
concerns about aspects
Daniel Jackson
Computer Science & Artificial Intelligence Laboratory
MIT

Brown-Northeastern Aspects Day
Boston / March 8, 2005

what is AOP?

on further study of AOP
materials, I learned that AOP is ...

some kind of religious activity

something that involves serious pain

conclusions
what problem does (or should) AOP address?
› more powerful text editing? › overcoming limitations of OOP?› factoring out non-functional goals?› separating functional concerns
what’s the key challenge?
› in requirements: identifying the concerns› in design: maintaining separation -- modularity
what progress so far?
› views & problem frames

separation of concerns
Let me try to explain to you, what to my taste is
characteristic for all intelligent thinking. It is, that one is
willing to study in depth an aspect of one’s subject matter
in isolation for the sake of its own consistency, all the time
knowing that one is occupying oneself only with one of the
aspects... It is what I sometimes have called ‘the separation
of concerns’ which, even if not perfectly, is yet the only
available technique for effective ordering of one's thoughts
that I know of.
Dijkstra. On the role of scientific thought.
EWD 447, 30th August 1974

looking for concerns to separate ...
an argument
› code can be divided up in many ways› Java only supports one way› so let’s support the others too
like the old definition of AI
› is a concern anything you can’t separate now?› are runtime assertions really a concern?
start from the concerns instead
› some are already separated (syntax/semantics)› some are too tricky to separate (performance)
so what’s left?

where do concerns come from?
from the software development problem itself!
› viewpoints of stakeholders?› decomposition for simplest description?› division into recognizable subproblems?

viewpoints
observation
› stakeholders have different perspectives› often mutually inconsistent
so
› encourage, don’t suppress, separate descriptions› use tools to reconcile› or tolerate inconsistency
examples
› viewpoints [Finkelstein et al, 1992]› manage inconsistency [Easterbrook & Nuseibeh, 1995]› reasoning with inconsistency [Chechik, 2001]› reasoning with viewpoints in Z [Ainsworth, 1994]

views in declarative specification
basic idea
› exploit conjunction in declarative specs› select the state representation that suits the operation› group operations by representation into views

Structuring Z Specifications with Views
Daniel Jackson, TOSEM 1995

example: an editor

Text
It is what I
sometimes have
called ‘the
separation of
concerns’

text insertion
before insertion:

after insertion:

t i s w h a t I s o m

t i s h a t I s o em

cursor up
before and after:

I t i s w h a t I

s o e t i m e s am h v e

c a l e d t h el '

s e a r a t i o n op f

I t i s w h a t I

s o e t i m e s am h v e

c a l e d t h el '

s e a r a t i o n op f

view 1: sequence of characters

view 2: sequence of lines

combining the views

where did this go?
technical problems
› easy to get it wrong› accidental overconstraint› Alloy with unsat core might help
wrong level of granularity?
› neat, but not many problems like this?› most view compositions much simpler
big gap to implementation
› Robert Nord [CMU, 1992]› not much since?

example: package router

problem frame analysis
Michael Jackson. Problem Frames. Addison-Wesley, 2001.

specification with views
Daniel Jackson and Michael Jackson.
Problem Decomposition for Reuse. SE Journal, 1996

package router equipment

context diagram

package router subproblems
3 basic subproblems
› conveyor control› routing packages› reporting misrouted packages

conveyor control
requirement
› stop and start conveyor as commanded
kind of problem
› ‘commanded behaviour’

routing packages
requirement
› each package arrives at the right bin
kind of problem
› ‘simple control’› ‘simple information system’ as subproblem

reporting misroutings
requirement
› report misroutings
kind of problem
› ‘simple information system’

maintaining SOC in implementation
challenges
› modularity, modularity, modularity
because we want to
› build concerns separately› check them separately› modify them separately

modularity of concerns
independence
› a concern shouldn’t depend on existence of others
robustness
› refactoring one concern shouldn’t affect another
symmetry
› no arbitrary precedence of one concern over another
encapsulation
› within concern, make properties safe from interference

use of names
best to avoid names of methods & classes?
› makes concerns fragile› dependent on naming and packaging structure
use abstract linkage points instead?
› declared within a concern› access control mechanisms
or even better, no names?
› Jonathan Edwards. Subtext: programming without text.› http://www.subtextual.org

CSP: another model for AOP?

features
› each process has its own, independent meaning› has an alphabet that limits interference› interference can be bounded: reduces non-det
reasoning
 P satisfies S, P’ satisfies S’
 P || P’ satisfies S /\ S’

Text

M = coin -> coin ->
 (selectChoc -> choc -> M)
 | (selectNuts -> nuts -> M)

U = coin -> coin -> selectChoc -> U

concluding thoughts
research challenges
› identifying concerns› modular implementation
what’s AOP like?
› data abstraction? functional programming?› object orientation?› inheritance?› C++ templates?› model driven architecture tools?

