
The Alloyed Joys of
Software Engineering

Research

(c) 2017 Daniel Jackson

Daniel Jackson

Keynote · ICSE 2017 · Buenos Aires

?
Alloy

alloy’s cultural origins

alloy’s cultural origins

Oxford, home of Z

alloy’s cultural origins

Pittsburgh, home of SMVOxford, home of Z

lightweight formal methods

IEEE Computer, 1996

traditional FM
full model of behavior
analysis to show no bugs

lightweight FM
model of critical aspect
analysis to find bugs

alloy timeline

version language analysis sample case study

Nitpick (1995)
relational calculus 

subset of Z
relation

enumeration IPv6 routing

Alloy 1 (1999)
+ navigation exps 

quantifiers
WalkSAT, 

Davis Putnam intentional naming

Alloy 2 (2001)
+ non-binary relations  

signatures
Chaff, Berkmin 

symmetry, sharing Unison filesync

Alloy 3 (2004)
+ subtyping 
overloading

atomization 
(bad) Mondex smartcard

Alloy 4 (2007)
+ meta, sequences 

arithmetic
bounds 

better sharing flash filesystem

the alloy constraint analyzer

the alloy constraint analyzer

5
ideas

all small tests

traditional testing

all small tests

traditional testing bounded analysis

all small tests

5 users, calls, devices 
225 user-call, user-device relations 

so 250 = 1015 states

traditional testing bounded analysis

a signature style

sig Call {members: set User}

a signature style

sig Call {members: set User}

Call = ℙ (id: CallId × members: ℙ User) 
User = ℙ (id: UserId × talking: ℙ User)

traditional interpretation

a signature style

sig Call {members: set User}

all c, c’: Call {no c.members & c’.members}

Call = ℙ (id: CallId × members: ℙ User) 
User = ℙ (id: UserId × talking: ℙ User)

traditional interpretation

a signature style

sig Call {members: set User}

all c, c’: Call {no c.members & c’.members}

∀ c, c’ ∈ ℙ (id: CallId × members: ℙ User) | …

Call = ℙ (id: CallId × members: ℙ User) 
User = ℙ (id: UserId × talking: ℙ User)

traditional interpretation

a signature style

sig Call {members: set User}

all c, c’: Call {no c.members & c’.members}

∀ c, c’ ∈ ℙ (id: CallId × members: ℙ User) | …

higher order 
quantification: 

ouch!

Call = ℙ (id: CallId × members: ℙ User) 
User = ℙ (id: UserId × talking: ℙ User)

traditional interpretation

a signature style

sig Call {members: set User}

all c, c’: Call {no c.members & c’.members}

∀ c, c’ ∈ ℙ (id: CallId × members: ℙ User) | …

higher order 
quantification: 

ouch!

Call = ℙ (id: CallId × members: ℙ User) 
User = ℙ (id: UserId × talking: ℙ User)

traditional interpretation

Call, User: ℙUniv 
members: Call ⟷ User

Alloy interpretation

a signature style

sig Call {members: set User}

all c, c’: Call {no c.members & c’.members}

∀ c, c’ ∈ ℙ (id: CallId × members: ℙ User) | … ∃ members: Call ⟷ User |  
 ∀ c, c’ ∈ Call | …

higher order 
quantification: 

ouch!

Call = ℙ (id: CallId × members: ℙ User) 
User = ℙ (id: UserId × talking: ℙ User)

traditional interpretation

Call, User: ℙUniv 
members: Call ⟷ User

Alloy interpretation

a signature style

sig Call {members: set User}

all c, c’: Call {no c.members & c’.members}

∀ c, c’ ∈ ℙ (id: CallId × members: ℙ User) | … ∃ members: Call ⟷ User |  
 ∀ c, c’ ∈ Call | …

higher order 
quantification: 

ouch!

Call = ℙ (id: CallId × members: ℙ User) 
User = ℙ (id: UserId × talking: ℙ User)

traditional interpretation

Call, User: ℙUniv 
members: Call ⟷ User

Alloy interpretation

first order  
quantification: 
solve with SAT

everything’s a relation

sig Call {members: set User}

sig User {talking: set User}

everything’s a relation

sig Call {members: set User}

sig User {talking: set User}

c.members
members.u
u.talking
c.members.talking
u.talking = u’

some expressions:

everything’s a relation

sig Call {members: set User}

sig User {talking: set User}

c.members
members.u
u.talking
c.members.talking
u.talking = u’

some expressions:
navigation: dot is

just join, not
overloaded

everything’s a relation

sig Call {members: set User}

sig User {talking: set User}

c.members
members.u
u.talking
c.members.talking
u.talking = u’

some expressions:
navigation: dot is

just join, not
overloaded

no syntax
difference: fun vs

relation

everything’s a relation

sig Call {members: set User}

sig User {talking: set User}

no undefined
value, follows

Parnas

c.members
members.u
u.talking
c.members.talking
u.talking = u’

some expressions:
navigation: dot is

just join, not
overloaded

no syntax
difference: fun vs

relation

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

{(U0), (U1)}{U0,U1), (U1, U0)}{(U0)}

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

1
0
0

U0

U1

U2

talkingu u.talking

{(U0), (U1)}{U0,U1), (U1, U0)}{(U0)}

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

0 1 0
1 0 0
0 0 0

U0 U1 U2
U0

U1

U2

1
0
0

U0

U1

U2

talkingu u.talking

{(U0), (U1)}{U0,U1), (U1, U0)}{(U0)}

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

0 1 0
1 0 0
0 0 0

U0 U1 U2
U0

U1

U2

1
0
0

U0

U1

U2

0
1
0

U0

U1

U2

talkingu u.talking

{(U0), (U1)}{U0,U1), (U1, U0)}{(U0)}

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

u0

u1

u2

U0

U1

U2

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

u0

u1

u2

U0

U1

U2

t00 t01 t02

t10 t11 t12

t20 t21 t22

U0 U1 U2
U0

U1

U2

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

(u0 ∧ t00) ∨ (u1 ∧ t10) ∨ (u2 ∧ t20)

(u1 ∧ t01) ∨ (u1 ∧ t11) ∨ (u2 ∧ t21)

(u0 ∧ t02) ∨ (u1 ∧ t12) ∨ (u2 ∧ t22)

U0

U1

U2

u0

u1

u2

U0

U1

U2

t00 t01 t02

t10 t11 t12

t20 t21 t22

U0 U1 U2
U0

U1

U2

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

(u0 ∧ t00) ∨ (u1 ∧ t10) ∨ (u2 ∧ t20)

(u1 ∧ t01) ∨ (u1 ∧ t11) ∨ (u2 ∧ t21)

(u0 ∧ t02) ∨ (u1 ∧ t12) ∨ (u2 ∧ t22)

U0

U1

U2

u0

u1

u2

U0

U1

U2

t00 t01 t02

t10 t11 t12

t20 t21 t22

U0 U1 U2
U0

U1

U2

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

some u: User | u in u.talking

(u0 ∧ t00) ∨ (u1 ∧ t10) ∨ (u2 ∧ t20)

(u1 ∧ t01) ∨ (u1 ∧ t11) ∨ (u2 ∧ t21)

(u0 ∧ t02) ∨ (u1 ∧ t12) ∨ (u2 ∧ t22)

U0

U1

U2

u0

u1

u2

U0

U1

U2

t00 t01 t02

t10 t11 t12

t20 t21 t22

U0 U1 U2
U0

U1

U2

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

u0 ⇒ (u0 ∧ t00) ∨ (u1 ∧ t10) ∨ (u2 ∧ t20) ∧ 
u1 ⇒ (u1 ∧ t01) ∨ (u1 ∧ t11) ∨ (u2 ∧ t21) ∧ 
u2 ⇒ (u0 ∧ t02) ∨ (u1 ∧ t12) ∨ (u2 ∧ t22)

some u: User | u in u.talking

(u0 ∧ t00) ∨ (u1 ∧ t10) ∨ (u2 ∧ t20)

(u1 ∧ t01) ∨ (u1 ∧ t11) ∨ (u2 ∧ t21)

(u0 ∧ t02) ∨ (u1 ∧ t12) ∨ (u2 ∧ t22)

U0

U1

U2

u0

u1

u2

U0

U1

U2

t00 t01 t02

t10 t11 t12

t20 t21 t22

U0 U1 U2
U0

U1

U2

getting satisfaction

sig User {talking: set User}

check {no u: User | u in u.talking}

talkingu u.talking

u0 ⇒ (u0 ∧ t00) ∨ (u1 ∧ t10) ∨ (u2 ∧ t20) ∧ 
u1 ⇒ (u1 ∧ t01) ∨ (u1 ∧ t11) ∨ (u2 ∧ t21) ∧ 
u2 ⇒ (u0 ∧ t02) ∨ (u1 ∧ t12) ∨ (u2 ∧ t22)

some u: User | u in u.talking

add symmetry  
breaking

predicates too

roll your own idiom
open util/ordering[Time]  
sig Time {}

sig Call {members: User -> Time} 
sig User {talking: User -> Time}

fact { all t: Time | let m = members.t | talking.t = ~m.m }

roll your own idiom
open util/ordering[Time]  
sig Time {}

sig Call {members: User -> Time} 
sig User {talking: User -> Time}

fact { all t: Time | let m = members.t | talking.t = ~m.m }

4
outcomes

but does it work? tell us the truth!

are small scopes enough?

0

5

10

15

20

0 1 2 3 4 5
0

5

10

15

20

0 1 2 3 4 5
0

5

10

15

20

0 1 2 3 4 5

bit widthscope unrolling

analysis of KOA voting code
19 methods violating specs
how many bugs found in scope of k?
[Greg Dennis, 2008]

bu
gs

most bugs in small scopes?

yes, but two caveats
integers are nasty: ‘special’ semantics
trace length must be set higher

why traces are tricky
in scope 5, call-user has ⩽ 25 pairs
can check an operation on 225 pre-states
but if initially empty, 25 steps to populate?

is first order enough?

is first order enough?

converting Z (eg) to Alloy
generally straightforward

is first order enough?

converting Z (eg) to Alloy
generally straightforward

Mondex smart card system  
NatWest, Oxford U., Logica  

[Ramananandro]

is first order enough?

converting Z (eg) to Alloy
generally straightforward

Mondex smart card system  
NatWest, Oxford U., Logica  

[Ramananandro]

Tokeneer project 
Praxis/NSA 

50pp Z, 1200 lines Alloy 
[Eunsuk Kang]

is first order enough?

converting Z (eg) to Alloy
generally straightforward

minimization may be OK
send packet to nearest neighbor?
easy: just say no shorter option

Mondex smart card system  
NatWest, Oxford U., Logica  

[Ramananandro]

Tokeneer project 
Praxis/NSA 

50pp Z, 1200 lines Alloy 
[Eunsuk Kang]

is first order enough?

converting Z (eg) to Alloy
generally straightforward

minimization may be OK
send packet to nearest neighbor?
easy: just say no shorter option

synthesis is higher order
find a program without bugs
∃ p: Program | ∀ s: State | S(p,s)
this motivated Alloy* [Millicevic+]

Mondex smart card system  
NatWest, Oxford U., Logica  

[Ramananandro]

Tokeneer project 
Praxis/NSA 

50pp Z, 1200 lines Alloy 
[Eunsuk Kang]

was purity a good idea?

on the one hand
breadth of domains
nice translation target
good for teaching logic

on the other hand
dynamic idioms are complex
frame conditions annoying

was purity a good idea?

on the one hand
breadth of domains
nice translation target
good for teaching logic

on the other hand
dynamic idioms are complex
frame conditions annoying

Just this year, students used Alloy
for a broad range of unexpected
topics including:
• checking theorems about groups
• generating Feynman Diagrams
• modeling Facebook privacy

Tim Nelson, talking about his 
Brown course, Logic for Systems

is declarative spec easy?

open util/ordering[Time] 
sig Time {}

sig Call {members: User -> Time} 
sig User {talking: User -> Time}

fact { 
 all t: Time | members.t in Call lone -> User  
 all t: Time | let m = members.t | talking.t = ~m.m 
}

pred add [u: User, c: Call, t, t’: Time] { 
 members.t’ = members.t + c->u 
 u not in u.talking.t’ 
}

run add

is declarative spec easy?

open util/ordering[Time] 
sig Time {}

sig Call {members: User -> Time} 
sig User {talking: User -> Time}

fact { 
 all t: Time | members.t in Call lone -> User  
 all t: Time | let m = members.t | talking.t = ~m.m 
}

pred add [u: User, c: Call, t, t’: Time] { 
 members.t’ = members.t + c->u 
 u not in u.talking.t’ 
}

run add

don’t end up
talking to 
yourself

let’s see what happens

let’s see what happens

let’s see what happens

let’s see what happens

this definition
makes everyone

self talkers

so what’s the story?

can be magical  
often very succinct 

nice separation of concerns

declarative specification

so what’s the story?

can be magical  
often very succinct 

nice separation of concerns

can be maddening 
harder to learn than I knew 

even harder to debug  
unsat core not enough

declarative specification

20
projects

extending Alloy

expressiveness
Alloy*: higher-order quantifiers [Milicevic+]

temporal constructs
DynAlloy [Frias+], [Macedo+]

better scenarios
target instances [Cunha+]
Aluminum: minimal instances [Nelson+]

performance
separating configurations [Macedo+]
exploit previous analyses: Titanium [Bagheri+]
translation optimizations [Marinov+]

platforms
Eclipse [LeBerre], web client [Cunha+]

tools built on Alloy

code analysis
Forge [Dennis+], TACO [Galeotti+]

architecture
design space exploration [Bagheri+]
architectural styles [Garlan+]

security
Margrave: policy analysis [Fisler+]
Poirot: vulnerabilities due to platform choice [Kang+]

software defined networking
Flowlog [Nelson+]

checking theorems
Nitpick for Isabelle [Blanchette]

tools built on Alloy

code analysis
Forge [Dennis+], TACO [Galeotti+]

architecture
design space exploration [Bagheri+]
architectural styles [Garlan+]

security
Margrave: policy analysis [Fisler+]
Poirot: vulnerabilities due to platform choice [Kang+]

software defined networking
Flowlog [Nelson+]

checking theorems
Nitpick for Isabelle [Blanchette]

a small sample of
amazing tools

people have built

some favorite applications of Alloy

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

dependability cases [UW PLSE]
end-to-end analysis of neutron therapy

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

dependability cases [UW PLSE]
end-to-end analysis of neutron therapy

memory models [Torlak+; Wickerson+, Dodds+, Lustig+]
validate and develop new memory models

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

dependability cases [UW PLSE]
end-to-end analysis of neutron therapy

memory models [Torlak+; Wickerson+, Dodds+, Lustig+]
validate and develop new memory models

in all cases,  
it’s more than
finding bugs

3
lessons

invest in your tool
sig User {device: Device, calls: set Call}{ 
 no device implies no calls 
 this in calls.users 
}

invest in your tool
sig User {device: Device, calls: set Call}{ 
 no device implies no calls 
 this in calls.users 
}

look Ma, no
semicolons!

invest in your tool
sig User {device: Device, calls: set Call}{ 
 no device implies no calls 
 this in calls.users 
}

look Ma, no
semicolons!

invest in your tool
sig User {device: Device, calls: set Call}{ 
 no device implies no calls 
 this in calls.users 
}

look Ma, no
semicolons!

before she went
to jail

be nice (and objective)

"[In Z,] since declared sets cannot be used in
subsequent declarations, simple multiplicity
constraints must be written as additional textual
formulas. The resulting specification is cluttered
and unnatural."

a stupid thing I wrote:

be nice (and objective)

"[In Z,] since declared sets cannot be used in
subsequent declarations, simple multiplicity
constraints must be written as additional textual
formulas. The resulting specification is cluttered
and unnatural."

a stupid thing I wrote:

I suppose that I shouldn't be irritated by the
final sentence in this quote, but I am: what is
the measure of what is natural? Anyway, the whole
thing is complete tosh…

understandably aggrieved reviewer:

be nice (and objective)

"[In Z,] since declared sets cannot be used in
subsequent declarations, simple multiplicity
constraints must be written as additional textual
formulas. The resulting specification is cluttered
and unnatural."

a stupid thing I wrote:

I suppose that I shouldn't be irritated by the
final sentence in this quote, but I am: what is
the measure of what is natural? Anyway, the whole
thing is complete tosh…

understandably aggrieved reviewer:

get lucky!

get lucky!

3
thoughts

human factors

human factors

more emphasis needed
especially in formal methods

human factors

more emphasis needed
especially in formal methods

what I eventually figured out
abstraction is really hard
most programmers can’t draw an ER diagram
usual educational approaches don’t work

human factors

more emphasis needed
especially in formal methods

what I eventually figured out
abstraction is really hard
most programmers can’t draw an ER diagram
usual educational approaches don’t work

! msgs

Conversation

Message

UserLabel

Label

SysLabel

Deleted Sent

clabels

mlabels

human factors

more emphasis needed
especially in formal methods

what I eventually figured out
abstraction is really hard
most programmers can’t draw an ER diagram
usual educational approaches don’t work

what if I’d studied this 20 years ago?
might not have changed Alloy
but might have changed my research direction?

! msgs

Conversation

Message

UserLabel

Label

SysLabel

Deleted Sent

clabels

mlabels

on empiricism

on empiricism

empirical research
exciting & powerful

on empiricism

empirical research
exciting & powerful

empirical validation
as sole arbiter: a mistake

on empiricism

empirical research
exciting & powerful

empirical validation
as sole arbiter: a mistake

has not
upped field’s reputation
resolved old disputes
made papers compelling

on empiricism

empirical research
exciting & powerful

empirical validation
as sole arbiter: a mistake

has not
upped field’s reputation
resolved old disputes
made papers compelling

but has
inhibited novel work
devalued design research

serving industry?

serving industry?

industrial collaborations provide
source of new problems
deeper understanding of old problems
new approaches (XP, agile, etc)
opportunity to try research ideas

serving industry?

industrial collaborations provide
source of new problems
deeper understanding of old problems
new approaches (XP, agile, etc)
opportunity to try research ideas

but increasingly seems that
SE researchers see their role as serving industry
addressing immediate problems

serving industry?

industrial collaborations provide
source of new problems
deeper understanding of old problems
new approaches (XP, agile, etc)
opportunity to try research ideas

but increasingly seems that
SE researchers see their role as serving industry
addressing immediate problems

this leads to
overemphasis on code & test
lack of long-term thinking

from Mathew, Agrawal & Menzies

a consequence

more info at http://alloy.mit.edu

http://alloy.mit.edu

