change
the high-level structure. So top-down development a nd top-down description are very different
things.

Here’s how the Java naming system works. The key named components are classes and interfaces,
and they have named methods and named fields. Local variables (within methods) and method
arguments are also named. Each name in a Java program has a scope: a portion of the program text
over which the name is valid and bound to the component. Method arguments, for example, have
the scope of the method; fields have the scope of the class, and sometimes beyond. The same name
can be used to refer to different things when there is no ambiguity. For example, it’s possible to use
the same name for a field, a method and a class; see the Java language spec for examples.

A Java program is organized into packages. Each class or interface has its own file (ignoring inner
classes, which we won’t discuss). Packages are mirrored in the directory structure. Just like directo-
ries, packages can be nested arbitrarily deeply. To organize your code into packages, you do two
things: you indicate at the top of each file which package its class or interface belongs to, and you
organize the files physically into a directory structure to match the package structure.

Suppose you’re building a text editor for example. You might name the outermost package editor.
This package may have subpackages gui for the user interface, files for code managing reading and
writing of files, edit for code that handles editing functions, and so on. These packages themselves
may have subpackages; edit, for example, may have search for search and replace, spell for spelling
checks, and so on. Each package may contain classes and interfaces as well as packages, but in many
programs the actual code is only in the leaves of the package tree. So the spell package may contain
classes such as Dictionary and Matcher, and the files package may contain Reader and Writer.

Here’s a diagram that illustrates this structure:
HGLWRU

JXL ILOHV

5HDGHU

:ULWHU
'LFWLRQDU\

0DWFKHU

VSHOO

VHDUFK
47

Each component has a simple name and a qualified name. The simple name of the Dictionary class,
for example, would be just Dictionary; its qualified name woul d be editor.edit.spell.Dictionary. To
place it in its appropriate package, it would be declared like this:

package editor.edit.spell;
public class Dictionary {...}

You can always use the qualified name. The simple name is valid within the same package as the
component. In Matcher, for example, you can refer to Dictionary. Sometimes, code needs to refer to
many components in another package, and it becomes a nuisance to use qualified names. Java lets
you import the contents of a package. For example, if you write

package editor.edit.spell;
import editor.files.Reader;
public class Matcher {...}

then inside the Matcher class, you can refer to the Reader class of the package editor.files by its simple
name. To import all the classes of the package, you’d write

import editor.files.*;

Java calls this ‘import on demand’ because it’s as if an import declaration were added whenever a
particular class in the package is used.

Package naming has a lot in common with naming files and directories in a file system where path
names are like qualified names. But it’s not quite the same. You can’t refer to the class spell.Matcher by
importing editor.edit, for example: the import statement imports components, and doesn’t introduce
a new name scope in which relative package names can be used. This import would be legal

import editor.edit.*;

but its effect is to import all the components that belong to the package editor.edit, and this has no
effect on how components of packages within editor.edit can be subsequently referred to.

5.2 Standard Java Packages

The Java language itself defines some standard packages that come with the standard Java distribu-
tion. The basic ones used by all applications are:
· java.lang. The root of the class hierarchy, Object, has the qualified name java.lang.Object. You’ll

rarely see this though, since every Java program implicitly imports java.lang.*. The package also
contains the classes (such as Integer) that correspond to the builtin types, exceptions such as
NullPointerException, the class Math that provides mathematical routines (such as sin and cos),
Thread and other classes used to implement concurrency, and so on.

· java.util. Contains all the basic collection classes, such as Vector. Because this package is not auto-
matically imported, to use vectors you need to import them explicitly.

· java.io. Contains classes for doing basic input and output. The object System.out belongs to a class
in this package (although System itself belongs to java.lang).

The package java.util has a class Dictionary that is an abstract superclass of classes that map keys to
48

values (such as Hashtable). In fact, it’s now deprecated (which means it will be made obsolete in a
future version of Java). But it serves our point: that there’s no problem using our class, edi-
tor.spell.Dictionary, and the standard Java class in the same program, because we can distinguish
them with qualified names. If you import two collections of classes whose names overlap, the com-
piler will reject the ambiguous names.

Then there are packages with more specialized uses, such as java.net for network communications,
and java.swing for graphical user interfaces.

Sun also provides what it calls ‘standard extensions’ to Java. These have package names that start
with javax. The package javax.mail, for example, provides the kinds of components you need to
build applications that deal with email.

5.3 Unique Package Names

The package naming system can be used to ensure that software that is widely distributed has a
unique name, thereby avoiding the problem of name clashes. The Java convention is to use the stan-
dard internet naming system in reverse. So for example, an editor package created here at MIT might
be called

edu.mit.editor

Another advantage of this scheme is that it gives a company a little advertisement in the source code.
If you see

import com.genlogic.*;

you can guess where on the web to find the company that supplied these widgets (in this case for dia-
gramming).

5.4 Dependences & Architecture

What makes a good package organization? A good test to check if your package structure is reason-
able is to see what names each class uses. Draw an arrow from a class A to a class B if class A mentions
class B in its code. These arrows are called dependences. Now if most of the arrows are within pack-
ages, and don’t cross package boundaries, the package organization is fulfilling a useful function. It’s
grouping together classes that work together. If you need to change some code, most of your work
may be confinable to a single package.
49

Here’s a module dependency diagram to illustrate this kind of organization:

This isn’t the only criterion for a reasonable division. You may organize your program into layers,
and then you might expect many arrows between higher-level layers and the layers below them. But
in this case, you wouldn’t expect arrows to cross more than one layer.

You can see that the package structure alone doesn’t tell you much about how the software is put
together. The dependences can show you much more. As we study them more, we’ll see how depen-
dences can be used as a guide for good design, and can expose lurking problems.

5.5 Access Control

In Java, you can limit the scope in which components can be accessed. By marking components with
access control keywords, you can make them more or less accessible. This is useful because it allows
you to prevent certain dependences from arising when you’re writing a component. For example, if
you don’t declare the Dictionary class of editor.edit.spell to be public, it will not be accessible outside
the package. A Java compiler would reject this code:

3DFNDJH;

&ODVV$ &ODVV%

&ODVV& &ODVV'

3DFNDJH<

&ODVV$ &ODVV%

&ODVV& &ODVV'

&ODVV$ &ODVV% &ODVV&

3DFNDJH;

&ODVV$ &ODVV% &ODVV&

3DFNDJH<

&ODVV$ &ODVV% &ODVV&

3DFNDJH=

EDG�
50

package editor.edit.search;
import editor.edit.spell;
class Finder {... Dictionary...}

because the non-public Dictionary class cannot be accessed from the package editor.edit.search.

There are three keywords: public, private and protected.

Here are their rules, taken from the Java language spec:
· If a class or interface is declared to be public, it can be accessed whenever its package can be

accessed, otherwise it can only be accessed within its own package.
· A member (field or method) or a constructor of a class or interface can only be accessed if the

class or interface can be accessed, and the member of constructor permits access.
· If a member or constructor is declared public, then access is permitted. All members of interfaces

are implicitly public.
· If a member or constructor is declared private, it can only be accessed within its class.
· If a member or constructor is declared without an access keyword, it can only be accessed within

its package.
· If a member or constructor is declared protected, it can only be accessed either within its package,

or in a subclass of the class in which it is declared.

Notice that the protected keyword has the odd property that adding it to an unannotated member or
constructor makes it more accessible. Without the keyword, the default access says that you can’t
access outside the package. When you add the keyword, you can access it in a subclass that’s outside
the package. The rules are a bit trickier than this suggests: see the JLS (section 6.6.2) for details.

5.6 Enforcing Object Model Properties with Access Control

Let’s return to our bank example of Lecture 3 and see how we can make use of access control to
ensure that our object model properties hold. Recall that we wanted each Account object to have a
non-null reference to its transaction vector through the transv field, so that we don’t get null pointer
errors when we post a transaction. This property was indicated in the object model by the multiplic-
ity marking (!) on the target end of the transv field arrow:

We observed that this invariant can be broken simply by setting the vector to be null:

Account a = new Account ();
a.transv = null;

Now we can prevent this. By declaring the field to be private, we can ensure that it is not accessed out-

$FFRXQW 9HFWRU 7UDQV 'DWH

6WULQJ

WUDQVY

QDPH

HOWV>@ GDWH
� �

�

" "
51

side the class. In general, it’s good practice to make all fields private:

import java.util.*;
package bank.accounts;
public class Account {

private String name;
privateVector transv;
private int balance;
Account (String n) {

transv = new Vector ();
balance = 0;
name = n;
}

boolean checkTrans (Trans t) {
return (balance + t.amount >= 0);
}

void post (Trans t) {
transv.addElement (t);
balance += t.amount;
}

}

The access control makes local reasoning possible. Since the field transv is assigned to only once (in
the constructor), and is always given a non-null value, we can be sure that the invariant is main-
tained. Similarly, we can see that the transv vector only contains Trans objects, by examining the
post method.

We can also check the more subtle property, that transaction vectors are not shared between
accounts. This relies on noticing that the assignment to transv is always a new vector.

Access control won’t solve all our problems though. We can’t establish the object model property that
Trans objects aren’t shared between (the transaction vectors of) Account objects, for example, since a
Trans object is passed into the post method and we can’t check what other object is referring to an
object when it’s passed in.

The problem of a possibly null date in the Trans object is an interesting variant. Access control alone
won’t work, since the date is passed in to the constructor. However, we can test the date argument
and throw an exception if it’s null:

public class Trans {
private int amount;
private Date date;
Trans (int a, Date d) {

if (d == null) throw new NullPointerException ();
amount = a; date = d;
}

}

52

5.7 Example: Instrumenting a Program

For the remainder of the lecture, we’ll study some decoupling mechanisms in the context of an exam-
ple that’s tiny but representative of an important class of problems.

When we discussed runtime assertions last lecture, we noted that the failure of an assertion might be
reported to the user or logged by some I/O operation. What should the relationship be between the
code that checks the assertion and the code that calls the low-level I/O operation? Surprisingly, this is
much more subtle and interesting than you might imagine.

Let’s consider a slightly more general variant of this problem in which we want to report incremental
steps of a program as it executes by displaying progress line by line. For example, in a compiler with
several phases, we might want to display a message when each phase starts and ends. In an email cli-
ent, we might display each step involved in downloading email from a server. This kind of reporting
facility is useful when the individual steps might take a long time or are prone to failure (so that the
user might choose to cancel the command that brought them about). Progress bars are often used in
this context, but they introduce further complications (marking the start and end of an activity, and
calculating proportional progress) which we won’t worry about.

As a concrete example, consider an email client that has a package core that contains a class Session
that has code for setting up a communication session with a server and downloading messages, a
class Folder for the objects that models folders and their contents, and a class Compactor that con-
tains the code for compacting the representation of folders on disk. Assume there are calls from Ses-
sion to Folder and from Folder to Compactor, but that the resource intensive activities that we want to
instrument occur only in Session and Compactor, and not in Folder.

The module dependency diagram shows that Session depends on Folder, which has a mutual depen-
dence on Compactor.

We’ll look at a variety of ways to implement our instrumentation facility, and we’ll study the advan-
tages and disadvantages of each. Starting with the simplest, most naive design possible, we might
intersperse statements such as

System.out.println (“Starting download”);

throughout the program.

5.8 Abstraction by Parameterization

The problem with this scheme is obvious. When we run the program in batch mode, we might redi-

6HVVLRQ)ROGHU

&RUH

&RPSDFWRU
53

rect standard out to a file. Then we realize it would be helpful to timestamp all the messages so we
can see later, when reading the file, how long the various steps took. We’d like our statement to be

System.out.println (“Starting download at: ” + new Date ());

instead. This should be easy, but it’s not. We have to find all these statements in our code (and distin-
guish from other calls to System.out.println that are for different purposes), and alter each sepa-
rately.

Of course, what we should have done is to define a procedure to encapsulate this functionality. In
Java, this would be a static method:

public class StandardOutReporter {
public static void report (String msg) {

System.out.println (msg);
}

}

Now the change can be made at a single point in the code. We just modify the procedure:

public class StandardOutReporter {
public static void report (String msg) {

System.out.println (msg + “ at: “ + new Date ());
}

}

Matthias Felleisen calls this the ‘single point of control’ principle. The mechanism in this case is one
you’re familiar with: what 6001 called abstraction by parameterization, because each call to the proce-
dure

StandardOutReporter.report (“Starting download”);

is an instantiation of the generic description, with the parameter msg bound to a particular value.

We can illustrate the single point of control in a module dependence diagram. We’ve introduced a
single class on which the classes that use the instrumentation facility depend:all the client classes now
depend:

Note that there is no dependence from Folder to StandardOutReporter, since the code of Folder

6WDQGDUG2XW
5HSRUWHU

6HVVLRQ)ROGHU

&RUH

&RPSDFWRU
54

makes no calls to it.

5.9 Decoupling with Interfaces

This scheme is far from perfect though. Factoring out the functionality into a single class was a good
idea, but the code still has a dependence on the notion of writing to standard out. If we wanted to
create a new version of our system with a graphical user interface, we’d need to replace this class with
one containing the appropriate GUI code. That would mean changing all the references in the core
package to refer to a different class, or changing the code of the class itself, and now having to handle
two incompatible versions of the class with the same name. Neither of these is an attractive option.

In fact, the problem’s even worse than that. In a program that uses a GUI, one writes to the GUI by
calling a method on an object that represents part of the GUI: a text pane, or a message field. In
swing, Java’s user interface toolkit, the subclasses of JTextComponent have a setText method. Given
some component named by the variable outputArea, for example, the display statement might be:

outputArea.setText (msg)

How are we going to pass the reference to the component down to the call site? And how are we going
to do it without now introducing swing-specific code into the reporter class?

Java interfaces provide a solution. We create an interface with a single method report that will be
called to display results.

public interface Reporter {
void report (String msg);
}

Now we add to each method in our system an argument of this type. The Session class, for example,
may have a method download:

void download (Reporter r, ...) {
r.report (“Starting downloading”);
...
}

Now we define a class that will actually implement the reporting behaviour. Let’s use standard out as
our example as it’s simpler:

public class StandardOutReporter implements Reporter {
public void report (String msg) {

System.out.println (msg + “ at: “ + new Date ());
}

}

This class is not the same as the previous one with this name. The method is no longer static, so we
can create an object of the class and call the method on it. Also, we’ve indicated that this class is an
implementation of the Reporter interface. Of course, for standard out this looks pretty lame and the
creation of the object seems to be gratuitious. But for the GUI case, we’ll do something more elabo-
55

rate and create an object that’s bound to the particular widget:

public class JTextComponentReporter implements Reporter {
JTextComponent comp;
public JTextComponentReporter (JTextComponent c) {comp = c;}
public void report (String msg) {

comp.setText (msg + “ at: “ + new Date ());
}

}

At the top of the program, we’ll create an object and pass it in:

s.download (new StandardOutReporter (), ...);

Now we’ve achieved something interesting. The call to report now executes, at runtime, code that
involves System.out. But methods like download only depend on the interface Reporter, which makes
no mention of any specific output mechanism. We’ve successfully decoupled the output mechanism
from the program, breaking the dependence of the core of the program on its I/O.

The module dependency diagram looks like this::

An arrow with a closed head from A to B is read ‘A satisifies B’. B might be a class or an interface; the
relationship in Java may be implements or extends. Here, the class StandardOutReporter satisfies the
interface Reporter.

The key property of this scheme is that there is no longer a dependence of any class of the core pack-
age on a class in the gui package. All the dependences point downwards (at least logically!) from gui
to core. To change the output from standard output to a GUI widget, we would simply replace the
class StandardOutReporter by the class JTextComponentReporter, and modify the code in the main
class of the gui package to call its constructor.

6HVVLRQ)ROGHU

FRUH

&RPSDFWRU

5HSRUWHU

6WDQGDUG2XW
5HSRUWHU

0DLQ

JXL
56

on the classes that actually contain concrete I/O code. This idiom is perhaps the most popular use of
interfaces, and is well worth mastering.

The dotted arrows are weak dependences. A weak dependence from A to B means that A references
the name of B, but not the name of any of its members. In other words, A knows that the class or
interface B exists, and refers to variables of that type, but calls no methods of B, and accesses no fields
of B.

The weak dependence of Main on Reporter simply indicates that the Main class may include code
that handles a generic reporter; it’s not a problem. The weak dependence of Folder on Reporter is a
problem though. It’s there because the Reporter object has to be passed via methods of Folder to
methods of Compactor. Every method in the call chain that reaches a method that is instrumented
must take a Reporter as an argument. This is a nuisance, and makes retrofitting this scheme painful.

5.10 Interfaces vs. Abstract Classes

You may wonder whether we might have used a class instead of an interface. An abstract class is one
that is not completely implemented; it cannot be instantiated, but must be extended by a subclass
that completes it.

Abstract classes are useful when you want to factor out some common code from several classes.
Suppose we wanted to display a message saying how long each step had taken. We might implement a
Reporter class whose objects retain in their state the time of the last call to report, and then take the
difference between this and the current time for the output. By making this class an abstract class, we
could reuse the code in each of the concrete subclasses StandardOutReporter, JTextComponentRe-
porter, etc.

Why not pass make the argument of download have this abstract class as its type, instead of an inter-
face? There are two related reasons. The first is that we want the dependence on the reporter code to
be as weak as possible. The interface has no code at all; it expresses the minimal specification of
what’s needed. The second is that there in no multiple inheritance in Java: a class can only extend at
most one other class. So when you’re designing the core program, you don’t want to use the opportu-
nity to subclass prematurely. A class can implement any number of interfaces, so by choosing an
interface, you leave it open to the designer of the reporter classes how they will be implemented.

5.11 Static Fields

The clear disadvantage of the scheme just discussed is that the reporter object has to be threaded
through the entire core program. If all the output is displayed in a single text component, it seems
annoying to have to pass a reference to it around. In dependency terms, every method has at least a
weak dependence on the interface Reporter.

Global variables, or in Java static fields, provide a solution to this problem. To eliminate many of
these dependences, we can hold the reporter object as a static field of a class:

public class StaticReporter {
static Reporter r;
57

static void setReporter (Reporter r) {
this.r = r;
{

static void report (String msg) {
r.report (msg);
}

}

Now all we have to do is set up the static reporter at the start:

StaticReporter.setReporter (new StandardOutReporter ());

and we can issue calls to it without needing a reference to an object:

void download (...) {
StaticReporter.report (“Starting downloading”);
...
}

In the module dependency diagram, the effect of this change is that now only the classes that actually
use the reporter are dependent on it:

Notice how the weak dependence of Folder has gone. We’ve seen this global notion before, of course,
in our second scheme whose StandardOutReporter had a static method. This scheme combines that
static aspect with the decoupling provided by interfaces.

Global references are handy, because they allow you to change the behaviour of methods low down
in the call hierarchy without making any changes to their callers. But global variables are dangerous.
They can make the code fiendishly difficult to understand. To determine the effect of a call to Stati-

6HVVLRQ)ROGHU

FRUH

&RPSDFWRU

6WDQGDUG2XW
5HSRUWHU

0DLQ

JXL

6WDWLF5HSRUWHU

5HSRUWHU
58

cReporter.report, for example, you need to know what the static field r is set to. There might be a call
to setReporter anywhere in the code, and to see what effect it has, you’d have to trace executions to
figure out when it’s executed relative to the code of interest.

Another problem with global variables is that they only work well when there is really one object that
has some persistent significance. Standard out is like this. But text components in a GUI are not. We
might well want different parts of the program to report their progress to different panes in our GUI.
With the scheme in which reporter objects are passed around, we can create different objects and
pass them to different parts of the code. In the static version, we’ll need to create different methods,
and it starts to get ugly very quickly.

Concurrency also casts doubt on the idea of having a single object. Suppose we upgrade our email
client to download messages from several servers concurrently. We wouldn’t want the progress mes-
sages from all the downloading sessions to be interleaved in a single output.

A good rule of thumb is to be wary of global variables. Ask yourself if you really can make do with a
single object. Usually you’ll find ample reason to have more than one object around.

This scheme goes by the term Singleton in the design patterns literature, because the class contains
only a single object.

5.12 Dynamic Configuration

Our final scheme is a hybrid. We want the advantage of separate reporter objects, but we don’t want
to have to pass these objects in every method call. So we create several Reporter objects, and bind
them to key objects in the core computation.

For example, we might bind Reporter objects to Session objects. Each Session object handles a single
session in which email messages are downloaded. Its state might include details of the server, statis-
tics, etc. Now we add to this object a field that refers to its reporter; the reporter is passed to the con-
structor, and then all the code that acts on a session object can access the reporter. Because the
session object holds its own reporter, we can easily ensure that each session reports in a separate out-
put panel. Suppose we use Swing’s JTextArea objects. Then our object model might be:

whose multiplicities indicate that each session has its own JTextAreaReporter object, and each of
these is connected to a separate JTextArea swing object.

����	�
 , �-�����
&������� , �-�������� ����

�" " �
59

Let’s look at this in the context of the module dependency diagram:

The difference is subtle but important. At runtime, each Session object is associated with a
JTextAreaReporter object. But the code of Session shows no dependence on JTextAreaReporter. The
association is created at runtime: the system is dynamically configured.

Note that I’ve added a dependence from Compactor to Session. Compactor now reports its progress
by calling a method of Session, which then makes use of its own Reporter object. This is a common
feature of this style of design: the objects become highly interdependent, forming collaborations
rather than more traditional layering relationships in which mutual dependences are rare.

Dynamic configuration is very powerful. It adds some complexity in order to provide syntactic
decoupling. It is widely used in design patterns (eg, Observer).

This example also illustrates why we need both the object model and the dependence diagram. The
object model is about runtime configurations. It tells us about the structure of the state. The depen-
dence diagram is about syntactic relationships at compile time. It tells us about the structure of the
code. Often, the two diagrams will be very similar. But their divergences expose the subtleties of a
design.

This same idiom arises with all container types in Java. The Hashtable class will only work correctly if
the code of the class of the objects inserted as keys have equals and hashCode methods that behave
appropriately. If not, the get method may fail to return a value for a given key even when there’s a
matching key in the table. How do we explain this? Does the Hashtable class depend on your particu-

6HVVLRQ)ROGHU

FRUH

&RPSDFWRU

-7H[W$UHD
5HSRUWHU

0DLQ

JXL

5HSRUWHU

-7H[W$UHD
60

lar concrete key class? The object model and dependence diagram give the answer:

The table is asociated dynamically with the keys (and thus executes the code in the class Key). But
Hashtable has only a dependence on Object. The obligation of the Key class is expressed by its rela-
tionship in the dependence diagram to Object, whose specification dictates the behaviour of hash-
Code and equals.

5.13 Module Dependence Diagram

The module dependence diagram has a syntax even simpler than the object model. Its elementary
boxes are classes (horizontal stripe at the top) and interfaces (stripes at top and bottom). Packages
are shown as larger boxes without stripes. There are two kinds of dependence arrow. A dotted line
with an open arrow head denotes a weak dependence: an arrow from A to B means that A mentions B.

 A solid line with an open arrow head denotes a strong dependence: an arrow from A to B means that

&OLHQW +DVKWDEOH

.H\

WDEOH

NH\V>@

&OLHQW +DVKWDEOH

.H\

2EMHFW

$

%

61

A mentions members of B (fields or methods).

An arrow with a closed head from A to B denotes a satisfaction relation; in Java, this is always due to
extends or implements.

Our course text includes additional notation for static methods and iteration abstractions (enumera-
tions, in Java terminology).

5.14 Summary

We have studied how various features of Java are used to support the organization of programs, and
the decoupling of one part from another. We’ve seen that runtime and compile-time coupling are
distinct: the control flow and object structure do not always follow syntactic dependences. The mod-
ule dependency diagram allows us to express succinctly the dependence structure of a program.
We’ll use it throughout the course to show overall syntactic structure, to expose unwanted depen-
dences, and to explain strategies for decoupling.

$

%

%

$

62

Lecture 6: Procedure Specifications

In this lecture, we’ll look at the role played by specifications of methods. Specifications are the linch-
pin of team work. It’s impossible to delegate responsibility for implementing a method without a
specification. The specification acts as a contract: the implementor is responsible for meeting the
contract, and a client that uses the method can rely on the contract. In fact, we’ll see that like real
legal contracts, specifications place demands on both parties: when the specification has a precondi-
tion, the client has responsibilities too.

Many of the nastiest bugs in programs arise because of misunderstandings about behaviour at inter-
faces. Although every programmer has specifications in mind, not all programmers write them
down. As a result, different programmers on a team have different specifications in mind. When the
program fails, it’s hard to determine where the error is. Precise specifications in the code let you
apportion blame (to code fragments, not people!), and can spare you the agony of puzzling over
where a fix should go.

Specifications are good for the client of a method because they spare her the task of reading code. If
you’re not convinced that reading a spec is easier than reading code, take a look at some of the stan-
dard Java specs and compare them to the source code that implements them. Vector, for example, in
the package java.util, has a very simple spec but its code is not at all simple.

Specifications are good for the implementor of a method because they give her freedom to change
the implementation without telling clients. Specifications can make code faster too. Sometimes a
weak specification makes it possible to do a much more efficient implementation. In particular, a
precondition may rule out certain states in which a method might have been invoked that would
have incurred an expensive check that is no longer necessary.

This lecture is related to our discussion of dependences in the last lecture. There, we were concerned
only with whether a dependence existed. Here, we are investigating the question of what form the
dependence should take. By exposing only the specification of a procedure, its clients are less depen-
dent on it, and therefore less likely to need changing when the procedure changes.

6.1 Behavioural Equivalence

Consider these two methods. Are they the same or different?

static int findA (int [] a, int val) {
for (int i = 0; i < a.length; i++) {

if (a[i] == val) return i;
}

return a.length;
}

static int findB (int [] a, int val) {
for (int i = a.length -1 ; i > 0; i--) {

if (a[i] == val) return i;
}

63

return -1;
}

Of course the code is different, so in that sense they are different. Our question though is whether
one could substitute one implementation for the other. Not only do these methods have different
code; they actually have different behaviour:
· when val is missing, findA returns the length and findB returns -1;
· when val appears twice, findA returns the lower index and findB returns the higher.

But when val occurs at exactly one index of the array, the two methods behave the same. It may be
that clients never rely on the behaviour in the other cases. So the notion of equivalence is in the eye of
the beholder, that is, the client. In order to make it possible to substitute one implementation for
another, and to know when this is acceptable, we need a specification that states exactly what the cli-
ent depends on.

In this case, our specification might be

requires: val occurs in a
effects: returns result such that a[result] = val

6.2 Specification Structure

A specification of a method consists of several clauses:
· a precondition, indicated by the keyword requires;
· a postcondition, indicated by the keyword effects;
· a frame condition, indicated by the keyword modifies.

We’ll explain each of these in turn. For each, we’ll explain what the clause means, and what a missing
clause implies. Later, we’ll look at some convenient shorthands that allow particular common idioms
to be specified as special kinds of clause.

The precondition is an obligation on the client (ie, the caller of the method). It’s a condition over the
state in which the method is invoked. If the precondition does not hold, the implementation of the
method is free to do anything (including not terminating, throwing an exception, returning arbi-
trary results, making arbitrary modifications, etc).

The postcondition is an obligation on the implementor of the method. If the precondition holds for
the invoking state, the method is obliged to obey the postcondition, by returning appropriate values,
throwing specified exceptions, modifying or not modifying objects, and so on.

The frame condition is related to the postcondition. It allows more succinct specifications. Without a
frame condition, it would be necessary to describe how all the reachable objects may or may not
change. But usually only some small part of the state is modifed. The frame condition identifies
which objects may be modified. If we say modifies x, this means that the object x, which is presumed
to be mutable, may be modified, but no other object may be. So in fact, the frame condition or mod-
ifies clause as it is sometimes called is really an assertion about the objects that are not mentioned.
For the ones that are mentioned, a mutation is possible but not necessary; for the ones that are not
mentioned, a mutation may not occur.
64

Omitted clauses have particular interpretations. If you omit the precondition, it is given the default
value true. That means that every invoking state satisfies it, so there is no obligation on the caller. In
this case, the method is said to be total. If the precondition is not true, the method is said to be par-
tial, since it only works on some states.

If you omit the frame condition, the default is modifies nothing. In other words, the method makes no
changes to any object.

Omitting the postcondition makes no sense and is never done.

6.3 Declarative Specification

Roughly speaking, there are two kinds of specifications. Operational specifications give a series of
steps that the method performs; pseudocode descriptions are operational. Declarative specifications
don’t give details of intermediate steps. Instead, they just give properties of the final outcome, and
how it’s related to the initial state.

Almost always, declarative specifications are preferable. They’re usually shorter, easier to under-
stand, and most importantly, they don’t expose implementation details inadvertently that a client
may rely on (and then find no longer hold when the implementation is changed). For example, if we
want to allow either implementation of find, we would not want to say in the spec that the method
‘goes down the array until it finds val’, since aside from being rather vague, this spec suggests that the
search proceeds from lower to higher indices and that the lowest will be returned, which perhaps the
specifier did not intend.

Here are some example of declarative specification. The class StringBuffer provides objects that are
like String objects but mutable. The methods of StringBuffer modify the object rather than creating
new ones: they are mutators, whereas String’s methods are producers. The reverse method reverses a
string. Here’s how it’s specified in the Java API:

public StringBuffer reverse()
// modifies: this
// effects: Let n be the length of the old character sequence, the one contained in the string buffer
// just prior to execution of the reverse method. Then the character at index k in the new
// character sequence is equal to the character at index n-k-1 in the old character sequence.

Note that the postcondition gives no hint of how the reversing is done; it simply gives a property that
relates the character sequence before and after. (We’ve omitted part of the specification, by the way:
the return value is simply the string buffer object itself.) A bit more formally, we might write

effects:
length (this.seq) = length (this.seq’)
all k: 0..length(this.seq)-1 | this.seq’[k] = this.seq[length(this.seq)-k-1]

Here I’ve used the notation this.seq’ to mean the value of the character sequence in this object after
execution. The course text uses the keyword post as a subscript for the same purpose. There’s no pre-
condition, so the method must work when the string buffer is empty too; in this case, it will actually
leave the buffer unchanged.
65

Another example, this time from String. The startsWith method tests whether a string starts with a
particular substring.

public boolean startsWith(String prefix)
// Tests if this string starts with the specified prefix.
// effects:
// if (prefix = null) throws NullPointerException
// else returns true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

I’ve assumed that String objects, like StringBuffer objects, have a specification field that models the
sequence of characters. The caret is the concatenation operator, so the postcondition says that the
method returns true if there is some suffix which when concatenated to the argument gives the char-
acter sequence of the string. The absence of a modifies clause indicates that no object is mutated.
Since String is an immutable type, none of its methods will have modifies clauses.

Another example from String:

public String substring(int i)
// effects:
// if i < 0 or i > length (this.seq) throws IndexOutOfBoundsException
// else returns r such that
// some sequence s | length(s) = i && s ^ r.seq = this.seq

This specification shows how a rather mathematical postcondition can sometimes be easier to
understand than an informal description. Rather than talking about whether i is the starting index,
whether it comes just before the substring returned, etc, we simply decompose the string into a prefix
of length i and the returned string.

Our final example shows how a declarative specification can express what is often called non-deter-
minism, but is better called ‘under-determinedness’. By not giving enough details to allow the client
to infer the behaviour in all cases, the specification makes implementation easier. The term non-
determinism suggests that the implementation should exhibit all possible behaviours that satisfy the
specification, which is not the case.

There is a class BigInteger in the package java.math whose objects are integers of unlimited size. The
class has a method similar to this:

public boolean maybePrime ()
// effects: if this BigInteger is composite, returns false

If this method returns false, the client knows the integer is not prime. But if it returns true, the integer
may be prime or composite. So long as the method returns false a reasonable proportion of the time,
it’s useful. In fact, as the Java API states: the method takes an argument that is a measure of the uncer-
tainty that the caller is willing to tolerate. The execution time of this method is proportional to the
value of this parameter.’ We won’t worry about probabilistic issues in this course; we mention this
spec simply to note that it does not determine the outcome, and is still useful to clients.

Here is an example of a truly underdetermined specification. In the Observer pattern, a set of obe-
jects known as ‘observers’ are informed of changes to an object known as a ‘subject’. The subject will
66

belong to a class that subclasses java.util.Observable. In the specification of Observable, there is a
specification field observers that holds the set of observer objects. This class provides methods to add
an observer

public void addObserver(Observer o)
// modifies: this
// effects: this.observers’ = this.observers + {o}

(using + to mean set union), and to notify the observers of a change in state:

public void notifyObservers()
// modifies the objects in this.observers
// effects: calls o.notify on each observer o in this.observers

The specification of notify does not indicate in what order the observers are notified. What order is
chosen may have an effect on overall program behaviour, but having chosen to model the observers
as a set, there is no way to specify an order anyway.

6.4 Exceptions and Preconditions

An obvious design issue is whether to use a precondition, and if so, whether it should be checked. It
is crucial to understand that a precondition does not require that checking be performed. On the
contrary, the most common use of preconditions is to demand a property precisely because it would
be hard or expensive to check.

As mentioned above, a non-trivial precondition renders the method partial. This inconveniences cli-
ents, because they have to ensure that they don’t call the method in a bad state (that violates the pre-
condition); if they do, there is no predictable way to recover from the error. So users of methods
don’t like preconditions, and for this reason the methods of a library will usually be total. That’s why
the Java API classes, for example, invariably throw exceptions when arguments are inappropriate. It
makes the programs in which they are used more robust.

Sometimes though, a precondition allows you to write more efficient code and saves trouble. For
example, in an implementation of a binary tree, you might have a private method that balances the
tree. Should it handle the case in which the ordering invariant of the tree does not hold? Obviously
not, since that would be expensive to check. Inside the class that implements the tree, it’s reasonable
to assume that the invariant holds. We’ll generalize this notion when we talk about representation
invariants next week.

The decision of whether to use a precondition is an engineering judgment. The key factors are the
cost of the check (in writing and executing code), and the scope of the method. If it’s only called
locally in a class, the precondition can be discharged by carefully checking all the sites that call the
method. But if the method is public, and used by other developers, it woul d be less wise to use a pre-
condition.

Sometimes, it’s not feasible to check a condition without making a method unacceptably slow, and a
precondition is often necessary in this case. In the Java standard library, for example, the binary
search methods of the Arrays class require that the array given be sorted. To check that the array is
67

sorted would defeat the entire purpose of the binary search: to obtain a result in logarithmic and not
linear time.

Even if you decide to use a precondition, it may be possible to insert useful checks that will detect, at
least sometimes, that the precondition was violated. These are the runtime assertions that we dis-
cussed in our lecture on exceptions. Often you won’t check the precondition explicitly at the start,
but you’ll discover the error during computation. For example, in balancing the binary tree, you
might check when you visit a node that its children are appropriately ordered.

If a precondition is found to be violated, you should throw an unchecked exception, since the client
will not be expected to handle it. The throwing of the exception will not be mentioned in the specifi-
cation, although it can appear in implementation notes below it.

6.5 Shorthands

There are some convenient shorthands that make it easier to write specifications. When a method
does not modify anything, we specify the return value in a returns clause. If an exception is thrown,
the condition and the exception are given in a throws clause. For example, instead of

public boolean startsWith(String prefix)
// effects:
// if (prefix = null) throws NullPointerException
// else returns true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

we can write

public boolean startsWith(String prefix)
// throws: NullPointerException if (prefix = null)
// returns: true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

The use of these shorthands implies that no modifications occur. There is an implicit ordering in
which conditions are evaluated: any throws clauses are considered in the order in which they appear,
and then returns clauses. This allows us to omit the else part of the if-then-else statement.

Our 6170 JavaDoc html generator produces specifications formatted in the Java API style. It allows
the clauses that we have discussed here, and which have been standard in the specification commu-
nity for several decades, in addition to the shorthand clauses. We won’t use the JavaDoc parameters
clause: it is subsumed by the postcondition, and is often cumbersome to write.

6.6 Specification Ordering

Suppose you want to substitute one method for another. How do you compare the specifications?

A specification A is at least as strong as a specification B if
· A’s precondition is no stronger than B’s
· A’s postcondition is no weaker than B’s, for the states that satisfy B’s precondition.

These two rules embody several ideas. They tell you that you can always weaken the precondition;
68

placing fewer demands on a client will never upset him. You can always strengthen the postcondi-
tion, which means making more promises. For example, our method maybePrime can be replaced in
any context by a method isPrime that returns true if and only if the integer is prime. And where the
precondition is false, you can do whatever you like. If the postcondition happens to specify the out-
come for a state that violates the precondition, you can ignore it, since that outcome is not guaran-
teed anyway.

These relationships between specifications will be important when we look at the conditions under
which subclassing works correctly (in our lecture on subtyping and subclassing).

6.7 Judging Specifications

What makes a good method? Designing a method means primarily writing a specification. There are
no infallible rules, but there are some useful guidelines:
· The specification should be coherent: it shouldn’t have lots of different cases. Deeply nested if-

statements are a sign of trouble, as are boolean flags presented as arguments.
· The results of a call should be informative. Java’s HashMap class has a put method that takes a key

and a value and returns a previous value if that key was already mapped, or null otherwise. Hash-
Maps allow null references to be stored, so a null result is hard to interpret.

· The specification should be strong enough. There’s no point throwing a checked exception for a
bad argument but allowing arbitrary mutations, because a client won’t be able to determine what
mutations have actually been made.

· The specification should be weak enough. A method that takes a URL and returns a network con-
nection clearly cannot promise always to succeed.

6.8 Summary

A specification acts as a crucial firewall between the implementor of a procedure and its client. It
makes separate development possible: the client is free to write code that uses the procedure without
seeing its source code, and the implementor is free to write the code that implements the procedure
without knowing how it will be used. Declarative specifications are the most useful in practice. Pre-
conditions make life hard for the client, but, applied judiciously, are a vital tool in the software
designer’s repertoire.
69

Lecture 7: Abstract Types

In this lecture, we look at a particular kind of dependence, that of a client of an abstract type on the
type’s representation, and see how it can be avoided. We also discuss briefly the notion of specifica-
tion fields for specifying abstract types, the classification of operations, and the tradeoff of represen-
tations.

7.1 User-Defined Types

In the early days of computing, a programming language came with built-in types (such as integers,
booleans, strings, etc.) and built-in procedures, eg. for input and output. Users could define their
own procedures: that’s how large programs were built.

A major advance in software development was the idea of abstract types: that one could design a pro-
gramming language to allow user-defined types too. This idea came out of the work of many
researchers, notably Dahl (the inventor of the Simula language), Hoare (who developed many of the
techniques we now use to reason about abstract types), Parnas (who coined the term ‘information
hiding’ and first articulated the idea of organizing program modules around the secrets they encap-
sulated), and here at MIT, Barbara Liskov and John Guttag, who did seminal work in the specifica-
tion of abstract types, and in programming language support for them (and developed 6170!).

The key idea of data abstraction is that a type is characterized by the operations you can perform on
it. A number is something you can add and multiply; a string is something you can concatenate and
take substrings of; a boolean is something you can negate, and so on. In a sense, users could already
define their own types in early programming languages: you could create a record type date, for
example, with integer fields for day, month and year. But what made abstract types new and different
was the focus on operations: the user of the type would not need to worry about how its values were
actually stored, in the same way that a programmer can ignore how the compiler actually stores inte-
gers. All that matters is the operations.

In Java, as in many modern programming languages, the separation between built-in types and
user-defined types is a bit blurry. The classes in java.lang, such as Integer and Boolean are built-in;
whether you regard all the collections of java.util as built-in is less clear (and not very important any-
way). Java complicates the issue by having primitive types that are not objects. The set of these types,
such as int and boolean, cannot be extended by the user.

7.2 Classifying Types and Operations

Types, whether built-in or user-defined, can be classified as mutable or immutable. The objects of a
mutable type can be changed: that is, they provide operations which when executed cause the results
of other operations on the same object to give different results. So Vector is mutable, because you can
call addElement and observe the change with the size operation. But String is immutable, because its
operations create new string objects rather than changing existing ones. Sometimes a type will be
provided in two forms, a mutable and an immutable form. StringBuffer, for example, is a mutable
version of String (although the two are certainly not the same Java type, and are not interchange-
70

able).

As we discussed in lecture 2, immutable types are generally easier to reason about. Aliasing is not an
issue, since sharing cannot be observed. And sometimes using immutable types is more efficient,
because more sharing is possible. But many problems are more naturally expressed using mutable
types, and when local changes are needed to large structures, they tend to be more efficient.

The operations of an abstract type are classified as follows:
· Constructors create new objects of the type. A constructor may take an object as an argument, but

not an object of the type being constructed.
· Producers create new objects from old objects; the terms are synonymous. The concat method of

String, for example, is a producer: it takes two strings and produces a new one representing their
concatenation.

· Mutators change objects. The addElement method of Vector, for example, mutates a vector by
adding an element to its high end.

· Observers take objects of the abstract type and return objects of a different type. The size method
of Vector, for example, returns an integer.

We can summarize these distinctions schematically like this:

constructor: t -> T
producer: T, t -> T
mutator: T, t -> void
observer: T, t -> t

These show informally the shape of the signatures of operations in the various classes. Each T is the
abstract type itself; each t is some other type. In general, when a type is shown on the left, it can
occur more than once. For example, a producer may take two values of the abstract type; string con-
cat takes two strings. The occurrences of t on the left may also be omitted; some observers take no
non-abstract arguments (eg, size), and some take several.

This classification gives some useful terminology, but it’s not perfect. In complex data types, there
may be operations that are producers and mutators, for example. Some people use the term ‘pro-
ducer’ to imply that no mutation occurs.

Another term you should know is iterator. An iterator usually means a special kind of method (not
available in Java) that returns a collection of objects one at a time -- the elements of a set, for exam-
ple. In Java, an iterator is a class that provides methods that can then be used to obtain a collection of
objects one at a time. Most collection classes provide a method with the name iterator that returns an
iterator.

7.3 Example: List

Let’s look at an example of an abstract type: the list. A list, in Java, is like an array. It provides meth-
ods to extract the element at a particular index, and to replace the element at a particular index. But
unlike an array, it also has methods to insert or remove an element at a particular index. In Java, List
is an interface with many methods, but for now, let’s imagine it’s a simple class with the following
71

methods:

public class List {
public List ();
public void add (int i, Object e);
public void set (int i, Object e);
public void remove (int i);
public int size ();
public Object get (int i);
}

The add, set and remove methods are mutators; the size and get methods are observers. It’s common
for a mutable type to have no producers (and an immutable type certainly cannot have mutators).

To specify these methods, we’ll need some way to talk about what a list looks like. We do this with the
notion of specification fields. You can think of an object of the type as if it had these fields, but
remember that they don’t actually need to be fields in the implementation, and there is no require-
ment that a specification field’s value be obtainable by some method. In this case, we’ll describe lists
with a single specification field,

seq [Object] elems;

where for a list l, the expression l.elems will denote the sequence of objects stored in the list, indexed
from zero. Now we can specify some methods:

public void get (int i);
// throws
// IndexOutOfBoundsException if i < 0 or i > length (this.elems)
// returns
// this.elems [i]

public void add (int i, Object e);
// modifies this
// effects
// throws IndexOutOfBoundsException if i < 0 or i > length (this.elems)
// else this.elems’ = this.elems [0..i-1] ^ <e> ^ this.elems [i..]

public void set (int i, Object e);
// modifies this
// effects
// throws IndexOutOfBoundsException if i < 0 or i >= length (this.elems)
// else this.elems’ [i] = e and this.elems unchanged elsewhere

In the postcondition of add, I’ve used s[i..j] to mean the subsequence of s from indices i to j, and s[i..]
to mean the suffix from i onwards. The caret means sequence concatenation. So the postcondition
says that, when the index is in bounds or one above, the new element is ‘spliced in’ at the given index.
72

7.4 Designing an Abstract Type

Designing an abstract type involves choosing good operations and determining how they should
behave. A few rules of thumb:
· It’s better to have a few, simple operations that can be combined in powerful ways than lots of

complex operations.
· Each operation should have a well-defined purpose, and should have a coherent behaviour rather

than a panoply of special cases.
· The set of operations should be adequate; there must be enough to do the kinds of computations

clients are likely to want to do. A good test is to check that every property of an object of the type
can be extracted. For example, if there were no get operation, we would not be able to find out
what the elements of the list are. Basic information should not be inordinately difficult to obtain.
The size method is not strictly necessary, because we could apply get on increasing indices, but
this is inefficient and inconvenient.

· The type may be generic: a list or a set, or a graph, for example. Or it may be domain-specific: a
street map, an employee database, a phone book, etc. But it should not mix generic and domain-
specific features.

7.5 Choice of Representations

So far, we have focused on the characterization of abstract types by their operations. In the code, a
class that implements an abstract type provides a representation: the actual data structure that sup-
ports the operations. The representation will be a collection of fields each of which has some other
Java type; in a recursive implementation, a field may have the abstract type but this is rarely done in
Java.

Linked lists are a common representation of lists, for example. The following object model shows a
linked list implementation similar (but not identical to) the LinkedList class in the standard Java
library:

/LVW

(QWU\

2EMHFW

KHDGHU

HOHPHQW

QH[WSUHY

" "

" "

"

�

"

73

The list object has a field header that references an Entry object. An Entry object is a record with
three fields: next and prev which may hold references to other Entry objects (or be null), and element,
which holds a reference to an element object. The next and prev fields are links that point forwards
and backwards along the list. In the middle of the list, following next and then prev will bring you
back to the object you started with. Let’s assume that the linked list does not store null references as
elements. There is always a dummy Entry at the beginning of the list whose element field is null, but
this is not interpreted as an element.

The following object diagram shows a list containing two elements::

Another, different representation of lists uses an array. The following object model shows how lists
are represented in the class ArrayList in the standard Java library:

�/LVW�

�(QWU\�

KHDGHU

�(QWU\�

QH[W

SUHY

�2EMHFW�

HOHPHQW

�(QWU\�

QH[W

SUHY

�2EMHFW�

HOHPHQW

/LVW

2EMHFW�>@

2EMHFW

HOHPHQW'DWD

HOWV>@

�

74

Here’s a list with two elements in this representation:

These representations have different merits. The linked list representation will be more efficient
when there are many insertions at the front of the list, since it can splice an element in and just
change a couple of pointers. The array representation has to bubble all the elements above the
inserted element to the top, and if the array is too small, it may need to allocate a fresh, larger array
and copy all the references over. If there are many get and set operations, however, the array list rep-
resentation is better, since it provides random access, in constant time, while the linked list has to
perform a sequential search.

We may not know when we write code that uses lists which operations are going to predominate. The
crucial question, then, is how we can ensure that it’s easy to change representations later.

7.6 Representation Independence

Representation independence means ensuring that the use of an abstract type is independent of its
representation, so that changes in representation have no effect on code outside the abstract type
itself. Let’s examine what goes wrong if there is no independence, and then look at some language
mechanisms for helping ensure it.

Suppose we know that our list is implemented as an array of elements. We’re trying to make use of
some code that creates a sequence of objects, but unfortunately, it creates a Vector and not a List. Our
List type doesn’t offer a constructor that does the conversion. We discover that Vector has a method
copyInto that copies the elements of the vector into an array. Here’s what we now write:

List l = new List ();
v.copyInto (l.elementData);

What a clever hack! Like many hacks it works for a little while. Suppose the implementor of the List
class now changes the representation from the array version to the linked list version. Now the list l
won’t have a field elementData at all, and the compiler will reject the program. This is a failure of rep-
resentation independence: we’ll have to change all the places in the code where we did this.

Having the compilation fail is not such a disaster. It’s much worse if it succeeds and the change has
still broken the program. Here’s how this might happen.

In general, the size of the array will have to be greater than the number of elements in the list, since
otherwise it would be necessary to create a fresh array every time an element is added or removed. So
there must be some way of marking the end of the segment of the array containing the elements. Sup-
pose the implementor of the list has designed it with the convention that the segment runs to the first

�/LVW� �2EMHFW>@�
HOHPHQW
'DWD

�2EMHFW�

�2EMHFW�

HOWV>�@

HOWV>�@
75

null reference, or to the end of the array, whichever is first. Luckily (or actually unluckily), our hack
works under these circumstances.

Now our implementor realizes that this was a bad decision, since determining the size of the list
requires a linear search to find the first null reference. So he adds a size field and updates it when any
operation is performed that changes the list. This is much better, because finding the size now takes
constant time. It also naturally handles null references as list elements (and that’s why it’s what the
Java LinkedList implementation does).

Now our clever hack is likely to produce some buggy behaviours whose cause is hard to track down.
The list we created has a bad size field: it will hold zero however many elements there are in the list
(since we updated the array alone). Get and set operations will appear to work, but the first call to size
will fail mysteriously.

Here’s another example. Suppose we have the linked list implementation, and we include an opera-
tion that returns the Entry object corresponding to a particular index.

public Entry getEntry (int i)

Our rationale is that if there are many calls to set on the same index, this will save the linear search of
repeatedly obtaining the element. Instead of

l.set (i, x); ... ; l.set (i, y)

we can now write

Entry e = l.getEntry (i);
e.element = x;
...
e.element = y;

This also violates representation independence, because when we switch to the array representation,
there will no longer be Entry objects. We can illustrate the problem with a module dependency dia-
76

gram:

There should only be a dependence of the client type Client on the List class (and on the class of the
element type, in this case Object, of course). The dependence of Client on Entry is the cause of our
problems. Returning to our object model for this representation, we want to view the Entry class and
its associations as internal to List. We can indicate this informally by colouring the parts that should
be inaccessible to a client red (if you’re reading a black and white printout, that’s Entry and all its
incoming and outgoing arcs), and by adding a specification field elems that hides the representation:

&OLHQW

/LVW

(QWU\

2EMHFW

%$'

/LVW

(QWU\

2EMHFW

KHDGHU

HOHPHQW

QH[WSUHY

" "

" "

"

�

"

HOHPV>@
77

7.7 Language Mechanisms

To prevent access to the representation, we can make the fields private. This eliminates the array
hack; the statement

v.copyInto (l.elementData);

would be rejected by the compiler because the expression l.elementData would illegally reference a
private field from outside its class.

The Entry problem is not so easily solved. There is no direct access to the representation. Instead, the
List class returns an Entry object that belongs to the representation. This is called representation
exposure, and it cannot be prevented by language mechanisms alone. We need to check that refer-
ences to mutable components of the representation are not passed out to clients, and that the repre-
sentation is not built from mutable objects that are passed in. In the array representation for
example, we can’t allow a constructor that takes an array and assigns it to the internal field.

Interfaces provide another method for achieving representation independence. In the Java standard
library, the two representations of lists that we discussed are actually distinct classes, ArrayList and
LinkedList. Both are declared to extend the List interface. As we saw in our last lecture, the interface
breaks the dependence between the client and another class, in this case the representation class:

This approach is nice because an interface cannot have (non-static) fields, so the issue of accessing
the representation never arises. But because interfaces in Java cannot have constructors, it can be
awkward to use in practice, since information about the signatures of the constructors that are
shared across implementation classes cannot be expressed in the interface. Moreover, since the client
code must at some point construct objects, there will be depedendences on the concrete classes
(which we will obviously try to localize). The Factory pattern, which we will discuss later in the
course, addresses this particular problem.

7.8 Summary

Abstract types are characterized by their operations. Representation independence makes it possible
to change the representation of a type without its clients being changed. In Java, access control mech-
anisms and interfaces can help ensure independence. Representation exposure is trickier though,
and needs to be handled by careful programmer discipline.

/LVW

$UUD\/LVW /LQNHG/LVW
78

Lecture 8: Rep invariants

This lecture begins a series of three lectures on the subject of getting it right. In these lectures, we’ll
study a variety of intellectual tools that help in the construction of high quality code. First we’ll look
at representation invariants and abstraction functions, which are key tools for designing and imple-
menting abstract data types. Then we’ll look at testing and code review strategies.

The use of these tools results in more reliable code. Representation invariants and abstraction func-
tions, because they are applied earlier, tend to improve the structure of the code, which makes all
subsequent activities easier. Representation invariants can also amplify the power of testing. All of
the techniques can reduce the amount of time spent debugging, and if you are reduced to debugging,
can make it more focused.

Today’s lecture is about representation invariants. We’ll discuss what they are, and how they’re used
in the design, documentation and testing of abstract types.

8.1 What is a Rep Invariant?

A representation invariant, or rep invariant for short, is a constraint that characterizes whether an
instance of an abstract data type is well formed, from a representation point of view. Mathematically,
it is a formula over the representation of an instance; you can view it as a function that takes objects
of the abstract type and returns true or false depending on whether they are well formed:

RI : Object -> Boolean

Consider the linked list implementation that we discussed last time. Here was its object model:

The LinkedList class has a field, header, that holds a reference to an object of the class Entry. This
object has three fields: element, which holds a reference to an element of the list; prev, which points to
the previous entry in the list; and next, which points to the next element.

This object model shows the representation of the data type. As we have mentioned before, object

/LVW

(QWU\

2EMHFW

KHDGHU

HOHPHQW

QH[WSUHY

" "

" "

"

�

"

79

models can be drawn at various levels of abstraction. From the point of view of the user of the list,
one might elide the box Entry, and just show a specification field from List to Object. This diagram
shows that object model in black, with the representation in red (Entry and its incoming and outgo-
ing arcs) hidden:

In tomorrow’s lecture, we’ll study the relationship between the representation and the abstract view;
today, our concern is solely with the representation.

The representation invariant is a constraint that holds for every instance of the type. Our object
model already gives us some of its properties:
· It shows, for example, that the header field holds a reference to an object of class Entry. This prop-

erty is important but not very interesting, since the field is declared to have that type; this kind of
property is more interesting for the contents of polymorphic containers such as vectors, whose
element type cannot be expressed in the source code.

· The multiplicity marking on the target end of the header arrow says that the header field cannot
be null.

· The multiplicities on the source end of the next and prev arrows say that each entry is pointed to
by at most one other entry.

Some properties of the object model are not part of the representation invariant. For example, the
fact that entries are not shared between lists (which is indicated by the multiplicity on the source end
of the header arrow) is not a property of any single list.

There are properties of the representation invariant which are not shown in the graphical object
model:
· When there are two e1 and e2 entries in the list, if e1.next = e2, then e2.prev = e1.
· The dummy entry at the front of the list has a null element field.

There are also properties that do not appear because the object model only shows objects and not
primitive values. The representation of LinkedList has a field size that holds the size of the list. A
property of the rep invariant is that size is equal to the number of entries in the list representation,

/LVW

(QWU\

2EMHFW

KHDGHU

HOHPHQW

QH[WSUHY

" "

" "

"

�

"

HOHPV>@
80

minus one (since the first entry is a dummy).

In fact, in the Java implementation java.util.LinkedList, the object model has an additional con-
straint, reflected in the rep invariant. Every entry has a non-null next and prev:

Note the stronger multicities on the next and prev arrows. The list always forms a circle; when the list
contains no elements, the dummy entry is connected to itself. Here is a sample list of two elements
(and therefore three entries, including the dummy):

When examining a representation invariant, it is important to notice not only what constraints are
present, but also which are missing. In this case, there is no requirement that the element field be
non-null, nor that elements not be shared. This is what we’d expect: it allows a list to contain null ref-
erences, and to contain the same object in multiple positions.

Let’s summarize our rep invariant informally:

/LVW

(QWU\

2EMHFW

KHDGHU

HOHPHQW

QH[WSUHY

"

�

"

� �

� �

�/LVW�

�(QWU\�

KHDGHU

�(QWU\�

QH[W

SUHY

�2EMHFW�

HOHPHQW

�(QWU\�

QH[W

SUHY

�2EMHFW�

HOHPHQW

QH[W

SUHY
81

for every instance of the class LinkedList
the header field is non-null
the header field has a null element field
there are (size + 1) entries
the entries form a cycle starting and ending with the header entry
for any entry, taking prev and then next returns you to the entry

We can also write this a bit more formally:

all p: LinkedList |
p.header != null
&& p.header.element = null
&& p.size + 1 = | p.header.*next |
&& all e: p.header.*next | e.prev.next = e

To understand this formula, you need to know that
· for any expression e denoting some set of objects, and any field f, e.f denotes the set of objects you

get if you follow f from each of the objects in e;
· e.*f means that you collect the set of objects obtained by following f any number of times from

each of the objects in e;
· | e | is the number of objects in the set denoted by e.

So p.header.*next for example denotes the set of all entries in the list, because you get it by taking the
list p, following the header field, and then following the next field any number of times.

One thing that this formula makes very clear is that the representation invariant is about a single
linked list p. Another fine way to write the invariant is this:

R(p) =
p.header != null
&& p.header.element = null
&& p.size + 1 = | p.header.*next |
&& all e: p.header.*next | e.prev.next = e

in which we view the invariant as a boolean function. This is the point of view we’ll take when we
convert the invariant to code as a runtime assertion.

The choice of invariant can have a major effect both on how easy it is to code the implementation of
the abstract type, and how well it performs. Suppose we strengthen our invariant by requiring that
the element field of all entries is non-null. This would allow us to detect the header entry by compar-
ing its element to null; with the current invariant, operations that require traversal of the list must
count entries instead or compare to the header field. Suppose, conversely, that we weaken the invari-
ant on the next and prev pointers and allow prev at the start and next at the end to have any values.
This will result in a need for special treatment for the entries at the start and end, resulting in less
uniform code. Requiring prev at the start and next at the end both to be null doesn’t help much.
82

8.2 A Variety of Invariants

Expert programmers use many different kinds of rep invariants. As a rough rule of thumb, the pres-
ence of strong invariants is a sign of expert programming; and conversely, the omission of invariants
is oftena sign of incompetence.

Here is an example of how we might elaborate the invariant on our linked list. For the fields that we
have, aside from requiring elements to be non-null, it’s hard to strengthen the invariant. But we
might add a hashmap that maps elements of the list to their entries:

Hashmap entries;

The rep invariant would now include the constraint

all e: p.header.*next | p.entries[e.element] = e

saying that for every entry in the list, looking up the element of that entry in the hashmap yields the
entry itself, and also the constraint

all k | k in dom(p.entries) ⇒ k in p.header.*next.element

which says that if a key is mapped by the hashmap, then it must be an element of the list. This invari-
ant now allows us to do constant time lookups. This use of the hashmap is an example of a large class
of invariants that constrain a redundant component of the representation. The hashmap is redundant
in the technical sense that it can be obtained from the list at any point. It’s not redundant from a per-
formance point of view, of course.

Caching constraints are another form of redundancy. Sometimes its convenient to store only part of
the representation redundantly. For example, suppose the get operation of our linked list, which
returns the element at a given index, is frequently called many times ina row with the same index. If
we simply add two fields containing the last index requested and its element

Object lastElementRequested;
int lastIndexRequested;

we will be able to provide the result in constant time every call after the first in a series. The rep
invariant will say that the given element indeed occurs at the given index, and it must be reset when-
ever the list is modified. Will these fields always be defined? The rep invariant will have to answer this
question. Perhaps when the list is empty, the fields will be ignored:

size > 0 ⇒ e.element = lastElementRequested where e is the entry with index lastIndexRequested

This will require the fields to be set up as soon as there is an insertion, and it will require the fields to
be reset whenever the list is mutated to hold information about some entry in the list. Instead, we
might use a special value to indicate that no element is cached:

lastIndexRequested >= 0 ⇒
e.element = lastElementRequested where e is the entry with index lastIndexRequested

This will allow the lastIndexRequested field to be initialized to -1; we can set the value when a get
occurs, and simply invalidate the field again on a mutation.

The same representation may be used for different abstract types. For a set implemented as a list, the
83

following additional invariants might be appropriate:
· The list may be free of duplicates. That is, we might ensure that no two entries contain the same

element. Duplication usually has no utility for a set, and merely complicates the code and wastes
space (although it may make insertion easier).

· The list may be sorted. This would allow a method that extracts the minimal element to be easily
and efficiently implemented. It also marginally improves the efficiency of membership tests.

Perhaps the most important class of constraints are simply those that assert that a reference is non-
null. As a rule of thumb, you should avoid ever having null references in your representations; they
almost always lead to trouble. A particularly horrible error occasionally made by novices is to use a
null reference as if it were a legitimate instance of the type: for example, as the empty list. This makes
life very unpleasant for the client, since every method call on a list must be wrapped in a test to see if
the reference is null. More programmers make this error inside a representation. Suppose a set is rep-
resented as field elemvec that is a vector of elements. If you allow the field to have a null value to rep-
resent the empty set, you’ll end up peppering your code with null-reference tests. Far better to
impose the rep invariant that the reference is non-null, and use an empty vector for an empty set.

8.3 Inductive Reasoning

The rep invariant makes modular reasoning possible. To check whether an operation is implemented
correctly, we don’t need to look at any other methods. Instead, we appeal to the principle of induc-
tion. We ensure that every constructor creates an object that satisfies the invariant, and that every
mutator and producer preserves the invariant: that is, if given an object that satisfies it, it produces
one that also satisfies it. Now we can argue that every object of the type satisfies the rep invariant,
since it must have been produced by a constructor and some sequence of mutator or producer appli-
cations.

To see how this works, let’s look at some sample operations of our LinkedList class. The representa-
tion is declared in Java like this:

public class LinkedList {
Entry header;
int size;
class Entry {

Object element;
Entry prev;
Entry next;
Entry (Object e, Entry p, Entry n) {element = e; prev = p; next = n;}
}

...

Here’s our constructor:

public LinkedList () {
size = 0;
header = new Entry (null, null, null);
84

header.prev = header.next = header;
}

Notice that it establishes the invariant: it creates the dummy element, forms the cycle, and sets the
size appropriately.

The mutator add takes an element and adds it to the end of the list:

public void add (Object o) {
Entry e = new Entry (o, header.prev, header);
e.prev.next = e;
e.next.prev = e;
size++;
}

To check this method, we can assume that the invariant holds on entry. Our task is to show that it
also holds on exit. The effect of the code is to splice in a new entry just before the header entry, so we
can see that the constraint that the entries form a cycle is preserved. Note that one consequence of
being able to assume the invariant on entry is that we don’t need to do null reference checks: we can
assume that e.previous and e.next are non-null, for example, because they are entries that existed in
the list on entry to the method, and the rep invariant tells us that all entries have non-null prev and
next fields.

Finally, let’s look at an observer. The operation getLast returns the last element of the list or throws an
exception if the list is empty:

public Object getLast () {
if (size == 0) throw new NoSuchElementException ();
return header.prev.element;
}

Again, we assume the invariant on entry. This allows us to dereference header.next, which the rep
invariant tells us cannot be null. Checking that the invariant is preserved is trivial in this case, since
there are no modifications.

8.4 Rep Exposure

The notion of rep invariants that we have espoused offers a systematic method for checking the cor-
rectness of abstract data type implementations. (We haven’t yet considered how to ensure that a
mutator or producer generates the right instance of the type, only that it produces a well-formed
instance. Tomorrow, when we study abstraction functions, we’ll look at that issue.)

Our method says that we can consider the operations one by one, and then appeal to induction to
show that every instance will be well formed. A crucial aspect of this method is local reasoning: we
can examine the operations individually, and certainly don’t need to look at client code.

In fact, this method is not always sound. It has a proviso: that the representation must not be exposed.
Representation exposure is a nasty problem, because it can arise unexpectedly, and have disastrous
85

effects that are hard to pin down.

The simplest form of rep exposure involves allowing client code to manipulate the representation
directly. This is easy to rule out, however, by making all fields of the abstract type private, so we don’t
usually even regard it as a kind of exposure.

Instead, the rep exposure we’ll be concerned with arises because an object inside the representation
is accessible from the outside, through a different path. Two common ways in which this happens are
· that a reference to an object that is part of the rep is passed out, as the result of an operation;
· or that an object is passed in and made part of the rep despite being accessible by an existing ref-

erence from the outside.

We saw an example of rep exposure in our last lecture. If we were so foolish as to provide a method

public Entry getEntry (int i)

that returns the entry at index i in the list, subsequent modifications to the entry could break the
invariant.

A more plausible exposure, which is quite common, arises from implementing a method that returns
a collection. When the representation already contains a collection object of the appropriate type, it
is tempting to return it directly. For example, LinkedList has a method toArray that returns an array
of elements corresponding to the elements of the list. If we had implemented the list itself as an array,
we might just return the array itself. If the rep invariant requires some other part of the rep to be
related to the array (eg, a size field to correspond to the index at which a null reference first appears)
a modification to this array may break the invariant:

a = p.toArray (); // exposes the rep
a[i] = null; //ouch! breaks invariant
p.get (i); // now behaves unpredictably

Once the invariant is violated, all hell breaks loose: subsequent operations may behave in arbitrary
ways.

A more subtle variant of this problem arises with iterators. Many Java classes have a method that
returns an iterator. Building an iterator is work, so we might be tempted to use one that’s already pro-
vided by the Java library. Suppose our representation includes a field vec that holds a set of elements,
and we want to implement a method

public Iterator elements ()

that returns an iterator over these elements. Noticing that the Vector class provides its own method
that returns an iterator, we implement our method like this:

public Iterator elements () {
return vec.iterator ();
}

Unfortunately, this is a rep exposure. Classes that implement the Iterator interface in Java must offer
add and remove methods. So the result of this method is an object that can actually be modified out-
side the abstract type. Since the iterator method of Vector returns an iterator that shares state with the
86

vector it is called on, this object will be part of the state of our representation.

Another variety of rep exposure can happen between two objects of a type. This is a rather strange
kind of exposure, since it involves violations due to calls to abstract operations. Suppose, for exam-
ple, we have a linked list whose representation is

public class LinkedList {
Entry header;
int size;
class Entry {

Entry next;
Object element;
Entry (Entry n, Object e) {next = n; element = e;}
}

...

We want a cdr operation (as in Scheme) that returns a list containing all but the first element. Here is
a bad implementation:

public LinkedList cdr () {
LinkedList p = new LinkedList ();
p.header.next = this.header.next.next;
p.size = this.size - 1;
return p;
}

We create a new list object, with its own dummy entry, and we make the next field of this dummy
entry point to the second element of the original list. If we now make a call to remove on one of the
lists, the rep invariant of the other list will be violated, since the size field will no longer correspond
to the number of elements in the list. We should have copied the list instead.

Object models can help expose representation invariants. Two arrows pointing at the same box indi-
cate potential sharing in the heap, and thus potential exposure. Whenever the source end of an arrow
is not marked with a multiplicity, you should be concerned that sharing may lead to a rep exposure
between objects of the type.

8.5 Element Equality & Rep Exposure

Rep exposure is actually a very subtle notion, because it is not always clear what belongs to the rep. Is
it a rep exposure for list operations to return elements of the list? Let’s see why it might be.

Suppose our list representation has the invariant that there are no duplicates (eg. because the list rep-
resents a set). Furthermore, let’s say that our notion of equality is based on the contents of the ele-
ments. For example, if the elements are themselves lists, we’ll regard two elements to be equal if they
contain the same sequence of elements. Now we have a rep exposure: we can create duplicates simply
by modifying the elements of the list from outside, making two equal when they were not equal pre-
viously.
87

The root of the problem here is not the passing in or out of the element objects: that can’t be avoided.
Rather, it’s the notion of equality. If our set determined equality of the elements using reference
equality, so that two elements are equal when they are the same object, the rep exposure would not
arise. That would itself lead to problems though, since it would result in two strings that represent the
same sequence of characters being regarded as distinct. The best approach, therefore, is to have the
set call the equals method of the element type, and for equals of every type to be reference equality
when the type is mutable.

Unfortunately, the collection classes in Java are not designed in this way. Two LinkedList objects, for
example, are regarded as equal if they contain equal elements, even if they are distinct list objects.
Now if we insert such lists as keys into a Hashmap or Hashtable, a subsequent modification to a list
can break the hash table invariant. This can lead to very strange behaviour:

LinkedList k;
Hashmap m;
...
m.put (k, v); // insert the list as a key into the hash map
k.add (e); // mutate the key; breaks the rep invariant of m
x = m.get (k); // now x may not be v

The problem is that the key is stored in a fixed slot in the hash table according to its computed hash-
code. Mutating the key may change its hashcode, so that when looked up a second time, the hash
table code looks in the wrong slot.

To work around this problem, you should either wrap objects before you insert them into hashtables
(so that they have an equals method you define yourself), or you should make sure you never mutate
keys. Neither of these is convenient though.

8.6 Rep Invariants as Assertions

Many rep invariants can be translated straightforwardly into code. In our LinkedList implementa-
tion, for example, it’s easy to check that the prev and next pointers commute, that the header is non-
null, etc. Even if the check is expensive, it’s worth coding it up, since expensive properties tend to be
tricky ones that are more likely to be violated.

The rep invariant assertion checker can be coded as a method checkRep of no arguments that throws
an exception if the rep invariant is violated, with a message indicating which constraint is broken.
Calls to checkRep can be placed at the start and end of every public mutator and at the end of every
constructor. Although our induction argument suggests that placing it at the start of mutators should
not be necessary, there is a risk of representation exposure which would cause the rep to change
between the end of one operation and the start of the next. For an observer, the call to checkRep
should be placed at the start, and at the end also if it changes the rep (see the discussion of ‘benevo-
lent side effects’ in the next lecture), and maybe even if it supposedly doesn’t (since you may be
wrong).

If the check is very expensive, you’ll probably want to comment it out or turn it off in the release ver-
sion. Otherwise it makes sense to leave it in. Be careful in how you judge performance here; novices
88

are often much too ready to worry about performance improvements that turn out to be negligible.
Before dropping a check, you should have some evidence that it’s expensive, such as an analysis with
a profiler showing that indeed the check is a hotspot, or a theoretical argument, for example that the
check turns a constant time operation into a linear time one.

Checking rep invariants is especially useful because it helps to localize bugs. Suppose you forget to
update the size field in one of the mutator operations of the linked list. This bug will not cause prob-
lems until a subsequent operation tries to make use of the size, and even then some operations may
succeed. A call to get with a low index, for example, might work just fine. When an operation finally
fails, the bug will be obscure. Perhaps get with a high index fails because the implementation counts
back from the high end of the list. It will take some debugging to discover that there is no fault with
the get operation at all, but that it was passed a bad object. With checks on the rep invariant inserted,
however, the bug would be noticed as soon as the offending operation executed, and the program-
mer’s attention would be drawn to the operation that actually contains the error, not the operation
that first fails.

8.7 Summary

Why use rep invariants? Recording the invariant may seem like extra work, but actually it saves work:
· It makes modular reasoning possible. Without the rep invariant documented, you might have to

read all the methods to understand what’s going on before you can confidently add a new
method.

· It helps catch errors. By implementing the invariant as a runtime assertion, you can find bugs that
are hard to track down by other means.

Moreover, choosing a strong invariant is often a good design decision:
· It tends to result in cleaner code (eg, because there are no null reference checks).
· It can help avoid errors. For example, you might allow a linked list to contain unused elements

beyond the end, and use the size field to avoid running over the end, but this is asking for trouble
(and will prevent the unused elements from being garbage collected).

· It can improve performance (eg, because of caching or redundancy).

You should therefore design and record the rep invariant as part of the design of the representation,
before you start coding. When you’re trying to understand an abstract data type, writing down the
rep invariant is a good place to start.
89

Lecture 9: Abstraction Functions

In this lecture, we turn to our second tool for understanding abstract data types: the abstraction
function. The rep invariant describes whether an instance of a type is well formed; the abstraction
function tells us how to interpret it. It’s impossible to code an abstract type or modify it without
understanding the abstraction function at least informally. Writing it down is useful, especially for
maintainers, and crucial in tricky cases.

9.1 Interpreting the Representation

Recall from last lecture the mutator add, which takes an element and adds it to the end of the list:

public void add (Object o) {
Entry e = new Entry (o, header.prev, header);
e.prev.next = e;
e.next.prev = e;
size++;
}

We checked that this operation preserved the rep invariant, by correctly splicing a new entry into the
list. What we didn’t check, however, was that it was spliced into the right position. Is the new element
inserted into the start or the end of the list? It looks as if it’s at the end, but that assumes that the order
of entries corresponds to the order of elements. It would be quite possible (although perhaps a bit
perverse) for a list p with elements o1, o2, o3 to have

p.header.next.element = o3;
p.header.next.next.element = o2;
p.header.next.next.element = o1;

To resolve this problem, we need to know how the representation is interpreted: that is, how to view
an instance of LinkedList as an abstract sequence of elements. This is what the abstraction function
provides. The abstraction function for our implementation is:

A(p) =
if p.size = 0 then

<> (the empty list)
else

<p.header.next.element, p.header.next.next.element, ...>
(the sequence of elements with indices 0.. p.size-1 whose ith element is p.nexti+1.element)

9.2 Abstract and Concrete Objects

In thinking about an abstract type, it helps to imagine objects in two distinct realms. In the concrete
realm, we have the actual objects of the implementation. In the abstract realm, we have mathematical
objects that correspond to the way the specification of the abstract type describes its values.

Suppose we’re building a program for handling registration of courses at a university. For a given
90

course, we need to indicate which of the four terms Fall, Winter, Spring and Summer the course is
offered in. In good MIT style, we’ll call these F, W, S and U. What we need is a type SeasonSet whose
values are sets of seasons; we’ll assume we already have a type Season. This will allow us to write code
like this:

if (course.seasons.contains (Season.SUMMER)) ...

There are many ways to represent our type. We could be lazy and use java.util.ArrayList; this will
allow us to write most of our methods as simple wrappers. The abstract and concrete realms might
look like this:

The oval below labelled [F,W,S] denotes a concrete object containing the array list whose first element
is F, second is W, and third is S. The oval above labelled {F,W,S} denotes an abstract set containing
three elements F, W and S. Note that there may be multiple representations of the same abstract set:
{F, W, S}, for example, can also be represented by [W,F, S], the order being immaterial, or by [W,W,F,
S] if the rep invariant allows duplicates. (Of course there are many abstract sets and concrete objects
that we have not shown; the diagram just gives a sample.)

The relationship between the two realms is a function, since each concrete object is interpreted as at
most one abstract value. The function may be partial, since some concrete objects -- namely those
that violate the rep invariant -- have no interpretation. This function is the abstraction function, and
is denoted by the arrows marked A in the diagram.

Suppose our SeasonSet class has a field eltlist holding the ArrayList. Then we can write the abstrac-
tion function like this:

A(s) = {s.eltlist.elts [i] | 0 <= i <= size(s.eltlist)}

That is, the set consists of all the elements of the list.

Different representations have different abstraction functions. Another way to represent our Season-
Set is using an array of 4 booleans. Here the abstraction function may, for example, map

[true, false, true, false]

>)�:�6@ >:�)�6@ >:�:�)�6@ >:�)@

^)�:�6` ^)�:`

$ $ $ $

DEVWUDFW�UHDOP

FRQFUHWH�UHDOP
91

to {F,S}, assuming the order F, W, S, U for the elements of the array. This order is the information
conveyed by the abstraction function, which might be written, assuming the array is stored in a field
boolarr as

A(s) =
(if s.boolarr[0] then {F} else {})∪
(if s.boolarr[1] then {W} else {})∪
(if s.boolarr[2] then {S} else {})∪
(if s.boolarr[3] then {U} else {})

We could equally well have chosen a different abstraction function, that orders the seasons differ-
ently:

A(s) =
(if s.boolarr[0] then {S} else {})∪
(if s.boolarr[1] then {U} else {})∪
(if s.boolarr[2] then {F} else {})∪
(if s.boolarr[3] then {W} else {})

An important lesson from this last example is that ‘choosing a representation’ means more than nam-
ing some fields and selecting their types. The very same array of booleans can be interpreted in dif-
ferent ways; the abstraction function tells us which. Likewise, in our linked list example, the
abstraction function tells us how the order of entries corresponds to the order of elements. It is a
common error of novices to imagine that the abstraction function is obvious, since you can always
guess what it is from the declarations in the code. Unfortunately, this is often not true: it takes careful
reading of the linked list code to discover that the first entry is a dummy entry, for example.

9.3 Example: Boolean Formulas in CNF

Let’s look at an example of a simple representation with a tricky abstraction function. A boolean for-
mula is a mathematical formula constructed from propositions (symbols that can be assigned the val-
ues true and false) and logical operators. For example, the formula

courseSix ⇒ sixOneSeventy

uses two propositions, courseSix and sixOneSeventy, and the logical implication operator. It says that
if courseSix is true, sixOneSeventy is true also. A boolean formula is satisfiable if there is some assign-
ment of boolean values to the propositions that makes the formula true. This formula is satisfiable,
since we can set courseSix to false, or we can set both propositions to true.

An algorithm that determines whether a formula is satisfiable, and if so returns satisfying values for
the propositions is called a SAT solver. SAT solvers have many applications, and their technology has
advanced dramatically in the last decade. They are used in design tools for checking design con-
straints, in planners for finding plans, in testing tools for finding tests that expose particular classes
of error, and so on. A SAT solver can also be used to check a proof. Suppose we assert that it follows
from

courseSix ⇒ sixOneSeventy
92

and

sixOneSeventy ⇒ lateNights

that

courseSix ⇒ lateNights

This is elementary reasoning using modus ponens, of course, but let’s see how to check it with a SAT
solver. We simply conjoin the premises to the negation of the conclusion:

(courseSix ⇒ sixOneSeventy) ∧ (sixOneSeventy ⇒ lateNights) ∧ ¬(courseSix ⇒ lateNights)

and present this formula to the solver. The solver will find it not satisfiable, and will have demon-
strated that it is impossible to have the premises be true and not the conclusion: in other words, the
proof is valid.

Most SAT solvers use a representation of boolean formulas known as conjunctive normal form, or
CNF for short. A formula in CNF is a set of clauses; each clause is a set of literals; a literal is a propo-
sition or its negation. The formula is interpreted as a conjunction of its clauses and each clauses is
interpreted as a disjunction of its literals. A more helpful name for CNF is product of sums, which
makes it clear that the outermost operator is product (ie., conjunction).

For example, the CNF formula

{{a}{¬b,c}}

is equivalent to the conventional formula

a ∧ (¬b ∨ c)

Our formula above would be represented in CNF as

{{¬courseSix,sixOneSeventy}, {¬sixOneSeventy, lateNights} {courseSix}{¬lateNights}}

Let’s consider now how we might build an abstract data type that holds formulas in CNF. Suppose we
already have a class Literal for representing literals. Here is one reasonable representation that uses
the Java library ArrayList class:

public class Formula {
private ArrayList clauses;
...
}

The clauses field is an ArrayList whose elements are themselves ArrayLists of literals.

Our representation invariant might then be

R(f) =
f.clauses != null &&
all c: f.clauses.elts |

c instanceof ArrayList && c != null &&
all l: c.elts | c instanceof Literal && c != null

I’ve used the specification field elts here to denote the elements of an ArrayList. The rep invariant
93

says that the elements of the ArrayList clauses are non-null ArrayLists, each containing elements that
are non-null Literals.

Here, finally, is the abstraction function:

A(f) = true ∧ C (f.clauses.elts[0]) ∧ ... ∧ C(f.clauses.elts[(size(f.clauses) -1])
where C(c) = false ∨ c.elts[0] ∨... ∨ c.elts[0]

Note how I’ve introduced an auxiliary function C that abstracts clauses into formulas. Looking at
this definition, we can resolve the meaning of the boundary cases. Suppose f.clauses is an empty
ArrayList. Then A(f) will be just true, since the conjuncts on the right-hand side of the first line dis-
appear. Suppose f.clauses contains a single clause c, which itself is an empty ArrayList. Then C(c) will
be false, and A(f) will be false too. These are our two basic boolean values: true is represented by the
empty set of clauses, and false by the set containing the empty clause.

9.4 Specification Fields

The abstract values of many abstract data types have a tuple structure at the top-level. For example, a
line is a pair of points; a mailing address is a number, a street, a city and a zipcode; a URL is a proto-
col, a host name, and a resource name.

In these cases, one can specify a single function that maps representation objects to tuples. This is the
approach followed by our textbook. It’s convenient, and perhaps more natural, to break the func-
tion into several separate functions, each viewed as an specification field.

For example, we might represent a Card datatype, used in card game program, by a single integer in a
field index. The rep invariant requires index be in the range 0..51. We might have two specification
fields defined as follows:

c.suit = S(c.index div 13)
c.val =V (c.index mod 13)

where
S(0) = Hearts, S(1) = Spades, S(2) = Clubs, S(3) = Diamonds
V(1) = Ace, V(2) = 2, ..., V(11) = Jack, V(12) = Queen, V(0) = King

so that a Card object with index field of 3, for example, would correspond to the 3 of Hearts; 14 cor-
responds to the Ace of Spades.This abstraction function maps each representation object c to a pair
(c.suit, c.val), but rather than writing it as a single function, we’ve specified it as two separate ones,
one for each specification field.

This scheme is so convenient that we’ll use it even when there is only one specification field. We’ve
actually seen this many times before. When we referred to the ith element of a vector v as v.elts[i],
this used a specification field elts that is a mathematical sequence. It allowed us to talk about the ele-
ments of the vector without mentioning the representation. Without the specification field, we would
have to write A(v) to denote the vector’s element sequence, to distinguish it from the value of v itself -
- a Java object reference.

Note that we’ve actually already used specification fields, whenver we needed to refer to the abstract
94

value denoted by an object. In giving the abstraction function for SeasonSet

A(s) = {s.eltlist.elts [i] | 0 <= i <= size(s.eltlist)}

for example, in order to refer to the element at index i of the ArrayList, we needed to first obtain the
abstract sequence represented by the list. The expression s.eltlist is a reference to a Java ArrayList
object; s.eltlist.elts is the sequence of elements it represents. This definition thus actually mixed two
styles; we should write either

A(s) = {A(s.eltlist) [i] | 0 <= i <= size(s.eltlist)}

using the single abstraction function, or

s.elems = {s.eltlist.elts [i] | 0 <= i <= size(s.eltlist)}

using specification fields.

9.5 Benevolent Side Effects

What is an observer operation? In our introductory lecture on representation independence and data
abstraction, we defined it as an operation that does not mutate the object. We can now give a more
liberal definition.

An operation may mutate an object of the type so that the fields of the representation change, will
maintaining the abstract value it denotes. We can illustrate this phenomenon in general with a dia-
gram:

The execution of the operation op mutates the representation of an object from r1 to r2. But r1 and
r2 are mapped by the abstraction function A to the same abstract value a, so the client of the
datatype cannot observe that any change has occurred.

We have in fact already seen an example of such an observer. We mentioned in the last lecture that
the get method of LinkedList may cache the last element extracted, so that repeated calls to get for the
same index will be speeded up. This writing to the cache (in this case just the two fields) certainly
changes the rep, but it has no effect on the value of the object as it may be observed by calling opera-
tions of the type. The client cannot tell whether a lookup has been cached (except by noticing the
improvement in performance).

In general, then, we can allow observers to mutate the rep, so long as the abstract value is preserved.
We will need to ensure that the rep invariant is not broken, and if we have coded the invariant as a

r1 r2

a

RS

$ $
95

method checkRep, we should insert it at the start and end of observers.

9.6 Idioms for Expressing Abstraction Functions

Writing abstraction functions is difficult, because we don’t have a language for talking about abstract
values. Such a language, called a formal specification language, would also allow us to specify our
operations more precisely. But in practice, formal specification languages are not easy to use, so they
are usually reserved for critical projects.

Nevertheless, with a little practice, it’s possible to write fairly clear and simple abstraction functions.
Here are some tips.

First, figure out what the abstract values looks like. If an abstract value is a tuple of several values,
examine each of these values and define a separate specification field for it. Can the abstract value be
described with standard mathematical sets, sequences and relations? If so, you’re in luck: you can
now use whatever notation you’re comfortable with for constructing and manipulating those mathe-
matical values. If not, you might decide to specify the abstraction function by example: that’s what I
did above with the auxiliary functions S and V in the CardSet example, lacking a standard way to
model values such as ‘Hearts’.

Second, pick a strategy for mapping concrete objects to the abstract values you’ve chosen. Here are
some common idioms:
· Comprehension. The set comprehension expression {x | P(x)} denotes the set of all elements x that

satisfy the property P. Suppose we have a set of integers in the range 0..255 represented as an array
of booleans (ie, a bit string) stored in a field bitvec. Then we might write the abstraction function
like this:

s.elems = {i | s.bitvec[i]}

· Recursion. Recursive representations are often well treated with recursive functions. Suppose we
have a set represented as a binary tree, with fields val (the value of the tree node, null if the tree is
empty), left (the left tree, null for a leaf) and right (the right tree, null for a leaf).Then we might
write the abstraction function like this:

s.elems = if (t.val = null) then {} else {t.val} ∪ t.left.elems ∪ t.right.elems

· Projection. Sometimes it’s easiest to write a formula that relates a part, or a projection, of the con-
crete object to a part of the abstract value. Suppose we have a sequence datatype represented as an
array stored in a field eltarray, with a field max giving the index of the highest array element that
corresponds to an element of the abstract sequence. Then, using a specification field elts that
gives the abstract sequence of elements, we might write the abstraction function as two con-
straints:

size (s.elts) = s.max + 1
for i: 0.. size (s.elts) | s.elts [i] = s.eltarray [i]

· By example. Finally, you can always fall back on simply illustrating the abstraction function on an
example, and hoping that the reader infers the generalization correctly. This is what I did when
showing the abstraction for LinkedList:
96

p.elts =
if p.size = 0 then

<> (the empty list)
else

<p.header.next.element, p.header.next.next.element, ...>
(the sequence of elements with indices 0.. p.size-1 whose ith element is p.nexti+1.element)

9.7 Summary

The abstraction function specifies how the representation of an abstract data type is interpreted as
an abstract value. Together with the representation invariant, it allows us to reason in a modular
fashion about the correctness of an operation of the type.

In practice, abstraction functions are harder to write than representation invariants. Writing down a
rep invariant is always worthwhile, and you should always do it. Writing down an abstraction func-
tion is often useful, even if only done informally. But sometimes the abstract domain is hard to char-
acterize, and the extra work of writing an elaborate abstraction function is not rewarded. You need to
use your judgment.
97

Lecture 11: Problem Object Models

In the next two lectures, we’ll be looking at a new topic: how to model problems. It turns out that one
of the hardest problems in software development is figuring out what the problem is. If you don’t
understand the problem, there’s a serious risk that you’ll build the wrong system. Moreover, if you
understand the problem well, you’re much more likely to build a system that’s well structured and
flexible.

In these lectures, we’ll study object models as a tool for analyzing problems. An object model is a
lightweight but precise way to characterize a potentially infinite set of configurations. Many prob-
lems involve configurations, so object models have widespread application. In constructing an
object model, one is forced to answer a variety of simple but important questions; this process often
exposes inadequate understanding of a problem. At the end, the object model that results is a suc-
cinct description of an important aspect of the problem, and can be used to guide design.

We’ve already seen object model notation for describing configurations in code. I presented the
notation as if it were designed for describing heap structures in Java. But in fact the notation is far
more general, and the same notation can be used at many levels of abstraction, from object configu-
rations in code to the most abstract properties of a problem domain.

In today’s lecture, we’ll revisit the object modelling notation, and give it a more precise (and more
abstract interpretation). Tomorrow, we’ll focus more on the process of modelling, and we’ll investi-
gate a particular problem using object modelling.

11.1 Three Problems

To illustrate the variety of artifacts that can be modelled, we’ll construct object models for three
rather different domains:
· A file system. In the first, we’ll express some of the essential structure of a typical file system with a

directory hierarchy and links.
· Air traffic control. In the second, we’ll look at something less familiar. Rather than modelling an

existing computer system, we’ll model an organizational structure. We’ll describe how airspace is
divided into sectors, and how controllers are associated with aircraft.

· A model of Java itself. In the third, we’ll build a generic model that shows how variables, references
and objects are related in a Java program.

As we consider these examples, you should bear in mind that our purpose is to show how one can
construct some model of a problem or a system. In general, there is no single, best model; there are
usually many ways to model the same problem. Which one you choose depends not so much on per-
sonal taste as on which properties matter for the task at hand. Since we don’t have particular tasks,
we can’t make these judgments. In your problem set and in your final project, however, you will have
particular tasks, and you’ll have to take these into account. For example, when building a model of
street maps for your MapQuick system, you will want to bear in mind which features of the map are
relevant to finding and displaying directions.
98

11.2 Example 1: File System

Here is an object model of a simple file system. It shows a classification of file system objects (FSOb-
ject) into directories (Dir) and files (File). There is a root directory (Root), and some of the files are
links (Link). Links are associated with file system objects, and directories contain file system objects.

11.3 Example 2: Air Traffic Control

Our object model of air-traffic control captures only a few vital notions. It shows that there are cen-
ters (Center), each of which contains one or more sectors (Sector). Air-traffic controllers (Controller)
work for centers, and cover sectors. An aircraft (Aircraft) is controlled by a controller and flies within
a sector.

11.4 Example 3: Java Objects

In a Java program, there are variables (Var), which have declared types that are classes (Class).
Classes are related by subclassing. Variables hold values (Val), divided into primitive values (Prim-
Val) and references (Ref); references are further divided into the null reference (Null) and references
to objects (ObjRef), which point to objects (Object). An object has fields (Field), each of which has a

)62EMHFW

'LU)LOH

/LQN5RRW��

WR

FRQWDLQV

�

"

&HQWHU

6HFWRU

FRQWDLQV

&RQWUROOHU

$LUFUDIW

FRQWUROVFRYHUV

ZLWKLQ

ZRUNVIRU

�

�

�

�

"

�

99

name (Fname) and a value. Objects have types too. The model ignores interfaces and the types asso-
ciated with primitive values.

11.5 Sets and Classification

The backbone of the object model is a classification hierarchy. The hierarchy may have many roots;
these are the domains, and they constitute the coarsest classification of objects. Each box in an object
model denotes a set of objects. An arrow with a closed head from A to B

 denotes a subset relationship: A is a subset of B. These edges are sometimes called ‘is-a’ edges,
because they can be read ‘every A is a B’. A box without an outgoing arrow is a domain.

When two subsets share an arrow, they are disjoint. When the arrowhead is filled, the subsets exhaust
the superset: that is, there are no members of the superset that are not members of one of the subsets.

9DU

5HI

1XOO� 2EM5HI

2EMHFW

)LHOG)QDPH

KROGV

3ULP9DO

9DO

WR

ILHOGV

QDPHYDO

&ODVVGW\SH

RW\SH

�

� �

�

VXEFODVV

IW\SH

"
"

%

$

100

In this case, the subsets form a partition: every member of the superset belongs to exactly one subset.

Thus, in the file system example, there is a single domain, FSObject. This domain is partitioned into
File and Dir. Root is a subset of Dir, and Link is a subset of File: that is, every Root is a Dir, and every
Link is a File.

In the air-traffic control example, each set is a domain, and there is no further classification.

In the Java example, the domains are Var, Val, Object, Class, Field, and Fname. The domain Val is
partitioned into PrimVal and Ref; Ref is then partitioned into Null and ObjRef.

11.6 Relations

Arrows with open heads denote relations. A relation is a set of pairs. When an arrow marked r is
drawn from box A to box B

this means that there is a relation that associates members of A with members of B. The relation r is a
set of pairs whose first elements are drawn from A, and whose second elements are drawn from B.
The relation is ordered: we need to know that it goes from A to B, and not from B to A. For example,
in the file system, a directory d1 containing a directory d2 is different from a directory d2 containing
a directory d1. In our code object models, we always ordered the relation to match the direction of
the reference in Java, but in general, no notion of navigability is implied, and, when implemented, a
relation need not be realized as a field in the code.

In the file system example, to is a relation that associates links with the file system objects they point
to; the pair (l,o) will belong to the relation if link l points to object o. In the air-traffic control exam-
ple, controls associates a controller with an aircraft when that controller has responsibility for giving
clearances to that aircraft. In the Java example, holds relates a variable x and a value v when x holds
the value of v.

When a relation arrow connects a superset, it admits elements of a subset. For example, the
contains relation in the file system model maps Dir to FSObject. Because Link is a subset of FSObject,
this means that a directory may contain a link. A connection to a subset does not admit elements of
the superset however. So because contains maps directories, it does not in general map file system
objects: a file system object that is not a directory (that is, a file) cannot contain other objects. Thus
moving a relation down in the classification hierarchy makes the object model more precise.

11.7 Multiplicity

The multiplicity symbols are:
· * (zero or more)
· + (one or more)
· ? (zero or one)

� ��
101

· ! (exactly one).

When a symbol is omitted, * is the default (which says nothing). The interpretation of these mark-
ings is that when there is a marking n at the B end of a relation R from class A to class B, there are n
members of class B associated by R with each A. It works the other way round too; if there is a mark-
ing m at the A end of a relation R from A to B, each B is mapped to by m members of class A.

In the file system example, the multiplicity on the source end of the contains arrow tells us that a file
system object is contained by at most one directory. The multiplicity on the target end of the to arrow
says that a link points to exactly one object.

 In the air-traffic control example, the multiplicities say that a controller works for at most one center;
that a center contains at least one sector, and each sector is contained by exactly one center; that an
aircraft is always in exactly one sector (that is, they don’t overlap or have gaps), and that each aircraft
is controlled by exactly one controller. A sector is covered by at least one controller.

In the Java example, the model says that every variable and every field have a value (although it may
be null). Every object reference points to an object. These are fundamental properties of a safe lan-
guage. But note that not every variable has a declared type, since we are only modelling types that are
classes.

Multiplicity symbols can be used to constrain the size of sets too. So, in the file system example, the !
after Root says that there is exactly one root object. In the Java example, Null! says there is exactly one
null reference (which does not mean that there is only one variable or field with that value,but merely
that there aren’t two different reference values that are both the null reference).

Multiplicity constraints on relations apply to all members of the relevant sets, and therefore to mem-
bers of their subsets too. For example,suppose we classified variables into static variables and local
variables;

then the constraint that every variable holds a value, given by the ! on the target end of the
holds relation, would apply to both kinds of variable.

$ %5

P Q

9DU KROGV 9DO
�

6WDWLF /RFDO
102

11.8 Semantics

The meaning of an object model is given by the set of configurations that the model admits. We’ve
used object diagrams to illustrate these configurations before. Here, for example, are three object
diagrams that are candidate configurations of the file system:

The object model admits the first. It rejects the second, since the multiplity of Root prevents there
from being two Root objects. It admits the third, even though it is undesirable, because it is only a
partial model and doesn’t express the constraint that the directory structure should be acyclic.

11.9 Mutability

So far, all the features of the object model that we have described constrain individual states. Muta-
bility constraints describe how states may change. To show that a multiplicity constraint is violated,
we only need to show a single state, but to show that a mutability constraint is violated, we need to
show two states, representing the state before and after a global state change.

Mutability constraints can be applied to both sets and relations. A stripe on both sides of a box indi-
cates that the set is fixed: it always denotes the same set of elements. The root in the file system is
fixed, which indicates that we cannot change which object is the root, or destroy the root or create
another one. Sectors and centers are fixed in the air-traffic control example, which means that we are
taking the structure of airspace to be fixed.

A stripe on the left side of a box indicates that the set is static. A static set represents a static classifica-
tion of elements. An element cannot belong to the set at one point and not belong at the next, or vice
versa. Note that this does not mean that the set cannot change, since elements can be created and
destroyed. Dir, File and Link are static in the file system, because an object cannot change its classifi-
cation. A file cannot become a directory, for example. But new files and directories can be created,
and objects can be deleted from the file system. Likewise, in the Java model, a value cannot be a
primitive value at one time and an object reference at another.

The mutability of a relation is marked with hatch marks on either end. A relation with the hatch
mark on the right end, or target end

�5RRW�

�/LQN�

FRQWDLQV
WR

�5RRW�

�5RRW�

FRQWDLQV
WR

�5RRW�

�'LU�

FRQWDLQV
FRQWDLQV

$ %U
103

is said to be right static or target static. The above diagram says that the set of B’s associated with a
given member of A by the relation r cannot change. Conversely, a hatch mark on the other end

makes the relation left static or source static. The above diagram says that the set of A’s that map to a
given B by the relation r cannot change.

In the file system model, the relation to is right-static, since when a link is created, it is bound to a
particular object. You can change which links point to an object by creating and deleting links that
point to that object (and thus the relation is not left static), but you can’t change which object a given
link points to. The contains relation is neither left nor right static, since objects can be moved freely
amongst directories.

In the air-traffic control model, the relation between centers and sectors is left and right static. Since
the sets are fixed, this implies that the relation is fixed too.

In the Java model, the mutability marking on dtype says that the declared type of a variable cannot
change. The mark ǹg on otype says that the type of an object cannot change either; objects cannot
migrate between classes. An object cannot change what fields it has, and the name of a field cannot
change.

The semantics of mutability is explained in terms of pairs of configurations: mutability constraints
say which state changes are allowed. So the file system example admits

in which a file is deleted and a link is created, but not

� ��

�5RRW�

�)LOH�

FRQWDLQV

�5RRW�

�/LQN�

FRQWDLQV
WR

R�

�5RRW�

R�

�/LQN�

FRQWDLQV

R�

�5RRW�

R�

�/LQN�

FRQWDLQV
WR

WR
104

in which the a link’s target is altered.

These notions of mutability are powerful but rather abstract and subtle. One common confusion is
worth noting. Marking a set as static has nothing to do with whether the class that implements it is
mutable or not. (Nevertheless, it is true that if a set is implemented as a class, and its outgoing rela-
tions are implemented as fields, then it may be immutable if all the outgoing relations are right-
static.) Static classifications are what programmers are familiar with in languages such as Java; a
dynamic classification has to be implemented outside the class mechanism, eg with boolean fields.

It may help to see a more formal definition of mutability. Suppose the object model declares a set A to
be a subset of a set B. Let’s use the names A’ and B’ to refer to the values these sets have after a change
of global state. Then, if A is fixed, we know that the state change must satisify the constraint

A’ = A

If A is static though, it need only satisfy

all b ∈ B ∩ B’ | b ∈ A ⇔ b ∈ A’

That is, for every b that belongs to the set B before and after the state change, b either remains inside
A or outside A, but it cannot be reclassified.

Now suppose we have a relation r from A to B that changes to r’. The relation is right-static when for
any r’ that r may change to

all a ∈ A ∩ A’ | a.r = a.r’

that is, when for an a that belongs to A before and after, the set of elements of B it maps to is
unchanged. The relation is left-static when

all b ∈ B ∩ B’ | b.~r = b.~r’

that is, when for a b that belongs to B before and after, the set of elements of A that map to it is
unchanged. In these last two formulas, I have used the notation x.r to mean the set of elements that r
maps x to, and ~r to denote the transpose (mirror image) of r.

11.10Indexed Relations

Sometimes we want to relate more than just pairs of elements. The label r[X] in the following dia-
gram

declares an indexed relation. X is an indexing set; for each element x of this set; r[x] denotes a rela-
tion.

In an employment database, for example, we might want to describe the relationship between
employees, the companies they work for, and their salaries. Such a relationship cannot be described
with one binary relation, since it involves three entities. An employee might work for several compa-

� ��!.#
105

nies; we want to allow a distinct salary for each. Using an indexed relation, we could show the rela-
tionship like this:

in which for each employee e, salary[e] maps a company to the salary it pays e, or alternatively like
this:

in which for each company c, salary[c] maps an employee to the salary she earns at c.

In our file system example,instead of using the contains relation to map directories to their contents,
we could declare a relation holds indexed on names, and then use a multiplicity constraint to say that
a directory holds at most one object with a given name:

For some name n, the relation holds[n] maps each directory to the objects that it holds that have the
name n.

A three-way relationship can also be modelled by introducing an additional set. If we introduce the
notion of a Job, for example, we can model the employment problem like this:

/����
0 $����������0!�����0��#
"

(PSOR\HH 'ROODUVDODU\>&RPSDQ\@
"

)62EMHFW

'LU)LOH

KROGV>1DPH@

"

&RPSDQ\ 'ROODU

KROGV -RE(PSOR\HH

FRPS VDODU\

�

� �
106

Similarly, in our file system example, we could introduce a notion of a directory entry:

Adding a new set is useful when you might want to hand other relations off the set, or to classify. For
example, we might classify Job into Temporary and Fulltime, and we might associate positions with
jobs. Using the indexed relation approach has the advantage that it allows tighter constraints to be
expressed graphically. In the file system example, the multiplicity shows that there is at most one
object with a given name in a directory; the version that uses the Entry set cannot express this
(except as an additional, textual constraint). A good test is whether the set corresponds naturally to
something in the problem domain; Job is more plausible than Entry in this respect.

Using indexed relations, our Java model could be drawn instead like this:

Note that the Field set has gone. Instead, there is an indexed relation from Object to Val, indexed on
Fname. For each fieldname fn, val[fn] maps an object o to a value v if o has a field with the name fn

1DPH

(QWU\)62EMHFW

'LU)LOH

HQWULHV

REM
�

QDPH

�

�

9DU

5HI

1XOO� 2EM5HI

2EMHFW

KROGV

3ULP9DO

9DO

WR

YDO>)QDPH@

&ODVVGW\SH

RW\SH

�

�

VXEFODVV

IW\SH>)QDPH@

"

"
"

107

that has a value v. The same kind of indexed relation is used to associate types with object fields. Note
that we had to change to the multiplicities too, since not every object has every field. The multiplici-
ties on an arrow labelled with an indexed relation apply to every relation in the collection. So the ? on
the target end of val[Fname], for example, says that for every field name fn, val[fn] maps each object
to zero or one values.

11.11 Textual Constraints

Not all constraints can be expressed graphically in an object model. Additional constraints can be
expressed textually, as informal comments accompanying the model. Here are some examples of
constraints we might want to express:
· In the file system model, that the root directory is not contained by another directory; that no

directory contains itself, directly or indirectly; that links do not point to themselves, directly or
indirectly; that all file system objects are reachable from the root by the contains relation, and so
on.

· In the air-traffic control model, that if an aircraft is flying in a sector, then it is being controlled by
a controller that covers that sector; that controllers only cover sectors contained by centers they
work for.

· In the Java model, we can express the fundamental property guaranteed by the Java type system
as an object model constraint: that if a variable (or field) holds a reference to an object, the type of
the object is the same class or a subclass (directly or indirectly) of the declared type of the variable
or field.

11.12Summary

Object models a lightweight but precise notation for describing complex configurations. Such con-
figurations lie at the heart of most software systems, and they play a role from early specification
through to implementation. The same object modelling notation can be used very abstractly to cap-
ture the essence of a problem, and much more concretely, as we have seen before, to describe the
structure of objects in a running program.
108

Lecture 12: Problem Analysis

In this lecture, we’ll see how object modelling is used to analyze a problem. The problem we’ll con-
sider is representative of many software development problems: apparently simple at first, but actu-
ally rather complex, and if not clarified early on, likely to derail the entire development. Of course, if
the problem is poorly understood, the resulting implementation will do the wrong thing. But that’s
not the only danger.

In practice, it’s almost impossible to recover from bad early decisions. If the system is built on shaky
foundations, it becomes painfully difficult to go back and fix them. Confusion about the problem
tends to lead to spurious complexity spread throughout the system. In contrast, if you analyze the
problem well, you can eliminate spurious complexities, and invent robust and flexible abstractions
on which to base the subsequent design.

Another danger of failing to analyze the problem properly is that the resulting system appears to the
user to have no coherent underlying model. We’ve all been frustrated by programs that appear to be
flexible and powerful, but turn out to be a mass of special cases and ad hoc extensions, whose behav-
iour is impossible to predict. Such programs are unusable.

Finally, for critical software -- such as infrastructural systems (air traffic control, energy distribution,
communications, etc) -- if there is no clear articulation of the problem, there can be no way to assess
the implementation rigorously. The first step in building software that behaves correctly is to have a
characterization of what ‘correct’ means.

12.1 True Confessions

I picked this problem because of a continuing frustration with my email client. Like several modern
email clients, instead of just having a table that maps aliases to sets of email addresses, it provides an
elaborate address book with aliases, nicknames, full names, multiple email addresses for an individ-
ual, groups distinct from individuals, etc. Address book entries can be constructed automatically
from messages, and fields entered when composing a message are automatically completed. But
these features behave in a largely unpredictable way and lead to frequent failures.

So I decided that I would figure out what an email client should do: what features it should have in
this respect, and how it should behave. In analyzing the problem a bit further, it rapidly became clear
that the problem is actually tantalizingly difficult. I suspect that the designers of my email client have
not paid much attention to these issues, and probably designed it from the user interface inwards.
But I now at least have more sympathy for the problems they face, and I am skeptical that there is any
very simple solution to the problem.

12.2 The Problem

Here, in short, is the problem:
· How should the recipient of an email message be named?

Standard email clients offer many options here. You can indicate a recipient by typing an email
109

address explicitly; you can give a nick name; you can reply to the sender of a previous message; you
can type a person’s name and hope that a match will be found in an address book; and so on.

What I’d like to do is illustrate, using object modelling, how we can analyze this problem, by looking
at the fundamental elements -- messages, aliases, addresses, etc -- and how they are related to one
another. We’ll expand the problem slightly to include also about how we associate names with the
senders of incoming messages.

12.3 The Game Plan

Our aim is to not just to end up with an object model, but to illuminate as we construct it the issue
involved so that we have a better understanding at the end than we had at the outset. Of course, our
intent will be that the model embodies this understanding, but it won’t embody it entirely; we will
have discovered, for example, that some apparently plausible notions are not viable, or that certain
complexities arise but should be ignored because the cost of addressing them is too high.

Our strategy has the following steps:
· Identify and define the key domains;
· Consider classifications of the domain elements that might result in introducing new sets;
· Analyze the relationships between the sets;
· Investigate multiplicity constraints;
· Investigate mutability constraints.

The strategy will be applied iteratively until it converges. At any point, we may invent new abstrac-
tions (and represent them as sets), or may change how we model the basic elements of the problem.

12.4 Domains

First, we list candidate domains. Some obvious domains for this problem are
· Msg, the set of messages;
· Person, the set of persons to and from which messages are sent;
· Name, the set of names of persons;
· Address, the set of email addresses;
· Alias, the set of nicknames of aliases we choose as shorthands.

We’ll see as we develop our model that additional domains are useful. At this stage we might consider
some domains but reject them. We might wonder whether we need an AddressBook domain, for
example. As a general rule of thumb, if a domain has only one element, it’s not worth including. Since
we as yet have no good reason to introduce the (rather implementation-oriented) notion of an
address book, we won’t introduce it as a domain.

12.5 Classification

Next, we ask whether we might refine our classification of objects. We look at each domain, and ask
whether there are any obvious subsets.
110

It seems likely that we’ll want to distinguish incoming and outgoing messages. So let’s introduce sub-
sets InMsg and OutMsg of Msg:

Note that I’ve chosen to make the classification exhaustive, and to make the subsets static. This is a
bit fishy, since it rules out the possibility of there being messages that can’t be immediately classified
as incoming or outgoing. When might this happen? When messages are imported from a file, for
example, or when you send a message to yourself. We decide not to address this complication, so we
record it (so we don’t forget about it), but carry on without loosening the model.

Should we classify elements of Person? Might we treat family members and close friends differently
from business colleagues? Probably not. We do, however, treat people in certain official positions dif-
ferently. For example, we might have messages that we send to our dean, teaching assistant, system
administrator, congressional representative, etc, that are not personal, and are sent only to that per-
son in his or her official capacity. It seems likely that these kinds of targets will have different proper-
ties. We might expect their email address to change frequently, for example; and we expect their
names to change too. One could even imagine a mechanism whereby changes are made automati-
cally (for example, an alias lab-assistant that is resolved in the client depending on the time of day to
a different person).

On further reflection, we realize that this notion is not in fact a subset of Person at all. There is a
notion of a role, and people fulfill roles. So we take a step back and introduce a new domain Role.

Can Address be refined? Should we distinguish local addresses from addresses at other institutions?
And Alias? Does it have refinements? We’ll assume not.

12.6 Relations

Now things start getting interesting. We look at the sets we have and we wonder for each pair of sets
whether there might be a relation between them. In skeletal form, our object model so far looks like

0VJ

,Q0VJ 2XW0VJ
111

this:

Some relations are easy to see. A person has a name and an email address for example, so we can
introduce a relation name from Person to Name, and a relation address from Person to Address. A per-
son fills a role, so we introduce a relation fills from Person to Role. Roles have names also, so we con-
sider adding a relation rname from Role to Name. We notice the similarity in the treatment of
persons and roles, and we wonder whether we might treat them as subsets of the same set. This
seems reasonable, so we introduce a new domain Correspondent and we make Person and Role its
subsets. We posit that aliases are also associated with correspondents. The right hand side of our
model now looks like this:

How is the set Msg related to these sets?

We remember that people are associated with messages in many different ways: as senders, receivers,
cc’s and so on. In the context of this lecture,we’ll ignore all but senders and receivers. Thinking about
the relationships between messages and persons, we remember that there are groups: both those that
appear to the client as one account (ie, where the group is defined externally, on some other

0VJ

,Q0VJ 2XW0VJ

3HUVRQ

1DPH

$GGUHVV$OLDV

5ROH

3HUVRQ

1DPH

$GGUHVV

5ROH

&RUUHVSRQGHQW

QDPH

DGGUHVV

DOLDV

$OLDV

ILOOV
112

machine), and those that appear as a collection of persons or addresses. Let’s call these external and
internal groups.

Can an external group be treated as a Correspondent? If so, is it a Person or a Role? Given the bitter
experiences of messages intended for individuals being sent to huge mailing lists, it seems that it
would be wise to treat such a group as different from a Person or a Role; our email client could then
support useful functions such as blocking listserv messages, or warning before sending to a mailing
list. On the other hand, external groups do have addresses and names, and it seems fine to give them
aliases. So we might accommodate them by adding a new subset to Correspondent. But we decide
that we need more evidence that this complication is worthwhile before doing that, so we record the
issue, and decide that for now we’ll treat an external groups as if it were a role filled by some
unknown persons.

How about internal groups? We’d like to be able to form groups which themselves contain groups.
For example, I’d I may want to define groups for students I advise in different years, but also have
agroup for all students I advise. It’s tempting then to introduce a set, Group say, that’s another subset
of Correspondent, with a relation contains from Group to Correspondent. In design pattern jargon,
this forms a ‘composite’: we can make trees of arbitrary depth by including groups in groups. But this
makes us slightly uncomfortable, since Persons and Groups are related to addresses in very different
ways. Recognizing this, we decide to loosen the notion inherent in the address relation; we rename it
addresses, and take it to map a group to a computed set of addresses of all group members. The rig-
ght-hand side of our model now looks like this:

Now finally we get back to the question of relating messages to these sets. Let’s bravely claim that each
incoming message is from a correspondent; each outgoing message is to some correspondents. Then

3HUVRQ

1DPH

$GGUHVV

5ROH

&RUUHVSRQGHQW

QDPH

DGGUHVVHV

DOLDV

$OLDV

ILOOV

*URXS

FRQWDLQV
113

our object model takes this form:

This decision implies that we will somehow need to determine for an incoming message who its
sender is, based on the information we have about correspondents and their addresses.

In considering the relations amongst sets, note that we ended up introducing a new abstraction, Cor-
respondent, and a new classification, Group.

12.7 Multiplicities

We now consider adding multiplicity constraints to our object model. We immediately hit some
tricky questions:
· Can a Group contain no Correspondents? We’ll say yes, to eliminate the kinds of confusion that

will arise from sending a message to nobody.
· Must every Correspondent have a Name? An Alias? Sometimes we reply to a message without

even knowing the name of the person who sent it. Clearly, then, having associated messages with
correspondents, we’ll have to allow correspondents to be anonymous. It seems reasonable to use a
role to represent an anonymous correspondent. We might record a textual constraint that every
Group and Person must have a Name, but a Role need not.

· Can a Correspondent have several Addresses? We’ve already noted that a group will general have
several addresses associated with it (computed fromthe addresses of its member correspondents).
But we also know that some people have multiple email addresses, and it would be a horrible hack

3HUVRQ

1DPH

$GGUHVV

5ROH

&RUUHVSRQGHQW

QDPH

DGGUHVVHV

DOLDV

$OLDV

ILOOV

*URXS

FRQWDLQV

0VJ

,Q0VJ 2XW0VJ

IURP WR
114

to treat such people as groups. In this respect, a Person is really different from other Correspon-
dents; w e might want to record a primary email address, and backup addresses to use if the pri-
mary fails. Lacking evidence that such a feature is necessary, however, we record the issue, and
carry on under the assumption that a Person has exactly one Address, which we record as a tex-
tual constraint.

Because of the use of roles to model anonymous correspondents, we will certainly not want to
require each role to be filled by a person. There seems to be no reason to allow a role to be filled by
more than one person, so we record that multiplicity. In pondering this question, we stumble across
an interesting issue. A role defined in isolation may have an address given for it by the user; when a
role is filled by a person, however, that person’s address will determine the address of the role. Or will
it? Such a person may have a separate address in their capacity filling that role. This is a tricky issue,
and we’ll leave it aside for now.

Looking at the other ends of the arrows, we can ask about identification. Does a name uniqely iden-
tify a correspondent? Perhaps not, but an alias certainly should.

Our model looks like this:

12.8 Mutability

Finally, we consider changes that might occur by examining each set and relation and considering its
mutability constraints. We’ve already marked all the subsets as static, so we’ll look only at the rela-

3HUVRQ

1DPH

$GGUHVV

5ROH

&RUUHVSRQGHQW

QDPH

DGGUHVVHV

DOLDV

$OLDV

ILOOV

*URXS

FRQWDLQV

0VJ

,Q0VJ 2XW0VJ

IURP WR

�

"

"

� �

�

"

�

115

tions. Most are straightforward. Clearly, we’ll want to be able to change the alias, address and name
associated with a person or role, change the contents of a group, and change how persons fill roles.

Much trickier is the question of whether can change the correspondents associated with a message.
What if a correspondent for an incoming message was found by finding a person whose address
matches the address in the header of the message, and we now change the person’s address? Should
the message be reclassified? What if we delete a correspondent that a message was sent to?

Note that we are really doing design here, albeit of a rather abstract sort. One solution to these dilem-
mas might be to allow reclassifications, and to make use of anonymous roles when no matching cor-
respondent is found (as we would have to for an incoming message from an unrecognized address
anyway). A deficiency of this scheme is that if correspondents change their email addresses, our pro-
gram will lose the association between old messages and their correspondents. It might, therefore, be
sensible to prevent reclassifications that would turn the correspondent of a message from a person to
an anonymous role, for example.

By doing this, we can avoid imposing any mutability constraints on the relations, and the object
model will be unchanged. This will allow the user to make arbitrary changes to names, addresses,
etc, and allows the program to do fancy reclassification of messages.

By considering mutability, we’ve forced ourselves to address some of the hardest issues involved in
this problem. The lack of mutability constraints on the relations indicates that we have been unsuc-
cessful in making these issues go away.

12.9 Summary

The particular decisions that I made in this analysis are not that important. You may disagree with
them. But what’s important is the process by which I went about analyzing the problem incrementally,
and how I used the notation. The object modelling notation is more than just a format for recording-
final decisions; it gives you a way to express fragmentary ideas, and stimulates you to think about
subtle aspects of the problem.

In the process of developing our object model, we engaged in two different activities. One was
understanding the problem domain as it already exists: we took into account, for example, the
notions of groups and roles, which represent how people communicate with each other. At the same
time, we invented new abstractions, usually by generalization: the notion of a correspondent, for
example, was introduced to allow a uniform treatment of groups, persons and roles. Generalizations
are dangerous (as one wit observed, they’re generally wrong), so we must be aware of the risks they
introduce along with their benefits. In the case of correspondents, the complexity we introduced was
that some correspondents have addresses defined by the user; others have addresses that are com-
puted from the addresses of other correspondents. In a real development, we would analyze this issue
more deeply.
116

Lecture 18: Design Strategy

This lecture puts together some of the ideas we have discussed in previous lectures: object models of
problems and code, module dependency diagrams, and design patterns. Its aim is to give you some
general advice on how to go about the process of software design. I’ll explain some criteria for evalu-
ating designs, and give a handful of heuristics that help in finding a design to solve a given problem.

18.1 Process Overview & Testing

The development process has the following major steps:
· Problem analysis: results in an object model and a list of operations.
· Design: results in a code object model, module dependency diagram and module specs.
· Implementation: results in executable code.

Testing should ideally be performed throughout the development, so that errors are found as soon as
possible. In a famous study of projects at TRW and IBM, Barry Boehm found that the cost of fixing
an error can rise by a factor as great as 1000 when it is found later rather than earlier. We’ve only used
the term ‘testing’ to describe evaluation of code, but similar techniques can be applied to problem
descriptions and designs if they are recorded in a notation that has a semantics. (In my research
group, we’ve developed an analysis technique for object models). In your work in 6170, you’ll have to
rely on careful reviewing and manual exercise of scenarios to evaluate your problem descriptions
and designs.

As far as testing implementations goes, your goal should be to test as early as possible. Extreme pro-
gramming (XP), an approach that is currently very popular, advocates that you write tests before
you’ve even written the code to be tested. This is a very good idea, because it means that test selection
is less likely to suffer from the same conceptual errors that tests are intended to find in the first place.
It also encourages you to think about specs up front. But it is ambitious, and not always feasible.

Instead of testing your code in an ad hoc way, you should build a systematic test bed that requires no
user interaction to execute and validate. This will pay dividends. When you make changes to code,
you’ll be able to quickly discover fresh bugs that you’ve introduced by rerunning these ‘regression
tests’. Make liberal use of runtime assertions, and check representation invariants.

18.2 Problem Analysis

The main result of problem analysis is an object model that describes the fundamental entities of the
problem and their relationships to one another. (In the course text, the term ‘data model’ is used for
this.) You should write short descriptions for each of the sets and relations in the object model,
explaining what they mean. Even if it’s clear to you at the time, it’s easy to forget later what a term
meant. Moreover, when you write a description down, you often find it’s not as straightforward as
you thought. My research group is working on the design of a new air-traffic control component;
we’ve discovered that in our object model the term Flight is a rather tricky one, and getting it right
clearly matters.

It’s helpful also to write a list of the primary operations that the system will provide. This will give
117

you a grip on the overall functionality, and allow you to check that the object model is sufficient to
support the operations. For example, a program for tracking the value of stocks may have operations
to create and delete portfolios, add stocks to portfolios, update the price of a stock, etc.

18.3 Design Properties

The main result of the design step is a code object model showing how the system state is imple-
mented, and a module dependency diagram that shows how the system is divided into modules and
how they relate to one another. For tricky modules, you will also want to have drafted module speci-
fications before you start to code.

What makes a good design? There is of course no simple and objective way to determine whether
one design is better than another. But there are some key properties that can be used to measure the
quality of the design. Ideally, we’d like a design to do well on all measures; in practice, it’s often neces-
sary to trade one for another.

The properties are:
· Extensibility. The design must be able to support new functions. A system that is perfect in all

other respects, but not amenable to the slightest change or enhancement, is useless. Even if there
is no demand for additional features, there are still likely to be changes in the problem domain
that will require changes to the program.

· Reliability. The delivered system must behave reliably. That doesn’t only mean not crashing or eat-
ing data; it must perform its functions correctly, and as anticipated by the user. (This means by
the way that it’s not good enough for the system to meet an obscure specification: it must meet
one that is readily understood by the user, so she can predict how it will behave.) For a distributed
system, availability is important. For real-time systems, timing is important: usually this means
not that the system is fast, but that it completes its tasks in predictable times. How reliability is
judged varies greatly from system to system. A browser’s failure to render an image precisely is
less serious than the same failure in a desktop publishing program. Telephone switches are
required to meet extraordinarily high standards of availability, but may misroute calls occasion-
ally. Small timing delays may not matter much for an email client, but they won’t do in a nuclear
reactor controller.

· Efficiency. The system’s consumption of resources must be reasonable. Again, this depends of
course on the context. An application that runs on a cell phone can’t assume the same availability
of memory as one that runs on a desktop machine. The most concrete resources are the time and
space consumed by the running program. But remember that the time taken by the development
can be just as important (as Microsoft has demonstrated), as well as another resource not to be
ignored -- money. A design that can be implemented more economically may be preferable to
one that does better on other metrics but would be more expensive.

18.4 Overview of Strategy

How are these desirable properties obtained?
118

18.4.1 Extensibility

· Object model sufficiency. The problem object model has to capture enough of the problem. A
common obstacle to extending a system is that there is no place for the new function to be added,
because its notions aren’t expressed anywhere in the code. An example of this can be seen in
Microsoft Word. Word was designed on the assumption that paragraphs were the key document
structuring notion. There was no notion of text flows (physical spaces in the document through
which text is threaded), nor of any kind of hierarchical structure. As a result, Word doesn’t
smoothly support division into sections, and it can’t place figures. Its important to be very careful
not to optimize the problem object model and eliminate substructure that appears to be unneces-
sary. Don’t introduce an abstraction as a replacement for more concrete notions unless you’re
really sure that it’s well founded. As the motto goes, generalizations are generally wrong.

· Locality and decoupling. Even if the code does end up embodying enough notions onwhich to
hang new functionality, it may be hard to make the change you need to make without altering
code all over the system. To avoid this, the design must exhibit locality: separate concerns should,
to the greatest extent possible, be separated into distinct regions of the code. And modules must
be decoupled from one another as much as possible so that a change doesn’t cascade. We saw
examples of decoupling in the lecture on name spaces, and more recently in the lectures on
design patterns (in Observer, for example). These properties can be judged most easily in the
module dependency diagram: this is why we construct it. Module specifications are also impor-
tant for achieving locality: a specification should be coherent, with a clearly bounded collection
of behaviours (without special ad hoc features), and a clear division of responsibility amongst
methods, so that the methods are largely orthogonal to one another.

18.4.2 Reliability

· Careful modelling. Reliability cannot be easily worked into an existing system. The key to making
reliable software is to develop it carefully, with careful modelling along the way. Most serious
problems in critical systems arise not from bugs in code but from errors in problem analysis: the
implementor simply never considered some property of the environment in which the system is
placed. Example: Airbus failure at Warsaw airport.

· Review,analysis, and testing. However careful you are, you will make errors. So in any develop-
ment, you have to decide in advance how you will mitigate the errors that you will inevitably
make. In practice, peer review is one of the most cost-effective methods for finding errors in any
software artifact,whether model, specification or code. So far, you’ve only been able to exploit this
with your TA and the LA’s; in your final project, you should take full advantage of working in a
team to review each other’s work. It’ll save you a lot of time in the long run.

More focused analyses and testing can find more subtle errors missed by peer review. Some useful
and easy analyses you can apply are simply to check that your models are consistent: does your
code object model support all the states of the problem object model? do the multiplicities and
mutabilities match appropriately? does the module dependency diagram account for all the edges
in the object model? You can also check you code against the models. The Womble tool, available
at http://sdg.lcs.mit.edu, automatically constructs object models from bytecode. We have found
many bugs in our code by examining extracted models and comparing them to the intended
119

models. You should check the crucial properties of your object model in the code by asking you-
self how you know that the properties are maintained. For example, suppose your model asserts
that a vector is never shared by two bank account objects. You should be able to make an argu-
ment for why the code ensures this. Whenever you have a constraint in your object model that
wasn’t expressible graphically, it’s especially worth checking, as it is likely to involve relationships
that cross object boundaries.

18.4.3 Efficiency

· Object Model. Your choice of code object model is crucial, because it’s hard to change. So you
should consider critical performance targets early on in the design. We’ll look later in the lecture
at some sample transformations that you can apply to the object model to improve efficiency.

· Avoid bias. When you develop your problem object model, you should exclude any implementa-
tion concerns. A problem model that contains implementation details is said to be biased, since it
favours one implementation over another. The result is that you have premuaturely cut down the
space of possible implementations, perhaps ruling out the most efficient one.

· Optimization. Optimization is misnamed; it invariably means that performance gets better but
other qualities (such as clarity of structure) get worse. And if you don’t go about optimization
carefully, you’re likely to end up with a system that is worse in every respect. Before you make a
change to improve performance, make sure that you have enough evidence that the change is
likely to have a dramatic effect. In general, you should resist the temptation to optimize, and put
your efforts into making your design clean and simple. Such designs are often the most efficient
anyway; if they’re not, they are the easiest to modify.

· Choice of reps. Don’t waste time on gaining small improvements in performance,but focus instead
on the kinds of dramatic improvement that can be gained by choosing a different rep for an
abstract type, for example, which may change an operation from linear to constant time. Many of
you have seen this in your MapQuick project: if you chose a representation for graphs that
required time proportional to the size of the entire graph to obtain a node’s neighbours, search is
completely infeasible. Remember also that sharing can have a dramatic effect, so consider using
immutable types and having objects share substructure. In MapQuick, Route is an immutable
type; if you implement it with sharing, each extension of the route by one node during search
requires allocation of only a single node, rather than an entire copy of the route.

Above all, remember to aim for simplicity. Don’t underestimate how easy it is to become buried
under a mass of complexity, unable to achieve any of these properties. It makes a lot of sense to
design and build the simplest, minimal system first, and only then to start adding features.

18.5 Object Model Transformations

In problem and code object models, we’ve seen two very different uses of the same notation. How
can an object model describe a problem and also describe an implementation? To answer this ques-
tion, it’s helpful to think of interpreting an object model in two steps. In the first step, we interpret the
model in terms of abstract sets and relations. In the second step, we map these sets and relations
either to the entities and relationships of the problem, or to the objects and fields of the implementa-
tion.
120

For example, suppose we have an object model with a relation employs from Company to Employee.

Mathematically, we view it as declaring two sets and a relation between them. The multiplicity con-
straint says that each employee is mapped to under the employs relation by at most one company. To
interpret this as a problem object model, we view the set Company as a set of companies in the real
world, and Employee as a set of persons who are employed. The relation employs relates c and e if the
actual company c employs the person e.

To interpret this as a code object model,we view the set Company as a set of heap-allocated objects of
the class Company, and Employee as a set of heap-allocated objects of the class Employee. The rela-
tion employs becomes a specification field, associating c and e if the object c holds a reference to a
collection (hidden in the representation of Company) that contains the reference e.

Our strategy is to start with a problem object model, and transform it into a code object model.
These will generally differ considerably, because what makes a clear description of the problem is not
generally what makes a good implementation.

How is this transformation accomplished? One way is to brainstorm and play with different code
model fragments until they coalesce. This can be a reasonable way to work. You need to check that
the code object model is faithful to the problem object model. It must be capable of representing at
least all the information in the states of the problem model, so you can add a relation for example,
but you can’t remove one.

Another way to go about the transformation is by systematically applying a series of small transfor-
mations. Each transformation is chosen from a repertoire of transformations that preserve the infor-
mation content of the model, so that since each step keeps the model sound, the entire series must
also. Nobody has yet figured out a full repertoire of such transformations -- this is a research prob-
lem -- but there are a handful we can identify that are the most useful. First let’s introduce an exam-
ple.

&RPSDQ\ (PSOR\HHHPSOR\V
"

SUREOHP
20

FRGH
20

VHWV�	

UHODWLRQV

VHWV�	

UHODWLRQV

-DYD
KHDS

UHDO
ZRUOG
121

18.6 Folio Tracker Example

Consider designing a program for tracking a portfolio of stocks. The object model describes the ele-
ments of the problem. Folio is the set of portfolios, each with a Name, containing a set of positions
Pos. Each position is for a particular Stock, of which some number are held. A stock may have a value
(if a quote has been recently obtained), and has a ticker symbol that does not change. Ticker symbols
uniquely identify stocks. A Watch can be placed on a portfolio; this causes information about the
portfolio to be displayed when certain changes to the portfolio occur.

18.7 Catalog of Transformations

18.7.1 Introducing a Generalization

If A and B are sets with relations p and q, of the same multiplicity and mutability, to set C, we can
introduce a generalization AB and replace p and q by a single relation pq from AB to C. The relation

)ROLR

1DPH

3RV

6WRFN

1XP

'ROODU

7LFNHU

:DWFK

ZIROLR

QDPH

SRVQV

VWRFN

QXP

YDO

V\P

�

�

�

�

�

�

"

�

�

122

pq may not have the same source multiplicity as p and q.

18.7.2 Inserting a Collection

If a relation r from A to B has a target multiplicity that allows more than one element, we can inter-
pose a collection, such as a vector or set between A and B, and replace r by a relation to two relations,
one from A to the collection, and one from the collection to B.

In our Folio Tracker example, we might replace interpose a vector in the relation posns between Folio
and Pos. Note the mutability markings; the collection is usually constructed and garbage collected
with its container.

$

&

S

%
T

$% &ST

$ %

$ %S

$ 9HFWRUSY %HOWV
�

)��	� �������� '������
�" �
123

18.7.3 Reversing a relation

Since the direction of a relation doesn’t imply the ability to navigate it in that direction, it is always
permissible to reverse it. Eventually, of course, we will interpret relations as fields, so it is common to
reverse relations so that they are oriented in the direction of expected navigation. In our example, we
might reverse the name relation, since we are likely to want to navigate from names to folios, obtain-
ing a relation folio, say.

18.7.4 Moving a Relation

Sometimes the target or source of a relation can be moved without loss of information. For example,
a relation from A to C can be replaced by a relation from B to C if A and B are in one-to-one corre-
spondence.

In our example, we can replace the val relation between Stock and Dollar by a relation between Ticker
and Dollar. It’s convenient to use the same name for the new relation, although technically it will be a
different relation.

18.7.5 Relation to Table

A relation from A to B with a target multiplicity of exactly one or zero or one can be replaced by a
table. Since only one table is needed, the singleton pattern can be used so that the table can be refer-
enced by a global name. If the relation’s target multiplicity is zero or one, the table must be able to

$

%

&

S

T

�

�

$

%

&

S U

�

�

6WRFN

'ROODU

7LFNHU

YDO

V\P

"

�

�

6WRFN

'ROODU

7LFNHU

YDO

V\P

"

�

�

124

support mappings to null values.

In FolioTracker, for example, we might convert the relation folio to a table to allow folios to be found
by a constant-time lookup operation. This gives:

It would make sense to turn the relation val from Ticker to Dollar into a table too, since this will allow
the lookup of values for ticker symbols to be encapsulated in an object distinct from the portfolio. In
this case, because of the zero-or-one multiplicity, we’ll need a table that can store null values.

18.7.6 Adding Redundant State

It is often useful to add redundant state components to an object model. Two common cases are add-
ing the transpose of a relation, and adding the composition of two relations. If p maps A to B, we can

$ %S
�

S7DEOH

WKH7DEOH�

%YDO>$@
�

)ROLR)ROLR7DEOH

WKH)7

IROLR>1DPH@
�

7LFNHU7DEOH

WKH77

YDO>7LFNHU@ 'ROODU

"

125

add the transpose q from B to A. If p maps A to B, and q maps B to C, we can add the composition pq
from A to C.

18.7.7 Factoring out Mutable Relations

Suppose a set A has outgoing relations p, q and r, of which p and q are right-static. If implemented
directly, the presence of r would cause A to be mutable. It might therefore be desirable to factor out
the relation r, eg by using the Relation to Table transform, and then implementing A as an immutable
datatype.

In our example, the factoring out of the val relation fits this pattern, since it renders Stock immutable.
The same idea underlies the Flyweight design pattern, by the way.

18.7.8 Interpolating an interface

 This transformation replaces the target of a relation R between a set A and a set B with a superset X
of B. Typically, A and B will become classes and X will become an abstract class or interface. This will
allow the relation R to be extended to map elements of A to elements of a new set C, by implementing
C as a subclass of X. Since X factors out the the shared properties of its subclasses, it will have a sim-
pler specification than B; A’s dependence on X is therefore less of a liability than its prior dependence
on B. To make up for the loss of communication between A and B, an additional relation may be
added (in a further transformation) from B back to A.

The Observer design pattern is an example of the result of this transformation. In our example, we

$ %S

$;S

%

126

might make the Watch objects observers of the Folio objects:

18.7.9 Eliminating Dynamic Sets

A subset that is not static cannot be implemented as a subclass (since objects cannot migrate between
classes at runtime). It must therefore be transformed. A classification into subsets can be trans-
formed to a relation from the superset to a set of classifier values

Where there is only one or two dynamic subsets, the classifier values can be primitive boolean val-
lues.

The classification can also be transformed to several singleton sets, one for each subset.

18.8 Final OM

For our Folio Tracker example, the result of the sequence of transformations that we have discussed
is shown below. At this point, we should check that our model supports the operations the system
must perform, and use the scenarios of these operations to construct a module dependency diagram
to check that the design is feasible. We will need to add modules for the user interface and whatever
mechanism is used to obtain stock quotes. We would also want to add a mechanism for storing folios
persistently on disk. For some of this work, we may want to go back and construct a problem object
model, but for other parts it will be reasonable to work at the implementation level. For example, if

)ROLR

2EVHUYHU

:DWFK

REV

ZIROLR

" �

&

$ %

& 9

$9� %9�

Y

127

we allow users to name files to store folios in, we will almost certainly need a problem object model.
But to resolve issues of how to parse a web page to obtain stock quotes, constructing a problem
object model is unlikely to be productive.

18.9 UML and Methods

There are many methods that prescribe a detailed approach to object-oriented development. They
tell you what models to produce, and in what order. In an industrial setting, standardizing on a
method can help coordinate work across teams. Although you won’t learn about any particular
method in 6170, the notions you learn in 6170 are the foundation of most methods, so you should be
able to pick up any particular method easily. Almost all methods use object models; some also use
module dependency diagrams. If you’d like to learn more about methods, I’d recommend Catalysis,
Fusion and Syntropy; a google search on these names will direct you to online materials and books.

In the last few years, there’s been an attempt to standardize notations. The Object Management
Group has adopted the Unified Modeling Language (UML) as a standard notation. It’s actually a
large collection of notations. It includes an object modelling notation that is similar to ours (but
much more complicated).

)ROLR 9HFWRU 3RV

6WRFN

7LFNHU

)ROLR7DEOH

WKH)7

IROLR>1DPH@ SY HOWV

VWRFN

V\P

7LFNHU7DEOH

WKH77

YDO>7LFNHU@ 'ROODU

2EVHUYHU

:DWFK

REV

ZIROLR

�

" �

�"

�

�

�

�

"

128

	Lecture 1: Introduction
	1.1 Course overview
	1.1.1 Course organization and policy
	1.1.2 Why does software engineering matter?

	1.2 Development failures
	1.3 Accidents
	1.4 Software Quality
	1.5 Why Design Matters
	1.6 The Netscape Story
	1.7 Advice
	1.8 Closing Admin

	Lecture 2: Object Semantics
	2.1 Variables, Declarations and Objects
	2.2 Aliasing, Mutability and Equality
	2.3 Null References
	2.4 Instance Variables or Fields
	2.5 Semantics of Method Call
	2.6 Primitive Values
	2.7 Summary

	Lecture 3: Classes, subclasses & inheritance
	3.1 Classes, fields & methods
	3.2 Object Models of Code
	3.3 Multiplicity
	3.4 Mutability
	3.5 Extending a class with inheritance
	3.6 A Template Method
	3.7 Downcasting
	3.8 Subclassing in the Object Model
	3.9 Static class members
	3.10 Summary

	Lecture 4: Exceptions
	4.1 Defensive Programming
	4.2 Runtime Assertions
	4.3 Responding to Failure
	4.4 Non-local Jumps
	4.5 Exceptions for Special Results
	4.6 Checked and Unchecked Exceptions
	4.7 Built-in Java Exceptions
	4.8 User-Defined Exceptions
	4.9 Handling Exceptions
	4.10 Design Considerations
	4.11 Safe Languages
	4.12 A Cautionary Tale
	4.13 Summary

	Lecture 5: Namespace
	5.1 Package Structure
	5.2 Standard Java Packages
	5.3 Unique Package Names
	5.4 Dependences & Architecture
	5.5 Access Control
	5.6 Enforcing Object Model Properties with Access Control
	5.7 Example: Instrumenting a Program
	5.8 Abstraction by Parameterization
	5.9 Decoupling with Interfaces
	5.10 Interfaces vs. Abstract Classes
	5.11 Static Fields
	5.12 Dynamic Configuration
	5.13 Module Dependence Diagram
	5.14 Summary

	Lecture 6: Procedure Specifications
	6.1 Behavioural Equivalence
	6.2 Specification Structure
	6.3 Declarative Specification
	6.4 Exceptions and Preconditions
	6.5 Shorthands
	6.6 Specification Ordering
	6.7 Judging Specifications
	6.8 Summary

	Lecture 7: Abstract Types
	7.1 User-Defined Types
	7.2 Classifying Types and Operations
	7.3 Example: List
	7.4 Designing an Abstract Type
	7.5 Choice of Representations
	7.6 Representation Independence
	7.7 Language Mechanisms
	7.8 Summary

	Lecture 8: Rep invariants
	8.1 What is a Rep Invariant?
	8.2 A Variety of Invariants
	8.3 Inductive Reasoning
	8.4 Rep Exposure
	8.5 Element Equality & Rep Exposure
	8.6 Rep Invariants as Assertions
	8.7 Summary

	Lecture 9: Abstraction Functions
	9.1 Interpreting the Representation
	9.2 Abstract and Concrete Objects
	9.3 Example: Boolean Formulas in CNF
	9.4 Specification Fields
	9.5 Benevolent Side Effects
	9.6 Idioms for Expressing Abstraction Functions
	9.7 Summary

	Lecture 11: Problem Object Models
	11.1 Three Problems
	11.2 Example 1: File System
	11.3 Example 2: Air Traffic Control
	11.4 Example 3: Java Objects
	11.5 Sets and Classification
	11.6 Relations
	11.7 Multiplicity
	11.8 Semantics
	11.9 Mutability
	11.10 Indexed Relations
	11.11 Textual Constraints
	11.12 Summary

	Lecture 12: Problem Analysis
	12.1 True Confessions
	12.2 The Problem
	12.3 The Game Plan
	12.4 Domains
	12.5 Classification
	12.6 Relations
	12.7 Multiplicities
	12.8 Mutability
	12.9 Summary

	Lecture 18: Design Strategy
	18.1 Process Overview & Testing
	18.2 Problem Analysis
	18.3 Design Properties
	18.4 Overview of Strategy
	18.4.1 Extensibility
	18.4.2 Reliability
	18.4.3 Efficiency

	18.5 Object Model Transformations
	18.6 Folio Tracker Example
	18.7 Catalog of Transformations
	18.7.1 Introducing a Generalization
	18.7.2 Inserting a Collection
	18.7.3 Reversing a relation
	18.7.4 Moving a Relation
	18.7.5 Relation to Table
	18.7.6 Adding Redundant State
	18.7.7 Factoring out Mutable Relations
	18.7.8 Interpolating an interface
	18.7.9 Eliminating Dynamic Sets

	18.8 Final OM
	18.9 UML and Methods

