hazards of verification

Daniel Jackson, MIT

Haifa Verification Conference · October 28, 2008
warnings

the contents of this talk are

- anecdotal, not analytical
- broad, not focused
- old, not novel

It is insufficiently considered that men more often require to be reminded than informed.

--Samuel Johnson
how we got here

growth in SAT power (number of variables, data from Sharad Malik)
• one example of why early pessimism about verification was misplaced
hazards

but will verification made software safe and dependable?

• on the road ahead: much progress, but hazards too

hazards due to

• technical factors
• engineering factors
• social/managerial factors
technical factors
unsound confirmation

examples

• finite scope & unrolling [KOA, Dennis VSTTE08]
• lack of coverage [CP bug after 8 years, Holzmann]
• abstraction [binary search, Bloch]
how big a bound?

minimum scope/bitwidth/unrolling to find bugs in voting code

<table>
<thead>
<tr>
<th>class</th>
<th>method</th>
<th>error</th>
<th>min bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CandidateListMetadata</td>
<td>init</td>
<td>under</td>
<td>1 / 3 / 1</td>
</tr>
<tr>
<td>KiesKring</td>
<td>addDistrict</td>
<td>bug</td>
<td>1 / 3 / 1</td>
</tr>
<tr>
<td>VoteSet</td>
<td>addVote(String)</td>
<td>over</td>
<td>1 / 3 / 1</td>
</tr>
<tr>
<td>KiesLijst</td>
<td>clear</td>
<td>over</td>
<td>1 / 3 / 3</td>
</tr>
<tr>
<td>AuditLog</td>
<td>getCurrentTimeStamp</td>
<td>over</td>
<td>2 / 1 / 1</td>
</tr>
<tr>
<td>Candidate</td>
<td>init</td>
<td>under</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>CandidateList</td>
<td>addDistrict</td>
<td>under</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>CandidateList</td>
<td>addKiesLijst</td>
<td>over</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>CandidateList</td>
<td>init</td>
<td>over</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>KiesKring</td>
<td>addKiesLijst</td>
<td>bug</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>KiesKring</td>
<td>init</td>
<td>under</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>KiesKring</td>
<td>make</td>
<td>under</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>KiesLijst</td>
<td>addCandidate</td>
<td>over</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>KiesLijst</td>
<td>compareTo</td>
<td>bug</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>KiesLijst</td>
<td>make</td>
<td>over</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>VoteSet</td>
<td>addVote(int)</td>
<td>over</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>VoteSet</td>
<td>validateKiesKringNumber</td>
<td>over</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>VoteSet</td>
<td>validateRedundantInfo</td>
<td>over</td>
<td>2 / 3 / 1</td>
</tr>
<tr>
<td>KiesKring</td>
<td>clear</td>
<td>over</td>
<td>2 / 3 / 3</td>
</tr>
</tbody>
</table>
unsound counterexamples

examples

• unsound checker finds more bugs [Xie and Aiken 2005]
• most effort on error reporting [Pincus et al, Prefix]
overconstraint

examples

• declarative models of software (Alloy, Z, VDM, B, etc)
• axioms for code verifiers
• ‘unreachable states’ in model checking
approaches

vacuity and coverage in model checking
 • Beer, Ben-David, Eisner, Rodeh
 • Chockler, Kupferman, Vardi
 • Chechik, Devereux, Gurfinkel

coverage in Alloy
 • new algorithm [Torlak, FME08]
engineering factors
end-to-end

are bugs in code the problem?
• Mackenzie: 3% of software fatalities due to code
• most problems in human/computer interaction

is run-time-error elimination enough?
• ‘Sorry no more bugs’ -- Greg Nelson, 1980

sad examples
• PLUGR, Afghanistan 2001
• Airbus A320, Warsaw 1993

airborne ⇔ not WheelPulse ⇔ disabled
an approach

dependability case for proton therapy

• Robert Seater, 2008
Korean Air 747, Guam 1997: 200 killed

If the ARTS IIA minimum safe altitude warning system had been operating as initially intended, a visual and aural warning would have activated about 64 seconds before flight 801 impacted terrain --NTSB report
ignoring design

early blender patent

- opening too small for child’s hand
- removal of closure disconnects blade

examples

- Therac 25: removed hardware interlock
- voting software: immutable types
- emergency stop: uses message queue

time to think again about

- safety kernels and modularity
platform risk

IDE risk

• refactoring may not preserve meaning
• >7 such bugs open in Eclipse

language risk

• in Java, eg: memory model, generics

operating system viruses

• time to infection for new PC: 4 mins

configuration problems

• DLLs, classpaths, etc
social/managerial factors
process

does process really matter?

© Scott Adams, Inc./Dist. by UFS, Inc.
bad process

Alameda County, CA, 2003

• 25% of voting machines crashed on boot
• so Diebold installed uncertified patches

Accuvote-TSx
bad process

London Ambulance, 1992

- contract awarded to lowest bidder
- report from Arthur Andersen ignored
- no independent QA, software changes on-the-fly
- no incremental deployment, no paper backup
- untested change in operations
neglecting process

NOAA weather satellite at Lockheed Martin, September 2003
overconfidence

Titanic, 1912

• advanced technology, ‘unsinkable’
• so enough lifeboats not needed
growing dangers

Texas A&M bonfire
 › traditional began in 1928
 › by 1990's, crane needed

what happened in 1999
the risks of dependence

MAR knockout

- major Chicago hospital
- pharmacy database failure
- medication records lost

“Accidents are signals sent from deep within the system about the vulnerability and potential for disaster that lie within”
--Richard Cook and Michael O’Connor
Managers are now aware of the problem of entering zero into database fields and are trained to bypass a bad data field and change the value... ships do go dead in the water... People sometimes make mistakes and systems break. The trick is we have trained our crew...

-- Commanding Officer, USS Yorktown
panama radiation accident

Panama City Hospital, 2001
- Theratronic-780 with therapy planning system by Multidata
- 18 patients killed
panama consequences

3 Panama physicists tried for second-degree murder

- Olivia Saldaña González paid for her own defence; earns $585/month
- sentenced to four years in prison
- suit by families against Multidata rejected by Panama court

Given [the input] that was given, our system calculated the correct amount, the correct dose. It was an unexpected result. And, if [the staff in Panama] had checked, they would have found an unexpected result.

-- Mick Conley, Multidata
conclusions
implications for research

if you reward publication, you get

• focus on logic & algorithms
• benchmarks, not real problems
• throwaway implementations

some good strategies

• fund tool development [NSF infrastructure]
• issue challenges [VSR’s Mondex, Flash]
• publish case studies [Z, Patterns]

will interdisciplinary work help?
implications for teaching

what we typically do

‣ focus on ‘respectable’ topics (eg, semantics)
‣ illustrate with small problems
‣ say hard parts are out-of-scope
‣ set formal problems that are easy to grade

instead, we might

‣ explain ‘soft’ aspects too
‣ illustrate with substantial case studies
‣ address the hard parts
‣ set informal, open-ended problems
thank you!