
the limits
of verification

Daniel Jackson (CSAIL, MIT)
Mandana Vaziri (IBM)
FSE · November 17, 2016

this file includes only Daniel’s slides

dependability isn’t everything

what is verification?

analysis

property

system

report

does this work in practice?
is the very idea flawed?

1: getting the system wrong

analysis

property

system

report

the system must include the user

infusion pump ignores decimal point if number entered > 99
from study by Thimbleby et al: http://cs.swan.ac.uk/~csharold/health/

http://cs.swan.ac.uk/~csharold/health/
http://cs.swan.ac.uk/~csharold/health/

Infusion pumps, including the Baxter Colleague
models, have been the source of persistent

safety problems. In the past five years, the FDA
has received more than 56,000 reports of
adverse events associated with the use of

infusion pumps. Those events have included
serious injuries and more than 500 deaths.

“
FDA Recall notice (2010)

http://www.fda.gov/NewsEvents/Newsroom/
PressAnnouncements/ucm210664.htmd

”

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm210664.htmd
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm210664.htmd
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm210664.htmd
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm210664.htmd

more UIs that killed people
dose = 2Ddose = D

Panama City Hospital, 2001
Multidata therapy planning system

kills 18 patients

PLUGR, Afghanistan 2001

the system must include the plant

Airbus A320
reverse thrust protection

disable when aircraft is airborne

Warsaw 1993
strong cross winds, water on runway
aircraft aquaplaned & brakes failed

reverse thrust disabled

more disasters from ignoring plant

Ariane 5 (1996)

didn’t account for
change in lateral

acceleration

Mars Polar Lander (1999)

didn’t account for
leg compressions
prior to landing

lesson: the software is not the system

Controller

Thrust disabled
when airborne

Aircraft

Wheel
Sensors

Airborne ⇔
¬WheelRotates

WheelRotates
⇔ Pulse Pulse ⇔

Disable

Thruster

see:
Gunter et al, A Reference Model for Requirements and Specifications

Michael Jackson, Problem Frames, Addison Wesley, 2001

infrastructure or application?

83%

42%

not just infrastructure: more warnings

cryptographic software failures
83% of crypto vulnerabilities from how primitives used

only 17% from the crypto libraries themselves
Why does cryptographic software fail?
(Lazar, Chen Wang & Zeldovich, 2014)

web application vulnerabilities
96% of apps contain security bugs
nearly half are application-specific

Cenzic Vulnerability Trends Report (2013)

analysis

property

system

report

2: getting the analysis wrong

risks of informal reasoning

Pamela Zave. Invariant-Based Verification of Routing Protocols:
The Case of Chord, 2009

Ion Stoica et al. Chord: A Scalable Peer to Peer Lookup Service
for Internet Applications, SIGCOMM 2001 (also TON, 2003)

risks of axiomatization

from Jon Bentley, Programming Pearls (1983)

fails for large
L and U

https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

“Nearly all Binary Searches and Mergesorts are Broken”
Josh Bloch (2006)

https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

risks of abstraction

request_transfer

Eunsuk Kang, Aleksandar Milicevic, Daniel Jackson
Multi-Representational Security Analysis, FSE 2016

refinement isn’t sound if interference is possible

POST http://bank.com/accounts/123/transfers

refineCSRF

http://bank.com/accounts/123/
http://bank.com/accounts/123/

analysis

property

system

report

3: getting the property wrong

when requirements are designs

requirements

needs

specifications

code

ransomware
encrypts entire

backup

temporary file
with secret data

gets exposed

needs
“safe & secure backup”

requirements
“only owner can access backup”
“file backed up within 10 mins”

churn on large
video causes loss

of old versions

root of the problem:
requirements are
design properties

not the wrong
property: the wrong

kind of property

christopher alexander knew this
Such a list of requirements is

potentially endless... But if we think of
the requirements from a negative

point of view, as potential misfits, there
is a simple way of picking a finite set.

This is because it is through misfit that
the problem originally brings itself to

our attention. We take just those
relations between form and context
which obtrude most strongly, which

demand attention most clearly, which
seem most likely to go wrong. We

cannot do better than this.

purposes

needs

concepts

code

concept
purposes

Online Backup Versioning

prevent loss
of work allow rollback

protect against
data loss from crashes,

accidents & malice

concepts with
known misfits

is verification even necessary?

my hypothesis: clean concepts + unit testing + natural selection

conclusion #1

comfortable research
formal & empirical

produces algorithms & tools
focused on programmers
and the code they write

uncomfortable research
informal & philosophical

produces design theory & method
focused on stakeholders

and the whole system

stop looking under the lamppost!

industry prefers
this too

CACM
April 2009

UW radiotherapy project

conclusion #2

a (resurgent?) narrow view
soundness > completeness
false positives don’t matter
proof: you have no bugs!

a more open view
soundness of counterexamples too

confidence is not binary
proof: sorry, I can’t find more bugs!

loosen up, don’t be dogmatic

conclusion #3

UI design
soft & human

about presentation

programming
hard & technical
about content

rethink software design

a better view of software design

conceptual design:
essential concepts

& behavior

representation design:
organization & performance

Layer

Adjustment

Mask

PixelMap

Brush

some research avenues
lightweight verification of code

trading confidence for automation

new programming paradigms
correctness by construction

robust system-level analysis
beyond hazard analysis, FMEA, etc

design thinking for software
going beyond process & sensibility

architecture for dependability
shrinking the trusted base

inferring confidence from tests
based on the software alone

