
Some Shortcomings of OCL, the Object Constraint Language

of UML

Mandana Vaziri and Daniel Jackson

MIT Laboratory for Computer science

December 7, 1999

1 Introduction

The purpose of this paper is to expose some shortcomings of the Object Constraint Language
(OCL). We argue that, despite its numerous bene�ts, OCL is too implementation-oriented
and therefore not well-suited for conceptual modelling. Moreover, it is at times unnecessarily
verbose, yet far from natural language.

In the past couple of years, we have designed a language, Alloy, that has similar mo-
tivations to OCL, while attempting to avoid some of these drawbacks. To illustrate the
weaknesses of OCL, and some ways in which it may be improved, we have translated most
of the core package of the UML metamodel, together with its well-formedness constraints,
into Alloy. Moreover, we have shown that this subset of the UML metamodel is consistent,
provided that this translation is valid, using Alloy's analysis tool, Alcoa.

Section 2 describes the requirements of OCL and its shortcomings with respect to these
requirements. Section 3 gives an overview of Alloy. Section 4 presents the translation
of the UML metamodel into Alloy, and illustrates the issues raised in Section 2. Finally,
Appendix A contains the complete translation of the metamodel classes into Alloy, and
Appendix B the translation of the metamodel constraints.

2 Shortcomings of OCL

The OCL manual [1] describes the requirements of OCL as follows:

1. OCL must be able to express extra (necessary) information on the models and other
artifacts used in object-oriented development.

2. OCL must be a precise, unambiguous language that can easily be read and written
by all practitioners of object technology and by their customers. This means that
the language must be understood by people who are not mathematicians or computer
scientists.

3. OCL must be a declarative language. Its expression can have no side-e�ects; that is,
the state of a system must not change because of an OCL expression. [...]

4. OCL must be a typed language. [...]

1

Despite its numerous bene�ts, we �nd that OCL has the following shortcomings with
respect to these requirements. For each concern, Section 4 provides an illustration using
the UML metamodel.

� OCL seems to be closer to an implementation language than to a conceptual language,
because it uses operations in constraints, and its type system is close to that of an
object-oriented programming language.

{ The use of operations in constraints appears to be problematic in two respects.

� First, this adds to the operational avor of OCL. An operation may go into
an in�nite loop or be unde�ned. In these cases, the expression containing
the operation is said to be unde�ned. This adds unnecessary complexity to
the language and raises concerns about its precision such as: What does it
mean for a model to satisfy an unde�ned constraint? How do we know that
a constraint is unde�ned?

� Secondly, consider an operation applied to a collection of objects that are
instances of some class. A subset of these objects may also be instances of
a subclass of that class, and the subclass may rede�ne the operation. It is
not clear what operation gets applied to each object in the collection. Fur-
thermore, even if we assume that we apply the rede�nition of the operation
to objects which are instances of the subclass, then this implies that the
meaning of a constraint may change as the model evolves and subclasses are
added. This is quite undesirable, since the expression of the constraints of a
system may have to be revised as the model evolves.

{ OCL's type system is unnecessarily complicated. Conceptually, a class is a set
of objects, and a subclass is a subset of these objects. So if a class inherits from
two classes, then the two classes must be non-disjoint sets. In OCL, it is possible
to have a class which inherits from two seemingly disjoint classes.

� OCL expressions are at times unnecessarily verbose due to the following:

{ OCL uses two di�erent symbols to navigate through sets and scalars (-> and .

respectively). This lack of uniformity adds unnecessary complexity and makes
OCL expressions less succinct.

{ Classes are not treated simply as collections of objects. As a result, we cannot
use set operators to manipulate them directly, which increases the use of quanti-
�ers. This, in addition to the implementation-based type system, makes frequent
coercions (oclIsKindOf) necessary.

� OCL expressions are often unnecessarily hard to read:

{ Subexpressions are often not textually placed where they normally would be in
English, because quanti�ers (forall), and collection operators are \stacked", i.e.
followed through via navigation. This also makes parenthesis matching di�cult.

{ Logical operators (not,...) are not stacked, and this causes the separation of
certain logical and set operators, making some expressions hard to read.

� Finally, OCL is not a stand-alone language: a model always needs an acompanying
UML class diagram. There are many advantages to having a stand-alone constraint
language, including the following:

2

{ The choice between expressing models graphically or textually can be made more
exibly.

{ There is better integration between the modelling language and the constraint
language.

{ The constraint language's semantics is easier to de�ne.

{ The constraint language is more amenable to automated analysis.

3 Description of the Alloy modelling language

Alloy [3] is a simple, precise, and tractable notation for object modelling. It is amenable
to automatic analysis, and its analysis tool, Alcoa [5], can perform simulations, as well as
consistency checking. Alloy also has a graphical sublanguage, which provides the user with
the exibility to express speci�cations graphically or textually.

Alloy's simplicity lies in the following design choices. Scalars are treated as singleton
sets; this allows a uniform treatment of sets and scalars during navigation. Types are
implicit and are associated with domains. A domain is just a set that is not declared as
a subset of any other set. Classes correspond to sets that are subsets of the domains, and
subclasses corresponds to subsets.

An Alloy speci�cation consists of several paragraphs. The domain paragraph declares
all domains used in the speci�cation. The state paragraph declares additional sets whose
elements are drawn from the domains, and relations between sets. Declarations may include
multiplicity constraints, mutability constraints, and may specify that the subsets of a set
are disjoint or form a partition. Following these paragraphs, the speci�cation includes
invariants on the state.

The following is a small example of an Alloy speci�cation, de�ning domains Person and
Name. The sets Man and Woman partition Person \statically", i.e. a man cannot become a
woman and vice versa. The relation parents is declared to be \right-static", i.e. a person's
parents do not change. The relation siblings is many to many, while wife relates at most
one man to at most one woman, name relates a person to a unique name.

The paragraph starting with def de�nes siblings as a derived relation, and the inv

paragraph gives some basic invariants. The keywords all, some, no, and sole denote
quanti�ers, where sole means at most one. The symbols in, &, and + denote set inclusion,
intersection, and transitive closure respectively. Finally, &&, and || are logical and, and or,
respectively. The symbol // indicates a comment.

model Family{

domain{Person, Name}

state{

partition Man, Woman: static Person

Married: Person

parents: Person -> static Person

siblings: Person -> Person

wife(~husband): Man? -> Woman?

name: Person -> Name!

}

def siblings {

all a,b | a in b.siblings <-> (a.parents = b.parents)

3

//Two persons are siblings if and only if they have the same parents

}

inv Basics{

all p | some p.wife <-> p in Man & Married

//A person has a wife if and only if he's a man and is married.

no p | p.wife in p.siblings

//No person's wife is also a sibling

all p | (sole p.parents & Man) && (sole p.parents & Woman)

//A person has at most one father and at most one mother.

no p | p in p.+parents

//No person is an ancestor of him/herself.

}

}

This example is explained in more detail and compared to an OCL version in [4].

4 The UML metamodel

In this section, we illustrate the issues presented in Section 2 using examples from the UML
metamodel [2].

OCL constraints and operations are local to a particular class. We indicate that by
preceding the constraints or operations with the name of the class to which they apply,
using the format of [1]. This is not needed for Alloy, since invariants in Alloy are global.

� Our �rst series of examples illustrates the problems with having operations in con-
straints. Consider the de�nition of the allParents operation in OCL:

OCL GeneralizableElement

allParents: Set(GeneralizableElement);

allParents = self.parent->union(self.parent.allparents)

Alloy all e: GeneralizableElement |

e.allParents = e.+parent

English The operation allParents returns a set containing
all the GeneralizableElements inherited by this GeneralizableElement
(the transitive closure), excluding the GeneralizableElement itself.

This operation may go into an in�nite loop if there is a circularity in the parent
hierarchy, in which case it is unde�ned. In Alloy, constraints are logical formulae
that are true or false. There is no unde�ned status. allParents is de�ned as a
relation using the transitive closure operator. The allParents operation is used in
the following OCL constraint.

4

OCL GeneralizableElement

not self.allParents->includes(self)

Alloy all e: GeneralizableElement |

e !in e.allParents

English Circular inheritance is not allowed.

The OCL constraint above intends to rule out circularity in the parent hierarchy.
However, if there is circularity, then allParents goes into an in�nite loop and is
unde�ned, causing the constraint to be unde�ned, not false as intended. On the other
hand, the Alloy constraint is well-de�ned and rules out the circularity in the parent
hierarchy.

Consider now the following OCL operation.

OCL AssociationClass

allConnections : Set(AssociationEnd);

allConnections = self.connection->union(self.parent

->select (s | s.oclIsKindOf(Association))

->collect (a: Association | a.allConnections)) -> asSet

Alloy all a: AssociationClass |

a.allConnections = a.*parent.connection

English The operation allConnections results in the set of all AssociationEnds
of the AssociationClass, including all connections de�ned by its parents
(transitive closure).

In this OCL de�nition, self.parent returns a set of AssociationClass objects. This
follows from a di�erent constraint (Generalization [1] from UML documentation [2]),
which says that an element may be the parent of only another element of the same
oclType. Now consider the collection of a's in (a: Association | a.allConnections)

from the OCL example above. These a's are of oclType AssociationClass, raising the
following question. Which de�nition of allConnections should be used? The one for
AssociationClass or Association? The Alloy constraint directly expresses the English
description, without encountering this di�culty.

� The following example illustrates how the OCL type system might be made simpler.

5

OCL Class

self.allContents->forAll (c |

c.oclIsKindOf(Class) or

c.oclIsKindOf(Association) or

c.oclIsKindOf(Generalization) or

c.oclIsKindOf(UseCase) or

c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Dependency) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(DataType) or

c.oclIsKindOf(Interface))

Alloy all c: Class |

c.allContents in (Class + Association + Generalization

+ UseCase + Constraint + Dependency + Collaboration

+ DataType + Interface)

English A Class can only contain Classes, Associations, Generalizations, UseCases,
Constraints, Dependencies, Collaborations, DataTypes,
and Interfaces as a Namespace.

Alloy treats classes as sets, allowing set operators such as union to be applied to them
directly. This avoids the use of quanti�cation (forall) and coercion (oclIsKindOf)
as needed in OCL.

� The following example illustrates the non-uniform treatment of sets and scalars in
OCL. The authors of the semantics document write the following:

GeneralizableElement

parent: Set(GeneralizableElement)

parent = self.generalization.parent

Technically, the above operation is not allowed in OCL, since self.generalization
results in a set, and the collect construct is missing. This operation should properly
be written as shown below.

OCL GeneralizableElement

parent: Set(GeneralizableElement)

parent = self.generalization->collect (g: Generalization | g.parent)

Alloy all e: GeneralizableElement |

e.parent = e.generalization.parent

English The operation parent returns a set containing all direct parents.

However, the authors [2] explicitly state that they omit collect whenever practical.
Uniform navigation through sets and scalars is built in the basic semantics of Al-

6

loy1. Therefore, it allows for simpler expressions without requiring further simplifying
assumptions.

� Finally, the following example illustrates the rest of the issues raised in Section 2.

OCL Classifier

self.feature->select(a | a.oclKindOf(Attribute))->forall(a |

not self.allOppositeAssociationEnds->union (self.allContents)

->collect(q | q.name)->includes(a.name))

Alloy all c: Classifier |

all a: c.feature & Attribute |

a.name !in (c.allOppositeAssociationEnds + c.allContents).name

English The name of an Attribute may not be the same as the name of an opposite
AssociationEnd or a ModelElement contained in the Classi�er.

The Alloy expression can be read as follows: For all classi�ers c, and all features a
of c that are also Attributes, the name of a is not in the set of names of c's opposite
AssociationEnds and c's contents.

{ The class Attribute cannot be treated directly as a collection in OCL. This
makes the coercion operator oclIsKindOf necessary, and prevents the use of
set operators on classes. On the other hand, Alloy treats Attributes as a set
and uses set intersection on it directly (c.feature & Attribute), resulting in a
shorter expression.

{ The quanti�ers and set operators are stacked in OCL, and are often textually
placed in a way that is not natural. In the example above, the quanti�er forall
is placed after the collection over which it is quantifying. On the other hand,
quanti�ers in Alloy are placed in the same way as in the English description.

{ Logical operators are not stacked in OCL, and this causes the separation of cer-
tain logical and set operators. For example the not above begins an expression,
but negates the includes at its far end. On the other hand, Alloy allows logi-
cal operators to be combined with set operators as in !in, which means \is not
included".

References

[1] Jos Warmer and Anneke Kleppe. \The Object Constraint language. Precise Modelling
with UML", Object Technology Series, Addison-Wesley, 1999, p. 8.

[2] \UML Semantics". UML Documentation 1.3, Part 2.
http://www.rational.com/uml/resources/documentation/index.jtmpl

1In the code, the last reference to parent above is renamed to parent1, because relation names must be

unique. This limitation is remedied in the next version of Alloy.

7

[3] Daniel Jackson. \Alloy: A Lightweight Object Modelling Notation". Submitted for
Publication, October 1999.
http://sdg.lcs.mit.edu/ ~dnj/publications.html

[4] Daniel Jackson. \A Comparison of Object Modelling Notations: Alloy, UML, and Z".
August 1999.
http://sdg.lcs.mit.edu/ ~dnj/publications.html

[5] \Alcoa: Alloy's Constraint Analyzer".
http://sdg.lcs.mit.edu/alcoa

A UML Metamodel in Alloy: Classes

In this appendix, we present the declaration of classes for the UML metamodel in Alloy, as
well as some helper relations used in the well-formedness constraints.

model uml-core{

domain {Element, Name,

VisibilityKind, AssociationClassDom, IndexDom }

state{

partition public, protected, private: VisibilityKind!

ModelElement: Element+

//ModelElement attributes

name: ModelElement! -> Name!

//associationClass ElementOwnership

ElementOwnership: AssociationClassDom

elementOwnership_private: ElementOwnership

elementOwnership_protected: ElementOwnership //no need for public

elementOwnership: ModelElement -> ElementOwnership!

Relationship: ModelElement+

Association: Relationship+

AssociationEnd: ModelElement+

//AssociationEnd attributes

aggregation: AssociationEnd

composition: AssociationEnd //no need for none

isNavigable: AssociationEnd

multiplicity_max1: AssociationEnd

Namespace: ModelElement+

Feature: ModelElement+

//Attributes of Feature

visibility2: Feature -> VisibilityKind

StructuralFeature: Feature+

Attribute: StructuralFeature+

8

BehavioralFeature: Feature+

//BehavioralFeature attributes

isQuery: BehavioralFeature

//BehavioralFeature operation

hasSameSignature: BehavioralFeature -> BehavioralFeature

Operation: BehavioralFeature+

Method: BehavioralFeature+

GeneralizableElement: ModelElement+

// GeneralizableElement attributes

isRoot: GeneralizableElement

isLeaf: GeneralizableElement

isAbstract: GeneralizableElement

// GeneralizableElement operations

parent: GeneralizableElement -> GeneralizableElement

allParents: GeneralizableElement -> GeneralizableElement

Parameter: ModelElement+

Index: IndexDom+

//Index relation

same: Index -> Index

Constraint: ModelElement+

UseCase: ModelElement+

Collaboration: ModelElement+

Dependency: Relationship+

Classifier: GeneralizableElement+

//Classifier operations

parentClassifier: Classifier -> Classifier

allFeatures: Classifier -> Feature

allOperations: Classifier -> Operation

allMethods: Classifier -> Method

allContents: Classifier -> ModelElement

associations: Classifier -> Association

oppositeAssociationEnds: Classifier -> AssociationEnd

allOppositeAssociationEnds: Classifier -> AssociationEnd

allAttributes: Classifier -> Attribute

specification: Classifier -> Classifier

Class: Classifier+

//Class attribute

AssociationClass: ModelElement+

//AssociationClass operations

parentAssociation: AssociationClass -> Association

9

allConnections: AssociationClass -> AssociationEnd

Generalization: Relationship+

//Generalization Attribute

discriminator: Generalization -> Name

Interface: Classifier+

DataType: Classifier+

Component: Classifier+

//Component operations

parentComponent: Component -> Component

allResidentElements: Component -> ModelElement

//Association class between Component and ModelElement

ElementResidence: AssociationClassDom

component: ElementResidence -> Component?

modelElement(~elementResidence): ElementResidence -> ModelElement?

visibility1: ElementResidence -> VisibilityKind

//Stereotypes

Type: Class+

// Relationships

connection(~association): Association! -> AssociationEnd+

namespace(~ownedElement): ModelElement -> Namespace?

type(~associationEnd): AssociationEnd -> Classifier!

ptype: Parameter -> Classifier!

feature(~owner): Classifier! -> Feature

specialization(~parent1): GeneralizableElement! -> Generalization

generalization(~child): GeneralizableElement! -> Generalization

index: BehavioralFeature? -> Index

parameter: Index? -> Parameter?

//specification: Method -> Operation!

powertypeRange: Classifier? -> Generalization

constrainedElement: Constraint -> ModelElement+

resident: Component -> ModelElement

}

// OPERATION DEFINITIONS

cond GeneralizableElementOp {

//Definition of parent

all e: GeneralizableElement |

e.parent = e.generalization.parent1

//Definition of allParents

10

all e: GeneralizableElement |

e.allParents = e.+parent

}

cond AssociationClassOp{

//include operations

GeneralizableElementOp

//Definition of allConnections

all a: AssociationClass | a.parentAssociation = a.parent & Association

all a: AssociationClass |

a.allConnections = a.+parentAssociation.connection

}

cond BehavioralFeatureOp{

all b1, b2: BehavioralFeature | b1.index != b2.index

all b: BehavioralFeature | all i: b.index |

some i.parameter

//Definition of same - equivalence relation

all i: Index | i in i.same

all i1, i2: Index | i1 in i2.same -> i2 in i1.same

all i1, i2, i3: Index | i1 in i2.same && i2 in i3.same ->

i1 in i3.same

//Definition of hasSameSignature

all b: BehavioralFeature |

b.hasSameSignature = {b1: BehavioralFeature |

b.name = b1.name &&

b1.index in b.index.same &&

b.index in b1.index.same &&

(all i: b.index | all i1: b1.index |

i1 in i.same -> i.parameter.ptype = i1.parameter.ptype)}

}

cond ClassifierOp{

//include operations

GeneralizableElementOp

all c: Classifier | c.parentClassifier = c.parent & Classifier

//Definition of allFeatures

all c: Classifier | c.allFeatures = c.+parentClassifier.feature

11

//Definition of allOperations

all c: Classifier | c.allOperations = c.allFeatures & Operation

//Definition of allMethods

all c: Classifier | c.allMethods = c.allFeatures & Method

//Definition of allContents

all c: Classifier |

c.allContents = c.+parentClassifier.ownedElement &

{e: ModelElement | e.elementOwnership !in elementOwnership_private}

//Definition of associations

all c: Classifier | c.associations = c.associationEnd.association

//Definition of oppositeAssociationEnds

all c: Classifier |

c.oppositeAssociationEnds =

{e: AssociationEnd | e in

{a: c.associations | one c1 : a.connection.type | c1 = c}.connection &&

c !in e.type} +

{e: AssociationEnd | e in

{a: c.associations | some c1,c2: a.connection.type |

c1 = c && c2 = c && c1 != c2}}

//Definition of allOppositeAssociationEnds

all c: Classifier |

c.allOppositeAssociationEnds = c.+parent.oppositeAssociationEnds

//Definition of allAttributes

all c: Classifier |

c.allAttributes = c.allFeatures & Attribute

}

cond ComponentOp{

all c: Component | c.parentComponent = c.parent & Component

//Definition of allResidentElements

all c: Component |

c.allResidentElements = c.*parentComponent.resident &

{e: ModelElement | e.elementResidence.visibility1 !in private}

}

12

B UML Metamodel in Alloy: Constraints

In this appendix, we present the well-formedness constraints for the UML metamodel in
Alloy.

// WELL-FORMEDNESS CONDITIONS

inv AssociationWF{

// connection multiplicity

all a: Association | not one a.connection

// Association [1]

all a: Association | all e1,e2: a.connection |

e1.name = e2.name -> e1 = e2

// Association [2]

all a: Association | sole a.connection & (aggregation + composition)

// Association [3]

all a: Association | some e1,e2,e3: a.connection |

(e1 != e2 && e1 != e3 && e2 != e3) ->

a.connection !in (aggregation + composition)

// Association [4]

all a: Association | a.connection.type in a.namespace.ownedElement

}

inv AssociationClassWF{

//Multiple inheritance

AssociationClass = Association & Class

//Include operations

AssociationClassOp

ClassifierOp

//AssocitationClass [1]

all a: AssociationClass |

no (a.allConnections.name & (a.allFeatures & StructuralFeature).name)

//AssocoationClass [2]

all a: AssociationClass | a !in a.allConnections.type

}

inv AssociationEndWF{

//agregation and composition are disjoint

no aggregation & composition

13

//AssociationEnd [1]

all e: AssociationEnd |

(e.type in (Interface + DataType)) ->

(e.association.connection - e) !in isNavigable

//AssociationEnd [2]

all e: AssociationEnd | e in composition ->

e in multiplicity_max1

}

inv BehavioralFeatureWF{

//BehavioralFeature [1]

all b: BehavioralFeature | all p1,p2 : b.index.parameter |

p1.name = p2.name -> p1 = p2

//BehavioralFeature [2]

all b: BehavioralFeature |

b.index.parameter.ptype in b.owner.namespace.ownedElement

}

inv ClassWF{

//include operations

ClassifierOp

//Class [1]

all c: Class | c !in isAbstract ->

all o: c.allOperations | some m: c.allMethods |

o in m.specification

//Class [2]

all c: Class | c.allContents in

(Class + Association + Generalization + UseCase +

Constraint + Dependency + Collaboration + DataType + Interface)

}

inv ClassifierWF{

//include operations

ClassifierOp

//Classifier [1]

all c: Classifier | all f,g: c.feature |

(((f in Operation && g in Operation) ||

(f in Method && g in Method))

&&

g in f.hasSameSignature)

-> f = g

14

//Classifier [2]

all c: Classifier | all p,q :(c.feature & Attribute) |

p.name = q.name -> p = q

//Classifier [3]

all c: Classifier | all p,q: c.oppositeAssociationEnds |

p.name = q.name -> p = q

//Classifier [4]

all c: Classifier | all a: c.feature & Attribute |

a.name !in (c.allOppositeAssociationEnds + c.allContents).name

//Classifier [5]

all c: Classifier | all o: c.oppositeAssociationEnds |

o.name !in (c.allAttributes + c.allContents).name

//Classifier [7]

all c: Classifier | all g1, g2: c.powertypeRange |

g1.discriminator = g2.discriminator

}

inv ComponentWF{

//include operations

ComponentOp

//Component [1]

Component.allContents in Component

//Component [2]

all e: Component.allResidentElements | e in (DataType + Interface +

Class + Association + Dependency + Constraint)

}

inv ConstraintWF{

//Constraint [1]

all c: Constraint | c !in c.constrainedElement

}

inv DatatypeWF{

//DataType [1]

all d: DataType | all f: d.allFeatures | f in Operation & isQuery

//DataType [2]

all d: DataType | no d.allContents

}

15

inv ElementOwnershipWF{ //visibility constraint

no elementOwnership_private & elementOwnership_protected

}

inv GeneralizableElementWF{

//include operations

GeneralizableElementOp

//GeneralizableElement [1]

all e: GeneralizableElement | e in isRoot -> no e.generalization

//GeneralizableElement [2]

all e: GeneralizableElement | no (e.parent & isLeaf)

//GenrelizableElement [3]

all e: GeneralizableElement | e !in e.allParents

//GeneralizableElement [4]

all e: GeneralizableElement | all g: e.generalization |

g.parent1 in e.namespace.allContents

}

inv GeneralizationWF{

//Generalization [1]

all g: Generalization |

g.parent1 in Class && g.child in Class ||

g.parent1 in Classifier && g.child in Classifier ||

g.parent1 in AssociationClass && g.child in AssociationClass ||

g.parent1 in Association && g.child in Association

}

inv InterfaceWF{

//Interface [1]

all i: Interface | i.allFeatures in Operation

//Interface [2]

no Interface.allContents

//Interface [3]

Interface.allFeatures.visibility2 in public

}

inv MethodWF{

//Method [1]

all m: Method | m.specification in isQuery -> m in isQuery

16

//Method [2]

all m: Method | m.specification in m.hasSameSignature

//Method [3]

all m: Method | m.visibility2 = m.specification.visibility2

//Method [4]

all m: Method | m.specification in m.owner.allOperations

//Method [5]

all m: Method | (m.owner.allOperations &

{o: Operation | o in m.hasSameSignature})

in m.specification.owner.allOperations

}

inv NamespaceWF{

//Namespace [1]

all n: Namespace | all e1,e2: n.allContents |

(e1 !in Association && e2 !in Association && one e1.name && one e2.name &&

e1.name = e2.name) -> e1 = e2

//Namespace [2]

all n: Namespace | all a1, a2: n.allContents & Association |

(a1.name = a2.name && a1.connection.type = a2.connection.type) -> a1 = a2

}

inv StructuralFeatureWF{

//StructuralFeature [1]

all s: StructuralFeature | s.type in s.owner.namespace.allContents

//StructuralFeature [2]

all s: StructuralFeature | s.type in (Class + DataType + Interface)

}

inv TypeWF{

//Type [1]

no Type.feature & Method

//Type [2]

all t:Type | t.parent in Type

}

}

17

