The Alloyed Joys of
Software Engineering
Research

Daniel Jackson

Keynote - [CSE 2017 - Buenos Aires

3 i

|

CSAIL

(c) 2017 Daniel Jackson

Alloy

alloy’s cultural origins

alloy’s cultural origins

Oxford, home of Z

alloy’s cultural origins

»
3

Oxford, home of Z ‘ Pittsburgh, home of SMV

lightweight formal methods

LIGHTWEIGHT FORMAL METHODS

Daniel Jackson and Jeannette Wing,
Carnegie Mellon University

M any benefits promised by formal methods are
shared with other approaches. The precision of
mathematical thinking relies not on formality but on care-
ful use of mathematical notions. You don’t need to know
Z to think about sets and functions. Likewise, the lin-
guistic advantages of a formal notation rely more on syn-
tax than semantics.

Mechanical analysis, in contrast, is a benefit unique to
formal approaches. An engineer’s sketch can communi-
cate ideas to other engineers, but only a detailed plan can
be rigorously examined for flaws. Informal methods often
provide some analysis, but since their notations are gen-
erally incapable of expressing behavior, the results of the
analysis bear only on the properties of the artifact’s
description, not on the properties of the artifact itself.

I[EEE Computer, 1996

traditional FM
full model of behavior
analysis to show no bugs

lightweight FM
model of critical aspect
analysis to find bugs

®@®@ jUsers/dnj/Filestore/Talks/fse 17 /models/calls.als
‘ ﬁ @ ' ? & Alloy Analyzer 4.2 (build date: 2012-02-28 12:29 EST)

Mew Open Reload Save Execute Show

sig Device {user: lone User}
sig Call {members: set User}
sig User {talking: set User}

Executing "Run run$1"
Solver=minisat(jni) Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
403 vars. 36 primary vars. 758 clauses. 68ms.
Instance found. Predicate is consistent. 14ms.

fact {

all u: User | u.talking = {u": User | some c: Call | u + u' in cmembers}
all u: User | some u.talking implies some user.u

}

run {
#talking > 2
}

Line 1, Column 1

NGNS [Users/dnj/Filestore/Talks/fse1 7 /models/calls.als
. @"‘ @ = ? & Alloy Analyzer 4.2 (build date: 2012-02-28 12:29 EST)

Mew Open Reload Save Execute Show
Isig Device {user: lone User}

sig Call {members: set User}

sig User {talking: set User}

Executing "Run run$1"
Solver=minisat(jni) Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
403 vars. 36 primary vars. 758 clauses. 68ms.
Instance found. Predicate is consistent. 14ms.

fact {

all u: User | u.talking = {u": User | some c: Call | u + u' in cmembers}
all u: User | some u.talking implies some user.u

}

run {
#talking > 2
}

Line 1, Column 1

ONORG! (calls) Run run$1
i= u= & & :
& - h: @ Projection: none

Viz Txt Tree Theme Magic Layout Evaluator MNext
"talking: 4 ‘ User0 Dtalking

talking

| Callo
Userl Dm“"”g members: Userl

Calll
members: UserQ, Userl

DeviceO Devicel Device?d
user: Userl user: Userl user: User(

alloy timeline

version language analysis sample case study
- relational calculus relation :
Nitpick (1995) subset of Z enumeration 1Pv6 routing
+ navigation exps WalkSAT,

Alloy 1 (1999)

quantifiers

Davis Putnam

intentional naming

Alloy 2 (2001)

+ non-binary relations

Chaff, Berkmin

Unison filesync

signatures symmetry, sharing
Alloy 3 (2004) + subtyping atomization Mondex smartcard
y overloading (bad)
+ meta, sequences bounds

Alloy 4 (2007)

arithmetic

better sharing

flash filesystem

the alloy constraint analyzer

the alloy constraint analyzer

!1 — & Mast.
President Charles M. Vest e —
) weo BCSurae_
.--Massachusetts Institute of Technology - - - ,-.,.L_ S o
Building 5 : me lnal,
77 Massachusetts Avknue : s
Cambridge, MA 02139-4307 ,f MER 25 i)
o
L. . ——
Re: Notice of Trademark Infringement ===
Dear President Vest:

We have just learned that software developers at MIT have named a software program
"Alcoa”. This unauthorized usage of the ALCOA trademark on software on the MIT
internet site is an infringement of the trademark rights of Alcoa Inc (Alcoa).

Alcoa has been using the trademark and service mark ALCOA oan a wide vanety of goods
and services throughout the world since 1926. Through extensive sales and advernising
our trademark and trade name ALCOA is famous worldwide. [t is well associated with
metal alloys.

Th&software developers are knowingly using the ALCOA trademark and trade name.
The last question on the corresponding FAQ page is:
[s Alcoa endorsed by the Alcoa Corporation?

No, we just liked the name. The language, like an alloy, obtains

its strength from a combination of mngredients, and, like many

alloys, 15 lightweight. Running the tool 1s a bat like melting a

metal: it heats things up (and sometime makes your structures fall

apart :-).

Th&software developers are knowingly using the ALCOA trademark and trade name.
The last question on the corresponding FAQ page is:
[s Alcoa endorsed by the Alcoa Corporation?

No, we just liked the name. The language, like an alloy, obtains

its strength from a combination of ingredients, and, like many

alloys, 15 hightweight. Running the tool 1s a bat like melting a

metal: it heats things up (and sometime makes your structures fall

apart :-).

You may also be aware that Alcoa 1s currently a participant in the Leaders for

Manufacturing Program sponsored by the Sloan School of Management and the School of
Engineenng,

Thank you for your prompt attention to this matter.

Very truly yours, k

Edward L. Levine

Director — Intellectual Property Law
® (724)337-2759

FAX (724)337-5959

all small tests

traditional testing

all small tests

traditional testing bounded analysis

all small tests

traditional testing bounded analysis

5 users, calls, devices
225 yser-call, user-device relations
so 2°0=101>states

a signature style

sig Call {members: set User}

a signature style

sig Call {members: set User}

Call = P (id: Callld x members: IP User)
User = IP (id: Userld x talking: IP User)

traditional interpretation

a signature style

sig Call {members: set User}

Call = P (id: Callld x members: IP User)
User = IP (id: Userld x talking: IP User)

traditional interpretation

allc, c”: Call {no c.members & c"members}

a signature style

sig Call {members: set User}

Call = P (id: Callld x members: IP User)
User = IP (id: Userld x talking: IP User)

traditional interpretation

allc, c”: Call {no c.members & c"members}

V¢ ¢’ € P (id: Callld x members: P User) | ...

a signature style

sig Call {members: set User}

Call = P (id: Callld x members: IP User)
User = IP (id: Userld x talking: IP User)

traditional interpretation

allc, c”: Call {no c.members & c"members}
V¢ ¢ € P (id: Callld x members: P User) | ...

higher order
quantification:
ouch!

a signature style

sig Call {members: set User}

Call = P (id: Callld x members: IP User) Call, User: P Univ
User = IP (id: Userld x talking: IP User) members: Call <> User
traditional interpretation Alloy interpretation

allc, c”: Call {no c.members & c"members}
V¢ ¢ € P (id: Callld x members: P User) | ...

higher order
quantification:
ouch!

a signature style

sig Call {members: set User}

Call = P (id: Callld x members: IP User) Call, User: P Univ
User = IP (id: Userld x talking: IP User) members: Call <> User
traditional interpretation Alloy interpretation

allc, c”: Call {no c.members & c"members}

V¢ ¢ € P (id: Callld x members: P User) | ... 3 members: Call < User |
Ve ceCalll..

higher order
quantification:
ouch!

a signature style

sig Call {members: set User}

Call = P (id: Callld x members: IP User) Call, User: P Univ
User = IP (id: Userld x talking: IP User) members: Call <> User
traditional interpretation Alloy interpretation

allc, c”: Call {no c.members & c"members}

V¢ ¢’ € P (id: Callld x members: P User) | ... 3 members: Call < User |
Ve ceCalll..
higher order first order
quantification: quantification:

ouch! solve with SAT

everything’'s a relation

sig Call {members: set User}
sig User {talking: set User}

everything’'s a relation

sig Call {members: set User}
sig User {talking: set User}

some expressions:

c.members
members.u
u.talking
c.members.talking
u.talking =u’

everything’'s a relation

sig Call {members: set User}
sig User {talking: set User}

some expressions:
navigation: dot is

c.members AR

just join, not
members.u overloaded
u.talking

c.members.talking
u.talking =u’

everything’'s a relation

sig Call {members: set User}
sig User {talking: set User}

some expressions:
navigation: dot is

c.members AR

just join, not
members.u overloaded
u.talking

. NO syntax
c.members.talking differenZe: e

u.talking=u’ relation

everything’'s a relation

sig Call {members: set User}
sig User {talking: set User}

some expressions:
navigation: dot is

c.members A

JUStJOln, not
members.u overloaded
u.talking

. no syn
c.members.talking N0 syntax
. , difference: fun vs

u.talking=u relation

no undefined
value, follows
Parnas

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

u talking u.talking
{(Uo)} {uo,u1), (U1, U0)} {(U0), (U1)}

Uuo
U1
Uz

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

ol O -

u talking u.talking
{(Uo)} {uo,u1), (U1, U0)} {(U0), (U1)}

Uuo
U1
Uz

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

ol O -

c

1(U0)}

uo U1 U2
vo| 0 {110
uzl1,101]0
vzl 01010
talking u.talking

{U0,U1), (U1,U0)} {(U0), (U1)}

Uuo
U1
Uz

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

ol O -

c

1(U0)}

uo U1 U2
vo, 0 (10
Uzl 10| 0
vzl 0 10| 0
talking

{U0,U1), (U1, UO)}

Uuo
U1
Uz

u.talking
{(U0), (U1)}

0

1

0

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

u talking u.talking

Uuo
U1
Uz

getting satisfaction

uo

ul

uz2

sig User {talking: set User}

check {no u: User | uin u.talking}

talking

u.talking

Uuo
U1
Uz

getting satisfaction

uo

ul

uz2

Uuo
U1
Uz

Uo

Ul

sig User {talking: set User}

check {no u: User | uin u.talking}

Uz

t00

t01

t02

t10

t11

t12

t20

t21

t22

talking

u.talking

Uuo
U1
Uz

getting satisfaction

uo

ul

uz2

Uuo
U1
Uz

Uo

Ul

Uz

t00

t01

t02

t10

t11

t12

t20

t21

t22

talking

Uuo
U1
Uz

sig User {talking: set User}

check {no u: User | uin u.talking}

(u0 A t00) v (ul A t10) v (u2 A t20)

(Ul At01) v (Ul At11) v (U2 A t21)

(U0 At02) v (Ul At12) v (U2 A t22)

u.talking

Uuo
U1
Uz

getting satisfaction

uo

ul

uz2

Uuo
U1
Uz

Uo

Ul Uz

t00

t01 | t02

t10

t11 | t12

t20

t21 | t22

talking

Uuo
U1
Uz

sig User {talking: set User}

check {no u: User | uin u.talking}

(u0 A t00) v (ul A t10) v (u2 A t20)

(Ul At01) v (Ul At11) v (U2 A t21)

(U0 At02) v (Ul At12) v (U2 A t22)

u.talking

some u: User | uin u.talking

Uuo
U1
Uz

getting satisfaction

uo

ul

uz2

Uuo
U1
Uz

Uo

Ul Uz

t00

t01 | t02

t10

t11 | t12

t20

t21 | t22

talking

Uuo
U1
Uz

sig User {talking: set User}

check {no u: User | uin u.talking}

(u0 A t00) v (ul A t10) v (u2 A t20)

(Ul At01) v (Ul At11) v (U2 A t21)

(U0 At02) v (Ul At12) v (U2 A t22)

u.talking

u0 = (u0 A t00) v (U1 A t10) v (U2 At20) A
ul= (Ul At0l) v (Ul Atll) v (U2 At21) A
u2 = (U0 A t02) v (Ul At12) v (U2 A t22)

some u: User | uin u.talking

add symmetry
breaking
predicates too

Uuo
U1
Uz

getting satisfaction

sig User {talking: set User}

check {no u: User | uin u.talking}

uo Uo
ul U1
u2 Uz
u

Uo

U1

Uz

t00

t01

t02

t10

t11

t12

t20

t21

t22

talking

Uuo
U1
Uz

(u0 A t00) v (ul A t10) v (u2 A t20)

(Ul At01) v (Ul At11) v (U2 A t21)

(U0 A t02) v (Ul At12) v (U2 A t22)

u.talking

u0 = (u0 A t00) v (U1 A t10) v (U2 At20) A
ul= (Ul At0l) v (Ul Atll) v (U2 At21) A
u2 = (U0 A t02) v (Ul At12) v (U2 A t22)

some u: User | uin u.talking

roll your own idiom

open util/ordering[Time]
sig Time {}

sig Call {members: User -> Time}
sig User {talking: User ->Time}

fact { allt: Time | let m = members.t | talking.t=~m.m }

roll your own idiom

open util/ordering[Time]

sig Time {}

sig Call {members: User -> Time}

sig User {talking: User ->Time}

fact { allt: Time | let m = members.t | talking.t=~m.m }

o

Theme Magic Layout Evaluator MNext

UserD

Dtal king

(calls-dynamic) Run run$1

Projected over Time

Userl

Dtalking

%kng

User?

Dtal king

Tirmel

(:;;;;E;rs:Userl

Callo

Calll
, User2 members: UserD

e

outcomes

but does it work? tell us the truth!

firren ? J 7 - -
— Y J 3 SEIT C OOOOnER

ETTTT

SIENTNERTNY

,?r"l R ERNERET .
ERR N EREANERN

T

are small scopes enough?

20 20 20
15 15 15
10 10 10
5 5 5
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
scope bit width unrolling

analysis of KOA voting code
19 methods violating specs

now many bugs found in scope of k?
Greg Dennis, 2008]

5

bugs

most bugs in small scopes?

yes, but two caveats
integers are nasty: ‘'special’ semantics
trace length must be set higher

why traces are tricky

in scope 5, call-user has < 25 pairs

can check an operation on 22> pre-states
but if initially empty, 25 steps to populate?

is first order enough?

is first order enough?

converting Z (eg) to Alloy
generally straightforward

is first order enough?

converting Z (eg) to Alloy
generally straightforward

Mondex smart card system
NatWest, Oxford U., Logica
[Ramananandro]

is first order enough?

-
4]

converting Z (eg) to Alloy SELEY b C°8
generally straightforward R ¢ W) J
: ' d
e

Mondex smart card system
NatWest, Oxford U., Logica
[Ramananandro]

——

Tokeneer project
Praxis/NSA

50pp Z, 1200 lines Alloy
[Eunsuk Kang]

is first order enough?

converting Z (eg) to Alloy LAy
generally straightforward (8 2@

Student Cord vym00 n7iyn N

minimization may be OK -

send packet to nearest neighbor? Mondex smart card system
easy: just say no shorter option NatWest, Oxford U., Logica
[Ramananandro]

~ .'*q
-

T

ﬁ nioct //‘
i /m(\

b M sp:;moossy i l/‘d \

Tokeneer pro_|ect
Praxis/NSA

50pp Z, 1200 lines Alloy
[Eunsuk Kang]

is first order enough?

converting Z (eg) to Alloy
generally straightforward

minimization may be OK
send packet to nearest neighbor?
easy: just say no shorter option

synthesis is higher order

find a program without bugs

3 p: Program | V s: State | S(p,s)
this motivated Alloy™ [Millicevic+]

Student Cord)M

ve nnyn B

‘in.
Mondex smart card system

NatWest, Oxford U., Logica
[Ramananandro]

-—
- -
—

TAl anany -~]

Proi rV"?'. /—

/f m((
bu smmp:;:‘;oossy i ,/ J\\\\

Tokeneer prOJect
Praxis/NSA

50pp Z, 1200 lines Alloy
[Eunsuk Kang]

was purity a good idea?

on the one hand
breadth of domains
nice translation target
good for teaching logic

on the other hand
dynamic idioms are complex
frame conditions annoying

was purity a good idea?

on the one hand
breadth of domains
nice translation target
good for teaching logic

on the other hand
dynamic idioms are complex
frame conditions annoying

Just this year, students used Alloy
for a broad range of unexpected
topics including:

- checking theorems about groups
- generating Feynman Diagrams

- modeling Facebook privacy

Tim Nelson, talking about his
Brown course, Logic for Systems

is declarative spec easy?

open util/ordering[Time]

sig Time {}

sig Call {members: User -> Time}
sig User {talking: User ->Time}

fact {
all t: Time | members.tin Call lone -> User
allt: Time | let m=members.t | talking.t =~m.m

}

pred add [u: User, c: Call, t, t": Time] {
members.t’= members.t + c->u
u notin u.talking.t’

}

run add

is declarative spec easy?

open util/ordering[Time]

sig Time {}

sig Call {members: User -> Time}
sig User {talking: User ->Time}

fact {
all t: Time | members.tin Call lone -> User
allt: Time | let m=members.t | talking.t =~m.m

}

pred add [u: User, c: Call, t, t": Time] {
don‘tendup members.t’=members.t +c->u

talking to unotin u.talking.t’
yourself 1

run add

let's see what happens

(ONONO©. /Users/dnj/Filestore/Talks/fse17/models/add-call.als |
i ﬁ a B % & Alloy Analyzer 4.2 (build date: 2012-02-28 12:29 EST)
New Open Reload Save Execute Show

open util/ordering[Time]

sig Time {}

sig Call {members: User -> Time}
sig User {talking: User -> Time}

fact {
all t: Time | members.t in Call lone -> User
all t: Time | let m = members.t | talking.t = ~m.m

}

pred add [u: User, c: Call, t, t": Time] {
members.t' = members.t + c->u
u not in u.talking.t'

}

run add

Line 1, Column 1

let’s see what happens

CNONG)

R o BB 7 &
New Open Reload Save Execute Show
open util/ordering[Time]
sig Time {}

sig Call {members: User -> Time}
sig User {talking: User -> Time}

fact {
all t: Time | members.t in Call lone -> User
all t: Time | let m = members.t | talking.t = ~m.m

}

pred add [u: User, c: Call, t, t": Time] {
members.t' = members.t + c->u
u not in u.talking.t'

}

run add

Line 1, Column 1

[Users/dnj/Filestore/Talks/fse17/models/add-call.als

Alloy Analyzer 4.2 (build date: 2012-02-28 12:29 EST)

Executing "Run add"
Solver=minisatprover(jni) Bitwidth=0 MaxSeq=0 SkolemD
928 vars. 87 primary vars. 1636 clauses. 100ms.

No instance found. Predicate may be inconsistent. 13ms.
Core contains 2 top-level formulas. 27ms.

let's see what happens

(ONONG®! /Users/dnj/Filestore/Talks/fse 1 7/models/add-call.als

A o B ¥ & Alloy Analyzer 4.2 (build date: 2012-02-28 12:29 EST)

New Open Reload Save Execute Show

open util/ordering[Time] Executing "Run add"

sig Time {} Solver=minisatprover(jni) Bitwidth=0 MaxSeq=0 Skolem
928 vars. 87 primary vars. 1636 clauses. 100ms.

sig Call {members: User -> Time} No instance found. Predicate may be inconsistent. 13ms.

sig User {talking: User -> Time} Core contains 2 top-level formulas. 27ms.

fact {
all t: Time | members.t in Call lone -> User

}

pred add [u: User, c: Call, t, t": Time]

run add

Line 12, Column 42

let's see what happens

(ONONO©. /Users/dnj/Filestore/Talks/fse17/models/add-call.als |

. @ ﬁ = ? & Alloy Analyzer 4.2 (build date: 2012-02-28 12:29 EST)

New Open Reload Save Execute Show

open util/ordering[Time] Executing "Run add"

sig Time {} Solver=minisatprover(jni) Bitwidth=0 MaxSeq=0 SkolemD
928 vars. 87 primary vars. 1636 clauses. 100ms.

sig Call {members: User -> Time} No instance found. Predicate may be inconsistent. 13ms.

sig User {talking: User -> Time} Core contains 2 top-level formulas. 27ms.

fact { this definition

all t: Time | members.t in Call lone -> User

makes everyone
} self talkers

pred add [u: User, c: Call, t, t': Time]

run add

Line 12, Column 42

so what's the story?

declarative specification

can be magical
often very succinct
nice separation of concerns

so what's the story?

declarative specification

can be magical
often very succinct
nice separation of concerns

can be maddening
harder to learn than | knew
even harder to debug
unsat core not enough

projects

extending Alloy

expressiveness
Alloy™: higher-order quantifiers [Milicevic+]

temporal constructs
DynAlloy [Frias+], [Macedo+]

better scenarios
target instances [Cunha+]
Aluminum: minimal instances [Nelson+]

performance

separating configurations [Macedo+]

exploit previous analyses: Titanium [Bagheri+]
translation optimizations [Marinov+]

platforms
Eclipse [LeBerre], web client [Cunha+]

tools built on Alloy

code analysis
Forge [Dennis+], TACO [Galeotti+]

architecture
design space exploration [Bagheri+]
architectural styles [Garlan+]

security
Margrave: policy analysis [Fisler+]
Poirot: vulnerabilities due to platform choice [Kang+]

software defined networking
Flowlog [Nelson+]

checking theorems
Nitpick for Isabelle [Blanchette]

tools built on Alloy

code analysis

Forge [Dennis+], TACO [Galeotti+] a small sample of
. amazing tools
architecture people have built

design space exploration [Bagheri+]
architectural styles [Garlan+]

security
Margrave: policy analysis [Fisler+]
Poirot: vulnerabilities due to platform choice [Kang+]

software defined networking
Flowlog [Nelson+]

checking theorems
Nitpick for Isabelle [Blanchette]

some favorite applications of Alloy

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

dependability cases [UW PLSE]
end-to-end analysis of neutron therapy

some favorite applications of Alloy

web security [Akhawe+]
reusable model of web platform
found 2 known and 3 new vulnerabilities

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

dependability cases [UW PLSE]
end-to-end analysis of neutron therapy

memory models [Torlak+; Wickerson+, Dodds+, Lustig+]
validate and develop new memory models

some favorite applications of Alloy

web security [Akhawe+]

in all cases,
reusable model of web platform - it
found 2 known and 3 new vulnerabilities finding bugs

networking [Zave]
showed Chord violates all its invariants
designed a new version + invariant

dependability cases [UW PLSE]
end-to-end analysis of neutron therapy

memory models [Torlak+; Wickerson+, Dodds+, Lustig+]
validate and develop new memory models

lessons

invest in your tool

sig User {device: Device, calls: set Call}{
no device implies no calls
this in calls.users

}

invest in your tool

sig User {device: Device, calls: set Call}{
no device implies no calls look Ma, no

this in calls.users semicolons!

}

invest in your tool

sig User {device: Device, calls: set Call}{
no device implies no calls look Ma, no

this in calls.users semicolons!

}

Node Color Palette: Martha v Use original atom names: [|

:)
-

Edge Color Palette: Classic .2 FontSize: 12 v

Hide private sigs/relations: W

Hide meta sigs/relations: @

invest in your tool

sig User {device: Device, calls: set Call}{

no device implies no calls look Ma, no
this in calls.users semicolons!
before she went
to jail
Node Color Palette: Martha v Use original atom names: [|

Edge Color Palette: Classic v Font Size: 12 2

Hide private sigs/relations: W

Hide meta sigs/relations: (/]

be nice (and objective)

a stupid thing | wrote:

"[In Z,] since declared sets cannot be used in

subsequent declarations, simple multiplicity
constraints must be written as additional textual

formulas. The resulting specification is cluttered
and unnatural."

be nice (and objective)

a stupid thing | wrote:

"[In Z,] since declared sets cannot be used in
subsequent declarations, simple multiplicity
constraints must be written as additional textual
formulas. The resulting specification is cluttered
and unnatural."

understandably aggrieved reviewer:

I suppose that I shouldn't be irritated by the
final sentence in this quote, but I am: what 1is
the measure of what 1is natural? Anyway, the whole
thing is complete tosh..

be nice (and objective)

a stupid thing | wrote:

"[In Z,] since declared sets cannot be used in
subsequent declarations, simple multiplicity
constraints must be written as additional textual

formulas. The resulting specification is cluttered
and unnatural."

understandably aggrieved reviewer:

I suppose that I shouldn't be irritated by the
final sentence in this quote, but I am: what 1is
the measure of what 1is natural? Anyway, the whole
thing is complete tosh..

tosh

/taSH/ <)
noun BRITISH

rubbish; nonsense.
it's sentimental tosh

get lucky!

get lucky!

thoughts

human factors

human factors

more emphasis needed
especially in formal methods

human factors

more emphasis needed
especially in formal methods

what | eventually figured out

abstraction is really hard

most programmers can't draw an ER diagram
usual educational approaches don't work

human factors

, clabels
Conversation

| \
Message

Label

more emphasis needed

UserLabel

SysLabel

especially in formal methods

what | eventually figured out

abstraction is really hard

most programmers can't draw an ER diagram
usual educational approaches don't work

/N

Deleted

Sent

human factors

more emphasis needed

especially in formal methods

what | eventually figured out

abstraction is really hard
most programmers can't draw an ER diagram
usual educational approaches don't work

clabels

Conversation \\\\\\\\\\\\\\\\\ﬁi
Tmsgs

Label

Message

UserLabel

SysLabel

/N

Deleted

what if I'd studied this 20 years ago?

might not
but might

nave C

nave C

nangec

nangec

Alloy
my research direction?

Sent

on empiricism

on empiricism

empirical research
exciting & powerful

on empiricism

empirical research
exciting & powerful

empirical validation
as sole arbiter: a mistake

on empiricism

empirical research
exciting & powerful

empirical validation
as sole arbiter: a mistake

has not

upped field's reputation
resolved old disputes
made papers compelling

on empiricism

empirical research
exciting & powerful

empirical validation
as sole arbiter: a mistake

has not

upped field's reputation
resolved old disputes
made papers compelling

but has
inhibited novel work
devalued design research

serving industry?

serving industry?

industrial collaborations provide
source of new problems

deeper understanding of old problems
new approaches (XP, agile, etc)
opportunity to try research ideas

serving industry?

industrial collaborations provide
source of new problems

deeper understanding of old problems
new approaches (XP, agile, etc)
opportunity to try research ideas

but increasingly seems that
SE researchers see their role as serving industry
addressing immediate problems

serving industry?

industrial collaborations provide
source of new problems

deeper understanding of old problems
new approaches (XP, agile, etc)
opportunity to try research ideas

but increasingly seems that
SE researchers see their role as serving industry
addressing immediate problems

this leads to
overemphasis on code & test
lack of long-term thinking

Topic %

a consequence

Testing B Modeling B Source Code W Program Analysis M Performance
B Requirements Management Design Metrics W Secunty

B Applications

20 A

gl || 1
0- Illlllllllllll

9293949596979899000102030405060708091011 1213141516
Year

100 A

90 -

i

Testing

80

70

60

50

40

30 ~

Source
Code

from Mathew, Agrawal & Menzies

more info at http://alloy.mit.edu

m community download documentation book applications people thanks

alloy: a language & tool for relational models

about alloy news

, L) A Japanese translation of book
Alloy is a language for describing structures and a tool for exploring them. It has published!

been used in a wide range of applications from finding holes in security

mechanisms to designing telephone switching networks. Revised edition of book now out!

. . . , o Available from MIT Press.
An Alloy model is a collection of constraints that describes (implicitly) a set of

structures, for example: all the possible security configurations of a web application,
or all the possible topologies of a switching network. Alloy’s toel, the Alloy Analyzer,
is a solver that takes the constraints of a model and finds structures that satisfy
them. It can be used both to explore the model by generating sample structures, and
to check properties of the model by generating counterexamples. Structures are
displayed graphically, and their appearance can be customized for the domain at

hand. . Software Abstractions

At its core, the Alloy language is a simple but expressive logic based on the notion of
relations, and was inspired by the Z specification language and Tarski’s relational
calculus. Alloy’s syntax is designed to make it easy to build models incrementally,
and was influenced by modeling languages (such as the object models of OMT and
UML). Novel features of Alloy include a rich subtype facility for factoring out
common features and a uniform and powerful syntax for navigation expressions.

Daniel Jackson

The Alloy Analyzer works by reduction to SAT. Version 4 was a complete rewrite
that included Kodkod, a new model finding engine that optimizes the reduction, and
a new front end.

contact us!

http://alloy.mit.edu

