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Abstract

Software specifications often involve data structures with huge numbers of values,

and consequently cannot be checked using standard state exploration or model

checking techniques. Data structures can be expressed with binary relations, and

operations over such structures can be expressed as formulae involving relational

variables. Checking properties such as preservation of an invariant thus reduces to

determining the validity of a formula, or, equivalently, finding a model (of the for-

mula’s negation).

A new method for finding relational models is presented. It exploits  the permu-

tation invariance of models—if two interpretations are isomorphic, then neither is a

model or both are—by partitioning the space into equivalence classes of symmetrical

interpretations. Representatives of these classes are constructed incrementally by

using the symmetry of the partial interpretation to limit the enumeration of new

relation values. The notion of symmetry depends on the type structure of the for-

mula; by picking the weakest typing, larger equivalence classes (and thus fewer rep-

resentatives) are obtained. A more refined notion of symmetry that exploits the

meaning of the relational operators is also described.

The method typically leads to exponential reductions; in combination with other,

simpler, reductions it makes automatic analysis of relational specifications possible

for the first time.

1 Introduction

Relational Specifications

Many aspects of software are relational in nature. A relation can express contain-

ment—for example, of files in a directory; connectivity—between telephones in a

network; naming—of distributed objects by global identifiers; ordering—of ele-

ments in a queue; and so on.

To investigate the design of a telephone switch, for example, we might model

talking connections between phones as a binary relation

conns: Phone ™ Phone

where (p, q) @ conns when there is a connection from phone p to phone q. Making a

call between phones from and to can then be modelled by a formula such as

to $ ran conns  ◊  connsæ =  conns ≈ {(from, to)}

Here, connsæ denotes the connections after execution of the operation. The expres-

sion ran conns denotes the range of the connection relation, namely the set of

phones currently busy due to an incoming call. Note that the formula constrains

both the state before execution of the operation (in the first conjunct), and the rela-
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tionship between the pre- and post-states (in the second conjunct). It says that a call

can be made only when the phone being called is not busy, and that the result is a

new link between from and to in the set of connections.

Execution of the operation may be simulated by finding an assignment of values

to the variables for which the formula is true.  Simulation often reveals simple

errors; this operation, for example, admits an execution in which conns is empty,

and from and to are the same phone, p say, resulting in a connection from p to itself. 

Another good way to find errors in an operation is to check that it preserves a

desired invariant. Suppose, for example, that the connection relation is to have dis-

joint domain and range, so that, for billing purposes, no phone participates in both

an incoming and an outgoing call at once. An invariant I is maintained by an opera-

tion OP when the formula

OP ◊ I  ⁄ Iæ

is valid, where Iæ is the formula I with its variables primed. In our example we have

(to $ ran conns  ◊  connsæ =  conns ≈ {(from, to)} 
◊ dom conns ˛ ran conns = {}) 
⁄ dom connsæ ˛ ran connsæ = {}

To check the formula, we look this time for an assignment that makes the formula

false; the execution just mentioned is such a case, since it gives connsæ the value {(p,
p)}.

This style of specification is central to model-based languages such as VDM

[Jon86] and Z [Spi92, WD96, Jac97].  Specifications in these languages have been

called ‘relational’ since the execution of an operation is modelled as a binary relation

between pre- and post-states. Z is relational in an additional sense – and the one to

which our title refers – in that the state itself is modelled with relations. This aspect

of Z is shared with the style of specification known as ‘object modelling’, central to

almost all of the object-oriented methods popular in commercial circles (eg, [SM88,

R+91, BJR96]), in which the state space is described with an entity-relationship dia-

gram [Che76], sometimes with additional textual constraints.

Analyzing Relational Specifications

This paper describes a technique for analyzing relational specifications. The under-

lying idea is very simple. Both simulation and checking amount to finding models of

a relational formula, that is, assignments for which the formula is true. For simula-

tion the formula is the description of the operation; for checking, the formula is the

negation of an assertion about an operation. Models are found by a generate-and-

test strategy: the formula is repeatedly evaluated for a series of assignments until one

is found for which the formula is true. 

The principal contribution of the paper is a reduction method based on symme-

try. If an assignment can be shown to be isomorphic to one previously examined, it
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can be skipped; since the isomorphism classes are large, this prunes the search dra-

matically. The reduction is sound, so that if a model would have been found without

the reduction, a model – but not necessarily the same one – will be found with the

reduction.

The technique as a whole is not complete, since the search is only conducted over

a finite universe of atoms. Completeness would rule out automation, since specifica-

tion languages are invariably more expressive than the relational calculus, which is

known to be undecidable [Sch79].

The technique has been implemented in a tool called Nitpick, whose specification

language NP [JD96a] is roughly a subset of Z. NP may be viewed as a typed rela-

tional calculus [Tar41, SS93], with the addition of transitive closure and various syn-

tactic structuring mechanisms. The example above is shown later (in Figure 10) as it

would appear in NP. The differences are insignificant theoretically but vital in prac-

tice: the bundling of formulas into named ‘schemas’ such as Switch (for the state

space) and Call (for the operation); explicit declaration of primitive types (here just

Phone, the set of phones) and of variables (here just conns in the schema Switch);

and an inclusion mechanism by which mention of a schema causes its declarations

and formula to be included. Afficionados of Z will notice two respects in which NP

differs: implicit declaration of primed variables representing the post state in

schemas that model operations (marked by an argument list following the schema

name), and treatment of claims as formulas too (but marked by the double colon to

tell Nitpick to search for a model of the negation) rather than as meta-logical asser-

tions in a proof system.

Nitpick’s use is illustrated in Figure 1. The user provides a file containing specifi-

cation schemas and claim schemas, along with a scope that assigns a size to each

primitive type. A schema or claim is selected, and Nitpick then displays models as

they are encountered during search, until some specified count (often 1) has been

reached.

Experience with Nitpick/NP

Nitpick has been used in a variety of settings. In the Masters of Software

Engineering program at Carnegie Mellon, students have used Nitpick on class pro-

jects to analyze several small but realistic designs. Nitpick has been applied to func-

tional specifications (see [JD96b] for an application to the paragraph style mecha-

nism of Microsoft Word); to checking existing proofs (finding a flaw in the proof of

correctness of a handoff algorithm designed for the FAA’s new air-traffic control sys-

tem); to abstract designs (finding a bug in the first version of IPv6, a mobile host pro-

tocol due to become an Internet standard [Ng97]); and to software architectures

(exposing cycles and races in the implicit invocation mechanisms used in many

development environments).

Contrary to our initial expectations, we have found simulation to be invaluable.

Implicit specifications, in which an operation’s behaviour is defined as a conjunction
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of subformulae, are susceptible to over-constraint: it is easy mistakenly to define an

operation with no executions at all. Simulation instantly reveals this problem.

Simulation does not require large models; there are usually quite enough com-

plex cases to consider amongst the small models. Our hypothesis is that small mod-

els suffice for checking too. One might ask: how large a model must be considered

to find any error? Since the language is undecidable, there can be no such bound. A

more practical question is: how large a model is needed to find most errors occur-

ring in a specification? This is an empirical question, and in our experience so far,

the answer is often surprisingly small. In almost all of our experiments assigning a

limit of 3 values to each type allows all the known flaws to be found.

Although Nitpick’s suite of reductions allow many realistic specifications to be

analyzed, the problem is still fundamentally intractable. Isomorph elimination alone

is rarely sufficient to make checking feasible. With the addition of short circuiting

[DJ96], however, we have been able to enumerate interpretations across a tree with

1020 leaves, obtaining reductions of 15 orders of magnitude. Isomorph elimination

regularly contributes 6 orders of magnitude, and sometimes more. We have not had

enough experience with term symmetry, a refinement described later in the paper, to

determine its effectiveness; so far we have observed improvements from 20% to a

factor of 10.

Increasing the size of the specification affects the performance in two ways.

Keeping the set of variables fixed but making the formula more complex damages

the performance of the reduction method described here, because the isomorphism

classes are smaller, but it improves the performance of short circuiting.

On the other hand, adding new variables leads to greater reduction factors. At the

same time, of course, the space grows exponentially. In the best case, an extra vari-

able increases the search by a factor corresponding to the number of values it can

take up to isomorphism. In practice, Nitpick is very sensitive to the addition of rela-

tion variables. Adding a scalar or a set of even a function, on the other hand, is often

not a problem, nor is adding a relation that is tightly constrained (since short cir-

cuiting will cause many of its values to be ruled out).

2 Related Work

Our work appears to be the first attempt to analyze software specifications by

semantic enumeration. Nitpick is currently the only tool that can analyze a relation-

al specification fully automatically.

Theorem Provers

Small data structures have huge numbers of values. For this reason, enumerative

analysis of software specifications has been regarded as infeasible. Research efforts

have therefore focused mainly on syntactic analyses.

Recently, with the development of theorem provers such as PVS [OR+95] that
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incorporate powerful decision procedures, the analysis of realistic designs has

become possible. A number of theorem provers have been developed specifically for

Z [Jon92, SM96] or have been applied to it [BG94, ES94]; there are also specialized

theorem provers for the relational calculus [BH94].

The labour cost of interactive theorem proving is still high enough, however, to

rule out its use in everyday software development. For safety critical systems or com-

ponents, on the other hand, especially those involving subtle distributed algorithms,

the cost appears to be justified.

Theorem provers do, of course, have the major advantage that, unlike Nitpick,

they can be used to demonstrate that a correct specification has no errors (with

respect to a given property). When the specification is faulty, however, they tend to

perform poorly. It might be useful then, to incorporate Nitpick-like features in a the-

orem prover to spare the cost of attempting an impossible proof when a counterex-

ample can be rapidly generated.

Using abstraction, it is possible to obtain assurance from an enumerative analysis.

An infinite space of interpretations is reduced to a finite space in such a way that

establishing a property on the finite space suffices. This approach is well developed

in the context of model checking [CGL92, B+95, DGR96]. In our previous work,

we have shown how similar ideas can be applied to relational specifications [Jac94],

but it seems that, in practice, it is often hard (or impossible) to find appropriate

abstractions.

Simulators

Existing simulation tools require the specification to be constructive; suitable subsets

of Z [Val91] and VDM [LL91] have been defined. Closer to our approach, there

have been attempts to analyze Z specifications with a Prolog interpreter [DKC89,

WE92], but these do not appear to be practical yet.

Nitpick’s ‘derived variable’ analysis [JD95] ensures that when a variable of the

post-state of an operation is defined constructively, no search is actually performed;

the equation is essentially converted into an assignment statement. Consequently,

Nitpick will execute specifications as fast as any simulation tool. And due to short-

circuiting [DJ96] and isomorph elimination, it can focus on executions that are like-

ly to expose errors.

The equivalence classes into which our method partitions the formula’s interpre-

tations are ‘revealing subdomains’ in the jargon of testing theory [WO80]. Our

method might have some application in testing of code also, although resource

boundaries introduce discontinuities in behaviour where many bugs reside.

Consequently, an enumeration that is confined to a small scope is unlikely to expose

errors.

Model Finders

In his thesis on abstract relational algebras [Jip92], Jipsen gives an algorithm for
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finding models of relational formulae. His purpose differs from ours; he uses the

algorithm to prove theorems by demonstrating that the negation of an inference has

no models. 

It is not clear whether Jipsen’s algorithm could be applied to specification checking.

His language does not admit transitive closure, which appears in most of our speci-

fications. Also, since the algorithm has only been executed by hand on small exam-

ples, it is hard to predict how an implemention would behave.

General-purpose tools have been developed for finding models of formulae in

various languages. The satisfiability problem for boolean formulae has been espe-

cially well studied because of its wide applicability, and because, despite being NP-

complete, it appears to be easy to solve in practice. For hard cases, local search tech-

niques work surprisingly well [SLM92].

Symmetries involving permutation of boolean variables have been exploited in

the analysis of first-order formulae [BS92, Cra92]. But as far as we know, ours is the

only method to use symmetry in the assignable values themselves.

The FINDER tool [Sla94] uses backtracking search to find models of a logic with

functions and equality. Its author graciously translated some of our examples into its

input language, and was able to obtain very good results. In examining Claim2 of

the specification of Figure 12, for example, it finds 809 counterexamples per back-

track, suggesting that the search mechanism is extremely efficient. These results

were obtained by translating the relational formula into the language of functions

and equality, skolemizing to eliminate the implicit existential quantifiers, and then

by adding extra constraints and directives to order the search and break symmetries.

Zhang has developed a scheme that exploits symmetry in this setting [Zha96].

His model finder, FALCON, uses a heuristic that orders the atoms of the universe as

they are inserted in the table representing a function; as a result, many of the per-

mutations of a function are not generated. This scheme has much in common with

ours, but it does not exploit the typing of the formula, nor the symmetries of the

functions themselves.

A serious obstacle in applying these techniques to relational specifications is tran-

sitive closure. For a given scope, a relational formula involving closures can be trans-

lated into a purely boolean formula, but the resulting formula can be immense: intu-

itively, there will be a disjunct for every path through a relation’s graph, and so in

the worst case, there will be exponentially many subformulae.

We have experimented [DJJ96] with a version of Nitpick based on Bryant’s

ordered binary decision diagrams (BBDs) [Bry92]. Very large boolean formulae can

often be represented with small BDDs. Using iterative squaring, closures can be

computed reasonably efficiently. For checking some specifications the boolean

method works better, but usually isomorph elimination gives a reduction large

enough to make the explicit method preferable. Unfortunately there seems to be no

easy way to incorporate isomorph elimination into the BDD method; it appears that

the boolean variable orderings that are good for the relational formulae (that is, give
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small BDD’s) are not appropriate for the side-conditions that break symmetry.

Symmetry in Model Checking

Symmetry in the transition relation of a state machine has been exploited in check-

ing methods for Petri nets [Sta91], for reachability analysis [ID93], and for temporal

logic model checking [CFJ93, ES93]. A recent journal issue on the topic of symme-

try in automatic verification [FMSD96] includes expanded versions of these papers

[C+96, ES96, ID96] and others.

These methods exploit different subsets of the automorphisms of the transition

relation. Ip and Dill’s method [ID96] uses a special construct in the specification lan-

guage, called a ‘scalarset’, to represent an uninterpreted type. A specification involv-

ing an array of processors, for example, might declare the process identifiers used to

index the array as belonging to such a scalarset. During exploration of the state

space, the checker not only avoids visiting states that have been previously visited,

but also avoids those in the same orbit as – that is, equivalent under symmetry to – a

visited state.

The methods of Clarke, Enders, Filkhorn and Jha [C+96], and of Emerson and

Sistla [ES96], accommodate a more general class of automorphism groups, but

require the user to specify the group. Moreover, these methods can, to some degree,

take advantage of the structure of the property being checked.

All of these methods involve, explicitly or implicitly, an orbit test: given two

states, one must determine whether they fall into the same orbit and can thus be

treated as indistinguishable. The problem can be shown to be harder than graph iso-

morphism [Jha96], and in practice an approximation is used that sometimes distin-

guishes states in the same orbit (but never equates states in distinct orbits).

Although our method was inspired by [CFJ93], it actually has little in common

with it or [ID93]. These methods are concerned with the equivalence of two states

induced by the symmetries of the transition relation to which they belong; ours is

concerned with the equivalence of two interpretations, and exploits symmetry dur-

ing the construction of an interpretation. Our types, derived from the ‘given types’

of Z [Spi92], are all uninterpreted, and are thus ‘scalarsets’ in the jargon of [ID93].

Our method requires no orbit test; the only isomorph checking that occurs is lim-

ited to the internals of the graph generation subroutine. This is possible because our

search is more structured, and the automorphisms of the partially constructed

assignment are enough to determine which relation values should be subsequently

generated.

Because the branching factor in our search tree is so large, our reductions are usu-

ally greater than those achieved by these other methods. In model checking, for

example, a factor of 10 or 100 is typical, while we often see reductions of 105 or

more.

An earlier version of our isomorph elimination method is described in [JJD96].

To avoid the generation of graphs under arbitrary colourings, it introduced explicit
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bijections called ‘wirings’ between the sides of one relation and another. This

allowed us to generate an entire isomorph-free set of relations just once, and then

vary the bijections according to the colouring context. The new method dispenses

with the wirings, resulting in a simpler algorithm that is easier to justify and to

implement. It also performs better, typically by a factor of 5–10, both because the

old method generated some duplicate interpretations, and because it did not exploit

term symmetry.

3 Overview of the Method

For both kinds of analysis that Nitpick performs, it is important that the models be

generated roughly in order, so that models with smaller relations appear first. For

simulation, this allows the user to observe when expected cases are missing; for

checking, it helps by favoring simpler counterexamples.

One way to find models is simply to enumerate all assignments of values to vari-

ables. Unfortunately, the number of assignments grows exponentially with size. A

relation on a set of k elements can have k & k edges, each of which is either present

or absent, and thus has 2k&k possible values. For three relational variables over a set

of 3 elements, there are about 108 assignments to enumerate. Moreover, the density

of models amongst assignments is often very small, so one cannot assume that a

model is likely to be found by a partial search.

This paper describes a method for enumerating assignments that allows a high

proportion to be skipped. Along with other reduction mechanisms, it makes the

search of huge assignment spaces possible. Employing the method described here,

along with other reduction mechanisms, Nitpick can usually search spaces of 1012

assignments in less than a minute. The method is sound, so that a search within a

given finite bound will always find a model if one exists.

The method is based on a simple observation. Many of the assignments that

would be produced by a naive enumeration are isomorphic to one another: that is,

one can be obtained from another by exchanging the labels of the relation’s nodes.

Because the types in our specification language are uninterpreted, two isomorphic

assignments must either both be models or not, so examining one suffices.

Since so many relations are isomorphic to one another, eliminating isomorphs has

a dramatic effect. Table 1 compares, for small k, the number of k&k relations, and

the number up to isomorphism. Generating an isomorph-free set of relations does

not require expensive testing: the 6&6 relations, for example, can be generated in

less than a minute.

Eliminating isomorphs is beneficial for models and non-models alike. Skipping

non-models speeds up the search for models; this is the primary motivation.

Skipping models is good for simulation, because it means that the user is not bar-

raged with cases that are uninteresting relabellings of cases already seen.

Like our previous isomorph elimination method [JJD96], the method exploits the
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structure of the formula being checked as well as the structure of the enumerated

relation values. The method described here, however, is more powerful; it can

exploit symmetries not only in the values of relational variables but also in the val-

ues of terms, leading to larger reductions. It is also simpler.

The rest of the paper is organized as follows. The next section gives a syntax for

relational formulae and defines the basic notions. Section 5 justifies the choice of a

syntax different (and much simpler) than our specification language NP. Section 6

gives a more formal overview of the reduction method. The remaining sections

describe the method in detail, starting with the general principle of ‘permutation

invariance’. The method is shown to be sound, and an algorithm is given. A refine-

ment of the method that exploits symmetry in the values of entire terms is also pre-

sented. The paper closes with some remarks about future work.

4 Basic Notions: Formulae, Models and Enumeration

A syntax for relational formulae is shown with its semantics and typing rules in

Figure 2. A formula is accompanied by type declarations for each of its variables;

there are no quantifiers, so all variables are free and can be declared together. The

formula

p, q: “T, T”
p ; q = Ø

for example, has two free variables, p and q, declared to be homogeneous relations

on elements of type T. The same formula could be typed differently

p: “S, T”
q: “T, V”
p ; q = Ø

where p is now a relation from S to T, and q is a relation from T to V.

Types are unstructured: each is denoted by some arbitrary name. Moreover, it is

crucial to our method that types are uninterpreted. A type name such as T denotes

an arbitrary collection of values with no semantics beyond a notion of equality.

A relation is a directed, bipartite graph with a finite number of nodes and arcs.

Arcs originate from nodes in the left set of the relation and terminate on nodes in the

right set. The relation’s domain and range are respectively subsets of the left and

right, and consist of the nodes that have outgoing and incoming arcs.

Types add no expressive power. Having a type “S, T” means being a subrelation of

the cross product S & T, which is easily expressed as a formula. Types are used, as we

shall see, to structure the search (and, as usual, to expose simple errors in the speci-

fication).

A formula evaluates to true or false under a given interpretation of its variables.

There is a universe of atoms, U, from which relations are constructed. An interpre-
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tation “†, A” consists of a type assignment

†: Type ¡ ı (U)

that assigns a set of atoms † ·t‚ to each type t, and a variable assignment

A: Var  ¡ (U ™ U)

that assigns a relation value A·v‚ to each variable v in the formula. The carrier sets of

different types are disjoint

s ≠ t  ⁄  † ·s‚ ˛ † ·t‚  = Ø

and the variable assignment must respect the typing, so that if v: “s, t”,

A·v‚ :  † ·s‚ ™ † ·t‚ 

Under the semantics of the relational operators, an interpretation I gives a value

I ·e‚ to each relational term e, and thus a value I ·f ‚ to the formula f as a whole.

Since there are no issues of variable scope, the semantics is trivial. Each operator o
has a meaning O that is a function on relation values, so that the meaning of a term

is obtained by applying the appropriate function to the meanings of its subterms.

If  I ·f ‚ is true—that is the formula f evaluates to true under the interpretation I—
then I is said to be a model of f. When we want to make the typing explicit, we shall

write

I, Ty „ f

to say that I is a model of f under the typing Ty.

Taking the formula

p, q: “T, T”
p ; q = Ø

as an example, the models are the interpretation that assign values to p and q whose

product is the empty relation, such as

† = {T §{0, 1, 2}}
A = {p § {(0, 0)}, q § {(1, 0)}}

In contrast, the interpretation

† = {T §{0, 1, 2}}
A = {p § {(0, 1)}, q § {(1, 0)}}

is not a model, because the product includes the arc (0, 0).
In our method, the search for models of a formula is bounded. The user declares

a scope

Í: Type ¡ ˜
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that associates a positive integer with each type. An interpretation “†, A” is said to

belong to a scope Í if for every type t

| † ·t‚ | = Í·t‚ 

The scope induces a limit on the size of relation that can be assigned to a variable,

and thus on the number of relations. Even for a small scope, the number of assign-

ments can still be huge. For a scope of three, for example—that is, a scope for which

Í·t‚ = 3 for all types t—a formula with 3 variables has 108 variable assignments.

Given a formula and a scope, the method generates a sequence of interpretations

and displays those that are models. As we shall see, the actual values of atoms is

immaterial, so, having fixed the scope, only the variable assignment A changes dur-

ing enumeration.

An reasonable enumeration order produces smaller assignments first, where size

is a global measure, such as the total number of arcs in the relation values. This is not

easily implementable, so instead we guarantee a weaker, pointwise ordering. If two

assignments A1 and A2 are generated that differ only in the values they assign to

some variable v, then if A1 comes first, the number of arcs in A1·v‚ is no greater than

the number of arcs in A2·v‚.
Not all models within the scope are enumerated, but the method is sound: if a

model exists within a scope, a model (but necessarily the same one) will be found. A

simple isomorph elimination scheme might guarantee that if a model is not generat-

ed, then at least a permutation will be. Our method obtains better reductions, how-

ever, and does not make this guarantee.

5 Applicability of the method

The syntax used to illustrate the method (Figure 2) was chosen for its simplicity. Our

notation, NP – see Figure 10 for an example – is more elaborate, primarily in three

respects. First, its concrete syntax is richer. Using a form of Z’s schema mechanism

[Spi92] tailored to the description of abstract state machines as a structuring mecha-

nism, it allows operation and state descriptions to be constructed incrementally, with

commonalities factored out. It also distinguishes claims to be checked from the spec-

ification proper. Second, NP admits variables of scalar and set type. Third, a larger

repertoire of relational operators is provided (along with additional operators to

include sets and scalars).

A few points are in order to justify this simplification, and to explain why check-

ing the full language is no harder. First, the concrete syntax is immaterial; the

method operates purely at the semantic level, and the syntactic shorthands the NP

notation provides are stripped away prior to checking. 

More surprisingly, perhaps, the omission of scalars and sets is also insignificant. A

formula involving scalars and sets can be translated into an equivalent formula

involving only relations by the following scheme [SS93]. A subset of a set X is treat-
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ed as a relation s on X & Y that pairs each element of the set with every element of

Y, so that a relation s denotes a set when

s ; Un = s

The domain and range of a relation r are then r ; Un and r~; Un. A scalar is treated as

a singleton set; a pair of scalars (x, y) becomes x ; y~.

In this paper, the method is cast in terms of purely relational formulae. It could be

applied to formulae with sets and scalars by translating the formulae, and then trans-

lating the models back, but in practice the method is easily extended to work direct-

ly with sets and scalars.

The choice of relational operators is conventional; the language is essentially the

relational calculus with the addition of transitive closure. In fact, however, the

method is not sensitive to the operators chosen, but will work for any kind of rela-

tional formula whose operators satisfy a simple criterion.

Consider any permutation π of the universe U. Then π induces a permutation πæ
of the relation values defined by

πæ R = {(πu, πv) | (u, v) @ R} 

for each relation value R. If we view the meaning of each operator as a set of relation

tuples, then πæ induces a permutation πææ of the operators themselves

πææ O = {(πæ R1, ..., πæ Rn) | O (R1, ..., Rn-1)  = Rn}

for each operator O. A logical operator is fixed under any permutation; that is, its

characteristic set of tuples is mapped to itself. Equivalently, a logical operator com-

mutes with permutation of the relation values. If O is a logical operator that includes

(R1, ..., Rn) and it commutes with permutation, then

O (πæ R1, ..., πæ Rn-1) =  πæ O (R1, ..., Rn-1)  = πæ Rn

and thus O must also include (πæ R1, ..., πæ Rn) and be fixed under permutation. Take,

for example, the composition operator; it is logical because

(πæ p) ; (πæ q) 
= (π~ ; p ; π) ; (π~ ; q ; π)
= π~ ; p  ; q ; π
= πæ (p ; q)

Our method requires only that the operators be logical. Moreover, it can be

shown that if an operator can be defined in terms of first-order predicate calculus, it

must be logical; and if not, it seems unlikely that it could be included in a practical

specification language anyway.

(The notion of logicality is due to Tarski [Tar41, Giv88]. His calculus is less

expressive than first-order logic; it can be shown that although any first-order for-

mula with at most three variables can be expressed, there are trivial formulae with
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four variables that are not expressible. To show that this result does not depend on a

quirk of his formulation, Tarski proved that no addition of a finite number of logical

operators increases the expressive power. Logicality, then, defined for Tarski the

broadest notion of what constitutes a relational calculus. One might expect the lack

of expressiveness with respect to first-order logic not to be of practical significance,

since, if extra relational variables are admitted, projection can be expressed, and, by

tupling, the restriction to three variables is overcome. But in practice the relational

formulation often feels awkward. For software specifications, a more serious issue is

the lack of transitive closure which we include explicitly because it cannot be encod-

ed in the plain calculus).

6 Outline of the Method

Although our method relies on a tricky algorithm (to generate graphs), it is based on

two simple observations.

The first is a direct consequence of the logicality of the operators. Since the uni-

verse is uninterpreted, relabelling the relation values of an interpretation can have

no effect on whether it is a model or not. Put another way, any permutation π of the

universe U, when extended over the interpretations I of a formula, fixes the subset

M of models. Partition I so that two interpretations belong to the same class when

there is a permutation that takes one to the other; these classes are called the orbits
of the permutation group.

Each orbit contains either only models or only non-models. To find a model,

there is no need to pick more than one interpretation from each orbit. Ideally, we

would pick exactly one from each, but this is hard to do. Since the orbits can be very

large, our method achieves a considerable speedup even though it may pick several

interpretations from a single orbit.

The second observation exploits the type structure of the formula. A typing may

give two relations common types when in fact they are independent. For example, in

the formula

p = q  ◊  r = s

p and q must share the same left and right types, as must r and s, but the types of p
and r need not be related. Permuting the left sides of p and q together, but leaving r
and s invariant, will clearly not affect whether an interpretation is a model. And yet,

if the typing is needlessly strong—requiring, for example, that all four variables have

the same type—this will not be expressible as a permutation of the universe. Our

method therefore infers the most general typing of the formula, and uses the equiv-

alence classes of its permutations. The interpretations under one typing can be put in

one-to-one correspondence with the interpretations under another typing, but the

weaker the typing, the more permutations there are, and therefore the fewer the

equivalence classes.
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Figure 3 summarizes these two observations. The small rings represent models;

the dotted lines show how models under the declared typing (above) are matched

with models under the more general inferred typing (below). The arrows between

the models denote examples of permutations mapping one to another. The four

models are divided into two orbits in the declared typing, but fall within a single

orbit in the inferred typing because of the additional permutation πcæ.
In our method, the interpretations are constructed incrementally in a tree. The

variables are ordered, and at each level of the tree, the values of one variable are

enumerated. Each leaf of the tree corresponds to an interpretation. Figure 4 shows

parts of such a tree. The leaf marked I gives the interpretation obtained by assigning

to the variables the values of the shaded nodes: in this case the first variable R1 has

the value a, the second has the value b, and so on, with the last having the value g.

Isomorphic interpretations are not eliminated at the leaves—since that would still

require construction of the entire tree—but by pruning during the enumeration.

Rather than generating all values of a variable, we generate enough values to guar-

antee that at least one interpretation from each equivalence class will be present.

The set of values generated as children of a node in the tree varies between nodes at

the same level, because the notion of equivalence depends on the interpretation that

has been constructed so far. As we shall see, given a partially constructed interpreta-

tion I, the method avoids generation of both v and πv if π is a symmetry of I. Figure

5 illustrates this. The internal node marked I corresponds to the partial interpreta-

tion; v1 and v2 are enumeration values such that

π v1 = v2

where π is a symmetry of I; that is, for every relation value v in I,

π v = v

In this situation, only one of v1 and v2 is required, so that if v1 is included, v2 can be

safely skipped, and its entire subtree pruned away.

One could perhaps generate an isomorph-free set of interpretations, a full inter-

pretation at a time. We use the incremental approach because it dovetails with

another reduction scheme implemented in Nitpick. Often, it is possible to determine

from the partially constructed interpretation that all or none of its completions will

be models, so there is no need to continue the search. This short circuiting prunes

the interpretation tree further, often by a factor even greater than that achieved by

the isomorph elimination method [DJ96].

Sections 7 and 8 explain the two observations underlying the method. Section 9

justifies the incremental approach, and Section 10 explains the colouring scheme

used to express the symmetries. Section 11 presents a refinement of the method.

Algorithms for the basic and refined method are given in Sections 12 and 13.

15



7 Relabelling

Since the universe of atoms is uninterpreted, an injective relabelling of the relation

values can have no effect on the meaning of the formula. This means that if an inter-

pretation is a relabelling of one already examined, it can be safely ignored. We

observed above, for example, that

† = {T §{0, 1, 2}}
A = {p § {(0, 1)}, q § {(1, 0)}}

is not a model of the formula

p, q: “T, T”
p ; q = Ø

Likewise, permuting 0 and 1, the interpretation

† = {T §{0, 1, 2}}
A = {p § {(1, 0)}, q § {(0, 1)}}

is also not a model.

Consider any interpretation I = “†, A” of a formula f with types t1, ..., tn. Let

Sym(S) be the group of all permutations of the set S. A relabelling with respect to this

interpretation is any permutation π: U ¡ U of the universe that respects types:

π @ Sym († ·t1‚) & ... & Sym († ·tn‚)

A relation value is relabelled by relabelling its left and right sides:

π R ƒ π~ ; R ; π

For convenience, we shall overload the names of permutations in this way, but the

reader should remember that the permutation on the left of the definition acts on

the entire relation, while the permutation appearing twice on the right acts on

atoms. Similarly, we extend the relabelling over the assignment A

π A ƒ {r § π~ ; R ; π | r § R @ A}

and then over the entire interpretation

π I ƒ “†, π A”

First, we show that relabelling commutes with the meaning function, so that it

makes no difference at which point relabelling is applied during the evaluation of a

term:

Lemma 1 (Relabelling commutes with interpretation) For any expression e, inter-

pretation I and relabelling π,

π (I ·e‚) = (π I) ·e‚
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Proof  By structural induction. The base step, where e is a variable, is trivial.  For the

induction step, consider an expression o(e1, ..., en), and take O to be the meaning of

the operator o (as defined in Figure 2). Since O is assumed to be logical, 

π O(I ·e1‚, ..., I ·en‚) = O(π I ·e1‚, ..., π I ·en‚)

and by hypothesis,

π (I ·ei‚) = (π I) ·ei‚

it follows that

π (I ·o(e1, ..., en)‚) = O((π I) ·e1‚, ..., (π I) ·en‚) = (π I) ·o (e1, ..., en)‚ À

Since consistent relabelling of two equal relations produces two other equal rela-

tions, the evaluation of the formula as a whole is unaffected:

Theorem 1 (Relabelling fixes the set of models)  For any relabelling π of an inter-

pretation I of a formula f,

(π I) · f ‚ =I · f ‚

Proof Consider the meaning of a subformula under π I. By the definition of equali-

ty

(π I) ·e1 = e2‚ = ((π I) ·e1‚ = (π I) ·e2‚)

By lemma 1

((π I) ·e1‚ = (π I) ·e2‚)  = (π (I·e1‚) = π (I·e2‚))

and since π is bijective

(π (I·e1‚) = π (I·e2‚)) = (I·e1‚ = I·e2‚)

and thus

(π I) ·e1 = e2‚ = (I·e1‚ = I·e2‚) = I ·e1 = e2‚ 

The extension to the full formula is a trivial induction. À

An obvious corollary of the theorem is that the choice of the type assignment † is

not significant. We simply pick an arbitrary set of atoms for each type, whose cardi-

nality matches the scope selected by the user.

8 Typing

The more relabellings there are, the fewer equivalence classes of interpretations

there will be, and thus the fewer interpretations to be examined. A more general
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typing, which distinguishes two relations (or, more accurately, sides of relations) by

giving them different types, when they were previously constrained to have the same

type, will admit more relabellings, because the two types can be permuted indepen-

dently.

Take, for example, the formula

p ; q = Ø

with the typing

p, q: “T, T”

and consider interpretations in which

† ·T‚ = {a, b}

The two variable assignments

A1 = {p ¡ {(a, a)}, q ¡ {(b, b)}}
A2 = {p ¡ {(b, b)}, q ¡ {(a, a)}}

are equivalent, because of the relabelling (ab). The assignments

A3 = {p ¡ {(b, a)}, q ¡ {(b, a)}}
A4 = {p ¡ {(a, b)}, q ¡ {(a, b)}}

are also equivalent to each other, but neither of A1 or A2 is equivalent to A3 or A4.

Now take the equally admissible typing

p: “S, T”
q: “T, S”

with

† ·T‚ = {a, b}
† ·S‚ = {c, d}

The four assignments

A1 = {p ¡ {(c, a)}, q ¡ {(b, c)}}
A2 = {p ¡ {(c, b)}, q ¡ {(a, c)}}
A3 = {p ¡ {(d, a)}, q ¡ {(b, d)}}
A4 = {p ¡ {(d, b)}, q ¡ {(a, d)}}

are now all equivalent, since relabellings may be formed as combinations of the

transpositions (ab) and (cd). Intuitively, whether the product of p and q is empty

depends only on the coincidence of range elements of p with domain elements of q.

We should be able to permute the left side of p and the right side of q independent-

ly of the ‘inner’ sides, and this is what the more general typing allows us to do. The

most general typing
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p: “S, T”
q: “T, V”

will admit 8 permutations; considering only the relations with at most one arc, this

places the 16 possible assignments in 2 equivalence classes, so that there are only

two cases to consider: the one in which the arcs do not meet in the middle (which is

a model) and the one in which they do (which is not a model).

We pick the most general typing, since it leads to the greatest reduction in the

search. To justify this, we must define what we mean by a typing, and show that the

choice of typing does not prejudice the presence of models: if a model exists under

one typing, it also exists under another.

To compare typings, it will be useful to have a notion of untyped interpretation,

in which all variables have the same type “u, u” for some u. The choice of typing

clearly affects the models of the formula, but it should not affect whether a model

exists. So we define a typing to be sound for a given formula if it guarantees that

whenever the formula has a model under that typing, it also has an untyped model,

and vice versa.

Definition 1 (Type soundness). A typing Ty is sound for a formula F if

´I.  I, Ty „ F   ¤   ´I.  I, Least „ F

where Least is the least general typing: it assigns the type “u, u” to every variable, for

some arbitrary type u. A type system is sound if it only produces sound typings for a

formula.

It follows from this definition that, so long as the type system is sound, the presence

of models is not sensitive to the typing: a formula has a model under one typing

exactly when it has an untyped model, and thus exactly when it has a model under

another sound typing.

Theorem 2 (Typing preserves modelhood) Given any sound typings Ty and Tyæ of a

formula F,

´I. I, Ty „ F   ¤   ´I. I, Tyæ „ F

To show that a type system is sound, it is sufficient to show that it is consistent in the

following sense. With each type t we associate some arbitrary injection

åt: † ·t‚ ¡ U

that translates atoms in a typed interpretation into atoms in an untyped interpreta-

tion. For an expression e: “s, t”, let å e be short for the expression in which the appro-

priate injections are applied to the left and right:
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å e ƒ ås~ ; e ; åt

Definition 2 (Type consistency)  A type system is consistent if type translation com-

mutes with every operator:

O ( å e1, ..., å en)  = å O ( e1, ..., en) 

Type translation can be extended in the obvious way over an interpretation, and for

a consistent type system, behaves like the permutations of the previous section. The

proofs of the following two lemmas are simple variants of those of Lemma 1 and

Theorem 1.

Lemma 2 (Translation commutes with interpretation) For any expression e, inter-

pretation I and type translation scheme å,

å (I ·e‚) = (å I) ·e‚

so long as the type system is consistent.

Lemma 3 (Type translation preserves modelhood)  For any type translation å of an

interpretation I under a consistent typing Ty of a formula f,

I, Ty „ f ¤ π I „ f

We can now show that consistency is enough to establish soundness:

Theorem 3 (Consistency implies soundness) Every consistent type system is sound.

Proof  Given a consistently typed model I = “†, A” of some formula f, we show how

to construct an untyped model Iæ = “†æ, Aæ”. Define †æ so that it maps the arbitrary

type u to a carrier set whose cardinality is that of the largest carrier set † ·t‚. Now

pick any set of injections

åt : † ·t‚ ¡ †æ ·u‚ 

Define Aæ so that

Aæ ·r‚ = å A ·r‚

for every variable r. By lemma 3, Iæ is a model.

To construct a typed model I = “†, A” from an untyped model Iæ = “†æ, Aæ”, we

define † so that it maps each type t to a carrier set whose cardinality is that of † ·u‚.
Now pick any set of total injections

åt : † ·t‚ ¡ †æ ·u‚ 
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and again require

Aæ ·r‚ = å A ·r‚

Since the åt are bijections this time, this defines A uniquely. As before, the corre-

spondence will ensure that I is a model when Iæ is. À

As an illustration, take the composition operator and its type rule (in Figure 2).

Given variables

p: “s, t”, q: “t, u”

we have

(å p) ; (å q)
= (ås~ ; p ; åt) ; (åt~; q ; åu)
= (ås~ ; p ; q ; åu)
= å (p ; q)

The typing rule guarantees that the inner injections match; the product  åt ; åt~ is
the identity because åt is total. To show that the type system is sound, a similar proof

is required for each operator.

9 Enumeration Method

Theorems 1 and 2 form the basis of our method. The first justifies the skipping of

isomorphic interpretations; the second allows the formula to be typed so that as

many interpretations as possible are deemed isomorphic to one another. Theorem 3

is used to justify typing rules for new operators.

Given a formula f, the most general typing is inferred. Each type gets a carrier set

containing the number of atoms specified by the scope. The assignment of values to

variables is then explored by traversing a tree in which, at each level, the values of

some variable are enumerated (Figure 4). A leaf of the tree corresponds to a path,

each step of which assigns a value to a variable; the entire path thus defines an

assignment. The formula is evaluated for each assignment, and if true, is printed out.

Traversal of the entire tree is not usually feasible, even for small scopes, but,

exploiting Theorem 1, our method explores only a small part of it. Permutations

induce an equivalence on assignments: if one can be permuted into another, either

both or neither are models.

Our goal is to pick only one assignment from each such equivalence class. Since it

is important not merely to filter assignments at the end, but to avoid generating

them in the first place, we need a local criterion that can be applied during traversal

of the enumeration tree.

At a given node in the tree, just prior to the enumeration of values for some vari-

able ri, a partial assignment of values to the variables r1, r2, ..., ri-1 has been con-

21



structed. Take some value v for ri and some permutation π. Must the permuted value

πv also be considered? In general, the answer is yes, since, in combination with the

partial assignment, the permuted value does not necessarily give a permutation of

the extended assignment. However, if π is a symmetry of the partial assignment,

applying it to the extended assignment affects only the new value, and so indeed the

extended assignment will be a permutation.

Consider, for example, finding models of the formula

p: “S, T”, q: “T, V”
p ; q = Ø

with

† = {T§ {a, b}, S § {c, d}, V § {e, f }}

by enumerating first p and then q. Suppose the value of p just enumerated is {(a, c),
(a, d)}. Then for the 4 values of q that have one arc

{(c, e)}, {(d, e)}, {(c, f )}, {(d, f )}

only one need be checked, since from any one the others can be obtained by apply-

ing the permutations (cd) and (ef ), both being symmetries of p, the former because of

the structure of p, and the latter because p does not involve the type V.

Lemma 4 Consider a partial assignment A that assigns relation values to variables

R1, ..., Ri-1, and consider extending it to B by assigning a value v to the variable ri:

B = A ± {ri § v}

Let G be the automorphism group of A: that is, the set of permutations over the uni-

verse U that leave all relation values of A fixed. Then for any π @ G, 

π B = A ± {ri § πv}

Proof  π leaves r1, ..., ri-1 fixed, so πA = A, and thus

π (A ± {ri § v}) = πA ± {ri § πv} = A ± {ri § πv}

as required. À

Our algorithm exploits this lemma by enumerating only a subset of the values of ri,

so that for every possible value v there is at least one value væ enumerated with πvæ =
v, for a symmetry π of the partial assignment.

Algorithm  The assignments are constructed incrementally in a tree-like enumera-

tion. Suppose that at some point the assignment Aæ has been generated, which

assigns values to variables r1, ..., ri-1. Let Vi be the set of possible values of ri. The
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algorithm extends Aæ by assigning ri to each of the values in Viæ, where Viæ ≤ Vi, such

that for every vi @ Vi, there is an automorphism π of Aæ and a value generated viæ @
Viæ with π viæ = vi .

Theorem 4 For any full assignment A generated by a naive enumeration, the algo-

rithm generates an assignment Aæ that is a permutation of A. 

Proof  By induction on the tree depth, with this hypothesis: for any assignment Ai of

length i, an assignment Aiæ is generated such that, for some permutation π

π Aiæ= Ai

The base case is trivial: since the partial assignment is empty, its automorphism

group is the full symmetry group Sym(U). If v is not generated as a value for R1,

there is a permutation π @ Sym(U) such that væ is generated, and væ = πv.

For the induction step, assume a value has just been assigned to ri-1. We shall

show that a permutation of

A ± {ri § v}

is generated for any A and v. By hypothesis, there is a partial assignment Aæ that is

generated such that

A = π Aæ

for some permutation π. We want to demonstrate that a væ is generated such that

A ± {ri § v} = ∂ (Aæ ± {ri § væ})

for some permutation ∂. Now for any value x of the variable ri, the algorithm gener-

ates a væ such that, for some automorphism å of Aæ, 

x = å væ

Pick x = π~v, so that væ = å~π~v. Then 

Aæ ± {ri § væ}
= Aæ ± {ri § å~π~v}
= å~å Aæ ± {ri § å~π~v}

and

å~å Aæ ± {ri § å~π~v}
= å~ (Aæ ± {ri § π~v})
(since å @ Aut Aæ)
= å~ (π~ A ± {ri § π~v})
(since A = πAæ)
= å~π~ (A ± {ri § v})
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which completes the proof. À

10 Colouring Scheme

Our method exploits only a subset of the automorphisms; in practice, there is no

simple way to express them all. An explicit representation of the automorphisms

would not be appropriate for generating the new relation values – in the worst case,

there is an exponential number – so instead they are represented implicitly by a

colouring of the universe U. If two atoms a and b are given the same colour, there is

an automorphism that maps one to the other while leaving all other atoms fixed: the

transposition (ab), in other words, is an automorphism.

Constructing this colouring is made easier by the typing of the formula. Since dis-

tinct types have disjoint carrier sets, any automorphism of the partial assignment can

be expressed as a product of permutations π(t), where π(t) acts only on the carrier

set of the type t. The colourings of types can thus be regarded as independent.

For each relation, we consider permutations that act on the left or the right side.

We colour the left nodes of each relation so that two nodes have the same colour if

exchanging them leaves the relation invariant, and similarly for the right nodes.

Note that composite automorphisms involving simultaneous permutations on both

sides are not representable. For a relation whose left and right sides have the same

type, the colouring requires the same permutation to be applied on both sides.

The colouring of the sides of the relations now induces a colouring of the uni-

verse. The types are considered one at a time. For each type, we colour its elements

so that two have the same colour exactly when the nodes corresponding to those

elements have the same colour in every relation side in which they appear. This

colouring is not coarser than any of the colourings of the relations, so if two ele-

ments of a type have the same colour, their exchange leaves all relations invariant.

A set of values Væ is now generated for the new relation that has the following

property. For every relation value v in the full set V, a relation value væ is generated

such

π væ = v

for some permutation π that respects the colouring of atoms.

Since π can be expressed as a product of transpositions, each of which is an auto-

morphism of A, π itself is an automorphism of A too, and thus qualifies as a suitable

permutation according to Theorem 4.

Examples

Consider again the formula

p: “S, T”, q: “T, V”
p ; q = Ø
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with

† = {T§ {a, b}, S § {c, d}, V § {e, f }}

Figure 6 shows the possible sets of values that can be generated for a heterogeneous

2 & 2 relation: in the case of full symmetry (A), partial symmetry (B), and no sym-

metry (C). Each relation value is coloured according to the algorithm: two nodes (on

a given side) are coloured the same when their transposition is an automorphism of

the graph.

Assume that p is enumerated first. For p’s enumeration, the partial assignment is

empty, and has the full symmetry group over the universe as its automorphisms. For

each type, all elements are coloured the same, and 7 values of p are generated, as

shown in contour A of Figure 6.

The enumeration of q now depends on the context: that is, the value assigned to

p. When p has the value {(a, c), (a, d)}, which has the automorphism (cd), the ele-

ments of the types will again be coloured the same, except for those of S, which,

because (ab) is no longer a symmetry, must have different colours. S is not, however,

a type of q, and so the enumeration of q will produce 7 values (contour A). When p
has the value {(a, c), (b, c)}, on the other hand, the elements of T will now be differ-

ently coloured, and 11 values for q will be produced (contour B).

When p has the value {(a, c), (b, d)}, the colouring of the types S and T will distin-

guish their elements because neither the transposition (ab) nor (cd) is itself an auto-

morphism of p. Despite the automorphism (ab)(cd) that applies both simultaneously,

the enumeration of q can only exploit the colouring, and although only the 7 values

of contour A are needed, the 11 values of contour B will be generated.

Consider now a different formula:

p, q: “S, T”
p ˛ q = Ø

The intersection operator imposes a stronger type constraint, and there is thus less

symmetry to exploit. As before, p’s enumeration can be restricted to 7 values. The

enumeration of q, however, will be this minimal set only when p is fully symmetri-

cal, namely being either the empty or the full relation. When p has the value {(a, c),
(a, d)}, the symmetry of the right hand side will cause the elements of T to be uni-

formly coloured, and q will have 11 values. When p has the value {(a, c)}, with no

symmetry, all 16 values of q (contour C) are required.

Consider a formula with a third variable such as

p: “S, T”, q: “T, V”, r: “S, V”
(p ; q) ˛ r = Ø

and suppose the enumeration order is “p, q, r”. The enumeration of p and q will pro-

ceed exactly as for the formula

p ; q = Ø
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The enumeration of r will now depend on the values of both p and q, since the

colouring of S will come from the automorphisms of p and the colouring of V from

those of q. When the partial assignment is

p § {(a, c), (b, c)}, q § {(c, e)}

for example, the elements of S will have the same colour, but the elements of T will

have a different colour, and 11 values of r will be generated.

If the formula is instead

p, q, r: “S, T”
p ˛ q ˛ r = Ø

say, the colourings of each type S and V will be obtained from both p and q. For the

partial assignment

p § {(a, c), (b, c)}, q § {(a, c)}

the elements of S are coloured the same by p but differently by q, and must there-

fore, in the combination, be coloured differently. Both types will colour their ele-

ments differently, and 16 values of r will be generated.

Figure 7 shows the colourings of the types produced by various combinations of

values of p and q for this formula.

11 Term Symmetry

The generation of relations can actually exploit more permutations than the auto-

morphisms of the partial assignment. A permutation may not leave the values of all

the variables in the assignment fixed, but it may nevertheless leave the values of all

computed terms fixed. These term symmetries can be viewed as ‘semantic automor-

phisms’, since they depend on the meaning of the relational operators. 

Suppose, in the analysis of a formula f,  we have constructed a partial assignment

whose domain is the set of assigned variables. Now each term or subformula in f
mentions a set of variables. Call the terms and subformulae that mention only

assigned variables closed terms and closed subformulae. If a term or subformula is

closed, its value is defined; if not, it contains ‘holes’ and the assignment must be

extended to bind further variables before it has a value. Call the assigned variables

that appear only in closed subformulae formula-closed variables, and those that

appear only in closed terms, but are not formula-closed, term-closed variables.
Take a permutation that leaves fixed the values of all variables except for some

formula-closed variable. Since uniformly permuting all the variables in a subformula

cannot affect its value (by Theorem 1), this permutation maps models to models,

and only one of the interpretation and its permutation are needed. To account for

such permutations in the colouring scheme, we simply ignore the colouring of for-

mula-closed variables in computing the colouring of the universe. The result is a
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coarser colouring, and thus a reduced enumeration.

A similar argument can be made for term-closed variables. A permutation that

leaves the value of a term fixed can be regarded as an automorphism even if it alters

the values of the term’s variables. To account for these permutations, we ignore the

colouring of term-closed variables, but instead we colour the value of the term itself,

and incorporate its colouring in computing the colouring of the universe.

This refinement can never increase the number of assignments considered. It fol-

lows directly from the logicality of an operator ø that

Aut (p ø q)  ≥  Aut (p) ˛ Aut (q)

so that any automorphisms that can be exploited using the variable values alone can

also be exploited using the value of the term. This does not mean, of course, that

using the richer notion of automorphism will always decrease the time taken to find

a model, since, as we shall see, it complicates the algorithm (albeit by a constant fac-

tor).

Examples

Consider again the formula

p: “S, T”, q: “T, V”, r: “S, V”
(p ; q) ˛ r = Ø

with

† = {T§ {a, b}, S § {c, d}, V § {e, f }}

and assume the enumeration order “p, q, r”. For the partial assignment

p § {(a, c), (b, c)}, q § {(c, e), (c, f ), (d, e)}

the basic method would colour the elements of S the same but V differently because

(ef ) is not an automorphism of q. However, both p and q are term-closed when r is

enumerated, and the value of the term (p ; q) corresponding to this assignment is the

full relation. Accounting for this allows r’s enumeration to be reduced from 11 to 7

values.

12 Basic Algorithm

The user enters a formula with type declarations, and selects a scope bounding the

size of each of the declared types. The first phase of the analysis is ‘static’:

1. The formula is checked for syntax and type errors.

2. An appropriate variable ordering is selected; currently we use an ordering

heuristic designed for short-circuiting [DJ96].

3. The most general typing is computed by type inference.

Assume that we now have an array var of variables, so that var [1] is the first variable
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and var [n] is the last; an array left of left-side types and right of right-side types, so

that (left [i], right [i]) is the type of the ith variable; an array sig representing the

scope, indexed by types, so that sig [t] is the number of atoms in type t; and an array

tau indexed by types, so that tau [t] is the set of atoms for type t, having the cardi-

nality sig [t].
Since type inference associates new types with variables, the scope sig cannot be

exactly as defined by the user. It is constructed, however, to have the same effect: if

the declared types are left0 [i] and right0 [i] and the declared scope is sig0 [t], then

the scope satisfies

sig [left [i]] = sig0 [left0 [i]]
sig [right [i]] = sig0 [right0 [i]]

so that the size of the ith variable is constrained identically.

The second phase of the analysis is ‘dynamic’:

4. An array eq of equivalence relations is allocated; eq[t] will represent the colour-

ing of the type t. Initially, all equivalence classes are set to be as coarse as possible,

equating all elements.

5. The assignments are then searched by the recursive function enumerate (Figure

8), which displays every assignment A that is a model of the formula F. The assign-

ment is represented here simply as a list of pairs associating the variable and its

value. The initial call to enumerate takes an empty assignment list, the array of

coarsest equivalences and the index of the first variable.

The core of the algorithm is the call to the iterator gen. Given sets of atoms tl and

tr for the left and right sides of the relation to be generated, along with equivalence

relations el and er representing their colourings, the call

gen (tl, tr, el, er)

yields a sequence of triples

(x, elæ, eræ)

where x is a relation from the set tl to the set tr. Suppose x has the left colouring exl,
so that two atoms a and b in tl are related by the equivalence exl just when the trans-

position (ab) leaves x invariant, and a right colouring exr defined similarly. Then elæ
(eræ) is the coarsest equivalence that is no coarser than el and exl (er and exr). The

iterator thus yields a new equivalence for each type that accounts for the structure of

the new relation value. These then replace the old equivalence classes in the array

eq.

The iterator yields a set of relation values that may exclude isomorphs. For each

possible relation v from tl to tr, at least one relation væ is generated such

v = π væ

where π is a colour-preserving permutation, that is, a permutation of the nodes of
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the relation such that left nodes are never mapped to right nodes, and vice versa, and

each node is mapped to a node of the same colour (according to the equivalences el
and er).

A minimal gen iterator that never yields a superfluous value can be constructed

using the techniques described in [McK96]. Generating graphs up to isomorphism is

a surprisingly difficult problem; in our implementation, it occupies a significant part

of the code.

13 Refined Algorithm

Term symmetry (Section 11) complicates the algorithm. Since the colouring of a

variable’s value becomes irrelevant when the variable is closed, it is not possible to

maintain the colourings of the types alone. Instead, the colourings of the relation

values are retained so that the type colouring can be recomputed.

For each term in the formula, a fresh variable is added; when the term has a

value, it will be assigned to this term variable. The ordering of enumerated variables

now induces a mapping from each variable to the set of term variables that are

defined once the enumerated variable has been assigned a value.

A second mapping can be defined that associates with each enumerated variable a

set of relevant variables that are to be included in determining the colouring of its

types. This set includes, in general, both enumerated variables and term variables.

When a variable is formula-closed, it will no longer appear in the relevant set at all;

when a variable is term-closed, it will not appear, but the appropriate term variable

will appear instead.

Term symmetry can only be effective with a good variable ordering. The smaller

the set of relevant variables, the coarser the colouring equivalence. A simple but

effective ordering attempts to close as many terms as possible at a given stage.

Fortunately, the ordering selected for short-circuiting [DJ96] also appears to be rea-

sonable.

The refined enumerate function, enumerateR, is shown in Figure 9. Note that the

colourings of individual variables are passed around rather than the colourings of

types, leq [i] and req [i] giving the coluring of the left and right sides of the ith vari-

able respectively.

The array var of variables must now include the term variables (following the

enumerated variables, which are still indexed from 1 to n), and the type arrays left
and right must now include their types too. Additionally, three new arrays must be

constructed during static analysis: termvars, whose ith element is the set of term

variables defined once the i-1th variable has been enumerated; term, whose ith ele-

ment is the term corresponding to the term variable var [i]; and relvars, whose ith
element is the set of variables that are relevant for the colouring of the ith variable.

Four new functions are required: join, which given two equivalence classes

returns the coarsest equivalence no coarser than either; evalterm, which returns the
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value of a term under a given assignment of values to variables; and colour, which

returns the left and right colourings of a relation value.

The iterator genR is essentially the same as gen, but is not required to return

colourings.

14 Example

To see how the method is applied in practice, consider a specification of call connec-

tion in a telephone switch (Figure 10). Although this example is clearly a toy, a real-

istic specification of telephone switching can be constructed in a similar style

[MZ94]. A more interesting application of Nitpick is described in [JD96b].

The first line declares a type Phone representing an abstract set of telephones. The

system state is declared in the schema Switch; it consists of a single relation variable

conns whose interpretation is that  (p, q) @ conns when a call from p to q is active.

Members of the domain of the relation (such as p) are making calls; members of the

range (such as q) are receiving calls.

The call operation, given as a second schema Call, takes two arguments: from, the

telephone from which the connection is requested, and to, the target of the request.

The mention of Switch before the vertical bar includes two copies of the variables of

the Switch schema: unprimed, to represent the pre-state (before execution of the

operation), and primed, to represent the post-state (after execution). The formula,

following the bar, relates the pre- and post-states. In this case, the operation is not

total: a new call is constructed and added to the set of connections only if the called

party to is not already receiving a call.

Two invariants are then declared. First, although conns is not a function (because

of conference calls), we might reasonably expect it to be injective, so that there is

most one phone calling a given phone (and thus a single party to bill for each call).

Second, no party should both be making and receiving a call at once: each phone

plays a single role. These invariants are packaged as schemas and given the names

OneCaller and OneRole.

Finally, the last two schemas are claims (distinguished by the double colon) that

the two invariants are preserved by the operation. The schema names on the right-

hand side stand for their respective formulae. When primed, the name of an invari-

ant schema stands for the same formula but with its variables primed. The first claim

can thus be read “if a Call operation is executed and the invariant OneCaller holds

prior to execution, then it also holds after execution”. Note that when the precon-

dition of the operation does not hold, the hypothesis of the implication is false and

the claim is vacuously true. As expected, therefore, the claim says nothing about

invalid invocations.

Nitpick will generate instances of the first four schemas. If a scope of 2 is chosen,

it will generate the state of Figure 11a as an instance of OneRole, for example, and

the transition of Figure 11b as an instance of Call . The first claim is valid, so Nitpick
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will find no counterexamples in any scope.

The second claim is not valid, because the specification should have precluded

not only to being called but also to being a caller (and from being called); Nitpick

finds the counterexample illustrated in Figure 11c.

Figure 12 shows an elaborated version of the specification in which telephones

and their directory numbers are distinguished. In this case, Claim1 is also invalid,

because a single phone may have more than one number (that is, Net is not injec-

tive).

Table 2 shows the performance of the Nitpick checker on the claims of the sim-

pler specification of Figure 10. The reduction factor, shown in parentheses, increas-

es exponentially, in the best case to a factor of almost 5 orders of magnitude.

Although both claims contain the same variables, Claim1 shows a greater reduction

because it has a weaker typing. Nitpick infers that the left and right sides of Conns
are not necessarily the same type, and splits the type into two independent types cor-

responding to the callers and receivers of calls:

Conns, Connsæ: Callers ™ Receivers
from: Callers
to: Receivers

Since the formulae of this example are so simple, no further reduction due to term

symmetry is obtained.

Table 3 shows the performance for the elaborated example. For each scope, the

first line gives the reduction without term symmetry switched on, and the second

line includes it. A number of features are worth noting. Again, Claim1 is checked

faster than Claim2 because of its type structure. The reduction factors are larger

than for the simpler example, because there are more variables. Term symmetry, sur-

prisingly, has a larger effect on the smaller scopes. There are very few opportunities

for term symmetry in such a small example, and they all involve scalars, which con-

tribute significantly to the symmetry of a relation only when the relation is very

small.

In both tables, the figures give the size of the entire search. When the claim is not

valid, the checker may be halted at the first counterexample, which may – and often

does – come early in the search.

15 Future Work

Three areas of future work are easily identified. First is the question of variable

ordering. Its importance is clear for term symmetry, since a poor ordering can pre-

vent the closure of terms, but it matters in the simpler context too.

Second is the question of representing automorphisms. Our colouring scheme has

the merit of being straightforward and easy to implement, but it accounts only for

automorphisms that can be expressed as products of transpositions that are them-
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selves automorphisms. We have recently developed a scheme that allows a larger

class of automorphisms to be exploited without a big increase in cost.

Third is the question of the underlying generation algorithm. Our current imple-

mentation of the iterator (described in Section 11) is not minimal: it overgenerates

by about 10%, thus inflating the size of the search. In our previous version of

Nitpick, we used a minimal iterator provided by McKay (based on the ideas of

[McK81, McK94, McK96]). We hope eventually either to adapt this to the new set-

ting, or improve our own algorithm.

There are many other open questions. For example, in practice a different enu-

meration order might be preferable, such as one that lists pathological cases first, so

that empty relations are followed immediately by full ones. A random tester based

on our method could also be built, using a generator that selects graphs uniformly

across isomorphism classes.
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NITPICK

no, because …
(counterexamples)

maybe

specification
(in NP)

claims
(in NP)

scope

Figure 1: How Nitpick is used to check specifications

k #labelled #unlabelled

1 2 2         

2 16 7

3 512 36

4 65536 317

5 3.4e7 5624

6 6.9e10 251610

7 5.6e14 33642660

Table 1: The number of k&k binary relations
with isomorphs included (first column)

and excluded (second column)



38

syntax
s ::= d f | d s
d ::= v: “t, t”
f ::= (e = e) | ^f  | f ◊ f 
e ::= v | Ø | Id | Un  | e ; e | e ≈ e | e ˛ e | e \ e | e~ | e+

(s in Spec, d in Decl, f in Formula, e in Term, v in Var, t in Type)

typing rules
e1: “s, t”, e2: “t, u”  ∑ e1 ; e2: “s, u”
e1: “s, t”, e2: “s, t”  ∑ e1 ø e2: “s, t”           (ø is ≈, ˛, \ )
e: “s, t” ∑ e~: “t, s”
e: “t, t” ∑ e+: “t, t”
Id: “t, t”, Un: “s, t”, Ø: “s, t”

semantics of terms
#·#‚: Interpretation & Term  ¡ ı (U & U) 
I ·v‚ = A·v‚
I ·Ø‚ = {}
I ·Id: “s, s”‚ = {(x, x) | x @ †·s‚}
I ·Un: “s, t”‚ = †·s‚ & †·t‚

each operator o has a meaning O
I ·o(e1, ..., en)‚  = O (I ·e1‚, ..., I ·en‚)

meanings of operators
p ; q = {(x, y) | ´z. (x, z) @ p ◊ (z, y) @ q}
p ≈ q = {(x, y) | (x, y) @ p √ (x, y) @ q}
p ˛ q = {(x, y) | (x, y) @ p ◊ (x, y) @ q}
p \ q = {(x, y) | (x, y) @ p ◊ (x, y) $ q}
p~ = {(y, x) | (x, y) @ p}
p+ = é {q | p ≤ q ◊ q ; q ≤ q} = p ≈ (p ; p) ≈ ...

semantics of formulae
#·#‚: Interpretation & Formula ¡ Bool
I ·s = t‚ = (I ·s‚ = I ·t‚)
I ·f ◊ g‚ = I ·f ‚ ◊ I ·g‚
I ·^«f ‚ = ^ I ·f ‚

Figure 2: Syntax, typing and semantics of a simple relational language
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Figure 3: Interpretations, models and orbits



40

g

...

...

...

...

...

...

a

b

f

choose r1

choose r2

choose rn
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Figure 4 (left): Part of a full enumeration tree
Figure 5 (right): Isomorph elimination at an internal node

... ...

I

πv1 v2

A B C

Figure 6: The 2& 2 relations
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p

q

S T

Figure 7: An example of how type colourings are obtained from relation colourings

fun enumerate (A, eq, i)
if i > n

if eval(F, A) then display (A)
return

s := left[i]
t := right[i]
forall (x, eql, eqr) in gen (tau[s], tau[t], eq[s], eq[t])

Aæ := (var [i], x) :: A
eq [s] := eql
eq [t] := eqr
enumerate (A, eq, i + 1)

Figure 8: Basic Algorithm
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fun enumerateR (A, leq, req, i)
if i > n

if eval(F, A) then display (A)
return

forall j in termvars [i]
v := evalterm (term [j], A)
leq [j], req [j] := colour (v)

eql := coarsest
eqr := coarsest
forall j in relvars [i]

if left [i] = left [j]
eql := join (eql, leq [j])

if right [i] = right [j]
eqr := join (eqr, req [j])

forall x in genR (tau [left[i]], tau [right [i]], leq, req)
leq [i], req [i] := colour (x)
A := (var [i], x) :: A
enumerateR (A, leq, req, i + 1)

Figure 9: Refined Algorithm

[Phone]

Switch = [conns: Phone ™ Phone]

Call (from, to: Phone) =
[Switch | to $ ran conns  ◊  connsæ =  conns ≈ {(from, to)}]

OneCaller = [Switch | inj conns]

OneRole = [Switch | dom conns ˛ ran conns = Ø]

Claim1 (from, to: Phone) :: Call (from, to) ◊ OneCaller ⁄ OneCalleræ

Claim2 (from, to: Phone) :: Call (from, to) ◊ OneRole ⁄ OneRoleæ

Figure 10: Example specification
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p1 p2

p1 p2

p1 p2

Figure 11a: An instance of the schema OneRole.
The graph represents the relation Conns.

Figure 11b: An instance of the schema Call: p1 is connected to itself, and calls p2.
The dotted arc is the new connection; the relation Conns is represented by the solid arc, and

Conns’ by both arcs. The variables from and to have the values p1 and p2 respectively.

Figure 11c: A counterexample of Claim2: p1 calls itself.
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[Phone, Number]

Switch = [
Called: Phone ™ Number
Net: Number ¡ Phone
Conns: Phone ™ Phone
|
Conns =  Called ; Net]

Call (from: Phone; to: Number) = [
Switch
|
to $ ran Called
Calledæ = Called ≈ {(from, to)}
Netæ = Net]

OneCaller = [Switch | inj conns]

OneRole = [Switch | dom conns ˛ ran conns = Ø]

Claim1 (from, to: Phone) :: Call (from, to) ◊ OneCaller ⁄ OneCalleræ

Claim2 (from, to: Phone) :: Call (from, to) ◊ OneRole ⁄ OneRoleæ

Figure 12: An elaborated version of the example of Figure 10
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scope # cases Claim1 Claim2

2 64 16 (4.0) 32 (2.0)

3 4608 168 (27) 692 (7)

4 1048576 2816 (372) 22944 (46)

5 8.39 E8 91986 (9.1e4) 1.43e6 (590)

Table 2: Performance for the example of Figure 10.The reductions are due entirely to
isomorph elimination. A scope of k means that the enumeration was restricted to cases involving k phones
or fewer (Í·Phone‚ = k).The second column gives the number of cases in the unreduced space.The others
give, for the two claims checked, the number of cases, and the reduction factor (in parentheses), for an enu-

meration of the same space using isomorph elimination.Term symmetry has no effect for this example.

scope # cases Claim1 Claim2

2 576 80 (7.2) 144 (4)

72 (8) 118 (4.9)

3 294,912 2,320 (127) 8,832 (33.4)

2,248 (131) 8,014 (36.8)

4 6.55e8 130,864 (5e3) 1.29e6 (508)

130,528 (5e3) 1.23e6 (533)

5 6.52e12 1.69e7 (3.9e5) 5.16e8 (1.3e4)

1.68e7 (3.9e5) 5.01e8(1.3e4)

Table 3: Reductions for the elaborated example of Figure 12. A scope of k means that the enumeration was
restricted to cases involving at most k phones and k numbers (Í·Phone‚ = Í·Number‚ = k).The first line for

each scope gives the results with term symmetry switched off, the second line with term symmetry on.
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