CONCERNS ABOUT ASPECTS

Daniel Jackson
Computer Science & Artificial Intelligence Laboratory

MIT

Brown-Northeastern Aspects Day
Boston / March 8, 2005

what is AOP?

Afghan Online Press

http:/lwww.aopnews.com

Last update: 3/7/2003 (6:32 AM PST)

Advanced Observing Program

at Kitt Peak Visitor Center

Imvbroguctiom

Introduction
| kit Peak W

Australian Optometric Panel

a nationwide panel of visidn-care professionals

¥hat does the Australian Optometric Panel do?

ACP employs a variety of strategies to fulfil its' mission. Principal among these
are:

1. Sharing of knowledge, experience and industry intelligence.

2. Problem-solving through issues analysis and creativity.

3. Use of bench-marking within the group.

4, Communication with equivalent groups overseas to know and match
international best practice.

5. Use of expert guest speakers in relevant fields of finance, taxation, QA
and TQM, marketing, business and human resources management,
and individual personal development.

6. Training sessions for staff, using AQF members and specialist
consultants.

MR T
3! FAE R
-
.

.|.nhan.

-

=R
h

LA
e,

B

“

Action

F(Older

Persons

Action for Older Persons (AOP) is an innovative and visionary organization that enhances the lives of adults and empowers them to prepare for the future. The
mission of AOP is to assist adults in enhancing their lives by promoting financial security, physical and emotional well-being, and self-sufficiency throughout
their lives. This is achieved through programs and services, education, advocacy, identifying and addressing needs, and community collaboration. AOP is a
private, nonprofit, United Way member agency which was founded in 1967.

on further study of AOP
materials, | learned that AOP is ...

some kind of religious activity

something that involves serious pain

Envie un correo al Presidente de la AOP
Los Beneficios de ser miembro de la ADP: <Agqui>

Santa Apolonia - Dia del Odontdlogo

Ty
‘.j_rl-‘-r"l ..j;-

conclusions

what problem does (or should) AOP address?

> more powerful text editing?

> overcoming limitations of OOP?

> factoring out non-functional goals?
> separating functional concerns

what’s the key challenge?

> in requirements: identifying the concerns
> in design: maintaining separation -- modularity

what progress so far?
> views & problem frames

separation of concerns

Let me try to explain to you, what to my taste is
characteristic for all intelligent thinking. It is, that one is
willing to study in depth an aspect of one’s subject matter
in isolation for the sake of its own consistency, all the time
knowing that one is occupying oneself only with one of the
aspects... It is what I sometimes have called ‘the separation
of concerns’ which, even if not perfectly, is yet the only
available technique for effective ordering of one's thoughts
that I know of.

Dijkstra. On the role of scientific thought.
EWD 447, 30th August 1974

looking for concerns to separate....

an argument

> code can be divided up in many ways
> Java only supports one way
> so let’s support the others too

like the old definition of Al

> is a concern anything you can’t separate now?
> are runtime assertions really a concern?

start from the concerns instead

> some are already separated (syntax/semantics)
> some are too tricky to separate (performance)

so what’s left?

where do concerns come from?

from the software development problem itself!
> viewpoints of stakeholders?

> decomposition for simplest description?

> division into recognizable subproblems?

viewpoints

observation

> stakeholders have different perspectives
> often mutually inconsistent

SO

> encourage, don't suppress, separate descriptions
> use tools to reconcile

> or tolerate inconsistency

examples

> viewpoints [Finkelstein et al, 1992]

> manage inconsistency [Easterbrook & Nuseibeh, 1995]
> reasoning with inconsistency [Chechik, 2001]

> reasoning with viewpoints in Z [Ainsworth, 1994

views in declarative specification

basic idea

> exploit conjunction in declarative specs

> select the state representation that suits the operation
> group operations by representation into views

Structuring Z Specifications with Views
Daniel Jackson, TOSEM 1995

example: an editor

It 1s what I
sometimes have
called ‘the

separation of
concerns’

text insertion

before insertion:

_t]| Jils| [hlalt] I [slojmle|

after insertion:

_t] ils] wihlalt] I |slom|

cursor up

before and after:

11t [ils| Jwlhlalt] |I|
sjojmleltlimels] [hlalvie
clajlllleld] |'|tihle

slelplajrialtlilon] Jolf

It Jils| Jwlhlalt] [I|
slomleltlimels] [hlalvie
clallllleld] |' tihle
slelplajrialtlilon] Jolf

view 1: sequence of characters

File
left, right: seq Char

File.csrRight
A File

right #() A right’ = tail(right)

left’ = left ~(head(right))

File.inservtChar__
A File
c?: Char

left’ = left~{c?) A right’ = right

view 2: sequence of lines

Grid

lines: seq seq Char

x,v: N

lines € wrapped A vy € dom lines A x € dom lines[y]

Grid.csrUp
A Grid

y>1 A y =y=1 A x’' =min(x, #lines[y’])
lines’ = lines

combining the views

Flatten
File. Grid

left~right = ~lines A #left =x + Xi:1..y—1 « #lines|[i]

Editor
Flatten
Vlis: seq seq Char « Flatten(ls/lines] = — (Is > lines)

insertChar = [AEditor | File.insertChar]
csrRight = [AEditor | File.csrRight]
cstUp = [AEditor | Grid.csrUp]

delEol = [AEditor | Grid.delEol]

where did this go?

technical problems

> easy to get it wrong
> accidental overconstraint
> Alloy with unsat core might help

wrong level of granularity?
> neat, but not many problems like this?
> most view compositions much simpler

big gap to implementation

> Robert Nord [CMU, 1992]
> not much since?

example: package router

problem frame analysis
Michael Jackson. Problem Frames. Addison-Wesley, 2001.

specification with views

Daniel Jackson and Michael Jackson.
Problem Decomposition for Reuse. SE Journal, 1996

package router equipment

conveyor
motor

/F
_-\.\I\.I .l.l'-"\.l
A b

control
computer

conveyor
on/off

context diagram

F}E-lt::kage [HSDIH‘;"
Conveyor ' Lnit
Y Router
- Controller
Router & 5 Router

Operator

: RC! {ONnC, OffC}
. RC! {ShowPkgld, ShowBin, ShowDestn}
: RC! {LSw(i), RSw(i)}

RP! {SendLabel(p,l), LId(l,i), LDest(l,d), SwPos(i), SensOn(i)}
. RO! {OnBut, OffBut}

package router subproblems

3 basic subproblems

> conveyor control

> routing packages

> reporting misrouted packages

conveyor control

requirement
> stop and start conveyor as commanded

kind of problem
> ‘commanded behaviour’

Package

=

_ Conveyor) L ~ o
Router =} Starting & M
Control-1 \ Stopping ;'

T

Router - -
Operator

— -

L

: RC! {OnC, OffC}
: RO! {OnBut, OffBut}
e: {Running, Stopped}

routing packages

requirement
> each package arrives at the right bin

kind of problem

> ‘simple control’
> ‘simple information system’ as subproblem

 —

Correct
Routing

S
LY

c: RC! {LSw(i), RSw(i)}
RP! {SendLabel(p,l), LId(l,i), LDest(l,d), SwPos(i), SensOn(i) }
f: {PkaArr(p,b), Assoc(d,b), PDest(p,d)}

reporting misroutings

requirement
> report misroutings

kind of problem
> ‘simple information system’

S .

Router &

Packages - -

Router : Report %,

Control-3 , _ s Misroutings «
Display -=" Se _=7
' Unit - B

c: RP! {SendLabel(p,!), LId(l,i), LDest(l,d), SensOn(i)}
f: {PkgArr(p,b), Assoc(d,b), PDest(p,d)}
b: RC! {ShowPkgld, ShowBin, ShowDestn}

maintaining SOC in implementation

challenges
> modularity, modularity, modularity

because we want to

> build concerns separately
> check them separately

> modify them separately

modularity of concerns

independence
> a concern shouldn’t depend on existence of others

robustness
> refactoring one concern shouldn’t affect another

symmetry
> no arbitrary precedence of one concern over another

encapsulation
> within concern, make properties safe from interference

use of names

best to avoid names of methods & classes?
> makes concerns fragile
> dependent on naming and packaging structure

use abstract linkage points instead?
> declared within a concern
> access control mechanisms

or even better, no names?

> Jonathan Edwards. Subtext: programming without text.
> http://www.subtextual.org

CSP: another model for AOP?

M = coin -> coin ->
(selectChoc -> choc -> M)
| (selectNuts -> nuts -> M)

U = coin -> coin -> selectChoc -> U

features

> each process has its own, inaependent meaning
> has an alphabet that limits interterence
> interference can be bounded: reduces non-det

reasoning

P satisfies S, P’ satisfies S’
P || P’ satisfies S /\ §’

concluding thoughts

research challenges
> identifying concerns
> modular implementation

what’s AOP like?

> data abstraction? functional programming?
> object orientation?

> inheritance?

> C++ templates?

> model driven architecture tools?

